• Nie Znaleziono Wyników

Obtaining angle-dependent reflectivity using the Marchenko redatuming method

N/A
N/A
Protected

Academic year: 2021

Share "Obtaining angle-dependent reflectivity using the Marchenko redatuming method"

Copied!
4
0
0

Pełen tekst

(1)

Delft University of Technology

Obtaining angle-dependent reflectivity using the Marchenko redatuming method

Alfaraj, H.S.A.; Brackenhoff, J.A.; Wapenaar, K. DOI

10.3997/2214-4609.202012138

Publication date 2020

Document Version

Accepted author manuscript Published in

82nd EAGE Conference & Exhibition 2020

Citation (APA)

Alfaraj, H. S. A., Brackenhoff, J. A., & Wapenaar, K. (2020). Obtaining angle-dependent reflectivity using the Marchenko redatuming method. In 82nd EAGE Conference & Exhibition 2020: 8-11 June 2020, Amsterdam, The Netherlands (pp. 1-3). EAGE. https://doi.org/10.3997/2214-4609.202012138

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Obtaining angle-dependent reflectivity using the Marchenko

redatuming method

Hassan Alfaraj, Joeri Brackenhoff, Kees Wapenaar Summary

When reflection images are studied, often only the zero-offset reflectivity is considered, however, taking into account the angle-dependent reflectivity can add additional information about the subsurface. This additional information can be used to extract the properties of the subsurface using amplitude variation with offset (AVO) analysis. However, the presence of a complex overburden can significantly deteriorate the AVO response, especially for deep targets. To overcome this problem, the overburden effects can be removed by redatuming the reflection response at a depth level below the overburden. In this paper, we show that the Marchenko redatuming method has the potential to correctly retrieve the angle-dependent reflectivity in an acoustic medium without distortions due to multiple scattering. The retrieved angle-dependent reflection coefficients can be used as input in a subsequent inversion process to obtain the velocity and density of the subsurface.

82ndEAGE Conference & Exhibition 2020 8–11 June 2020, Amsterdam, The Netherlands

(3)

Introduction

When reflection images are studied, often only the zero-offset reflectivity is considered, however, taking into account the angle-dependent reflectivity can add additional information about the subsurface. This additional information can be used to extract the properties of the subsurface using amplitude variation with offset (AVO) analysis. However, the presence of a complex overburden can significantly deteriorate the AVO response, especially for deep targets. To overcome this problem, the overburden effects can be removed by redatuming the reflection response at a depth level below the overburden. De Bruin et al.

(1990) showed that for a laterally homogeneous lossless medium, the angle-dependent reflectivity can be correctly retrieved by means of prestack migration after using wavefield extrapolation. Following a similar approach toDe Bruin et al.(1990), we evaluate the Marchenko redatuming method to obtain the AVO response at the reflectors in the subsurface, free of artefacts related to multiple scattering.

Method and Theory

The Marchenko redatuming method estimates the downgoing Green’s function G+and upgoing Green’s function G−at a virtual receiver in the subsurface from a surface reflection response with limited infor-mation about the medium (Broggini and Snieder,2012;Wapenaar et al.,2014). The Green’s functions can be then used to estimate the redatumed reflection response R using the multidimensional deconvul-tion (MDD) (Wapenaar et al.,2014):

R(xF, x0F,t) =

Z

∂ D0

G−(xF, xS,t) ∗ [G+ x0F, xS,t)]invdxS (1)

where x0F represents a focal point located in the medium at depth level zf, xF represents an obvervation

points at depth zf, xS represents the location of the sources at the surface of the Earth, ∂ D0 represents

the surface of the Earth, and t represents time. The abbreviation inv stands for the inverse of the G+ and the asterisk denotes temporal convolution. According toDe Bruin et al.(1990), the angle-dependent reflection coefficients can be recovered from R by summing the reflection coefficients along lines of constant angle θ in the horizontal wavenumber-frequency (kx, ω) domain.

Numerical example

We consider an acoustic multi-layer model with a constant velocity and varying density as shown in plots A and B inFigure 1. The second layer of this model is characterized by a high impedance contrast to test the method in retrieving the angle-dependent reflectivity for a reflector below that layer. The surface reflection response is modeled without free-surface multiples, using a flat spectrum wavelet and a finite-difference modeling scheme (Thorbecke and Draganov,2010), see plot C inFigure 1. The redatuming is applied slightly above the reflector. After obtaining the Green’s functions with the Marchenko method, we apply muting to obtain the first arrival of both G− and G+. Next, we transform the G− and G+ into the wavenumber-frequency domain and then the horizontal wavenumber is mapped into the angle domain using kx/ω = sin(θ )/c, where ω is the angular frequency and c is the velocity of the layer.

After that, the result is summed along lines of constant angle and divided by the number of frequency components. Figure 2illustrates this process for the first reflector as an example. Finally, the MDD is applied by dividing G−by G+in the frequency-angle domain, producing the angle-dependent reflection coefficients for the reflector. The results for all reflectors are shown in plots D, E and F inFigure 1. It can be seen that the reflection coefficients, which are constant because there are only density contrasts, are correctly retrieved at each reflector. Although there is a high-contrast overburden layer, the method is still able to recover the angle-dependent reflectivity below that layer. The very far angles are set to zero by the user to indicate where the aperture is limited.

Conclusion

We have demonstrated that the Marchenko method can potentially retrieve the angle-dependent reflec-tivity in an acoustic medium without distortions due to multiple scattering. The numerical example has shown that even with a high-contrast overburden, the method is still able to preserve the AVO response.

82ndEAGE Conference & Exhibition 2020 8–11 June 2020, Amsterdam, The Netherlands

(4)

With angle-dependent reflection coefficients, the velocity and density can be obtained by a subsequent inversion process. Future work should consider elastic media, dipping layers, and velocity variations. Acknowledgement

This research was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No: 742703).

Figure 1 (A) Velocity model [m/s]. (B) Density model [kg/m3]. (C) Modeled surface reflection response.

Retrieved angle-dependent reflecitivy at (D) depth 400m, (E) depth 700, and (F) depth 1100m. The red curves represent exact reflectivity whereas the blue curves represent estimated reflectivity by MDD.

Figure 2 The transforms of the Green’s functions: the top row represents the G−and bottom row rep-resents the G+. (A) Before muting. (B) After muting. The red hyperbola represents the muting window. (C) wavenumber-frequency domain. (D) angle-frequency domain. (E) Summing along lines of constant angle and dividing by the number of frequency components.

References

Broggini, F. and Snieder, R. [2012] Connection of scattering principles: A visual and mathematical tour. European Journal of Physics, 33(3), 593–613.

De Bruin, C.G., Wapenaar, C.P. and Berkhout, A.J. [1990] Angle-dependent reflectivity by means of prestack migration. Geophysics, 55(9), 1223–1234.

Thorbecke, J. and Draganov, D. [2010] Finite-difference modeling experiments for seismic interferom-etry. Society of Exploration Geophysicists International Exposition and 80th Annual Meeting 2010, SEG 2010, 76(6), 4013–4018.

Wapenaar, K., Thorbecke, J., van der Neut, J., Broggini, F., Slob, E. and Snieder, R. [2014] Green’s function retrieval from reflection data, in absence of a receiver at the virtual source position. The Journal of the Acoustical Society of America, 135(5), 2847–2861.

82ndEAGE Conference & Exhibition 2020 8–11 June 2020, Amsterdam, The Netherlands

Cytaty

Powiązane dokumenty

Sporo ważnych informacji przynosi podrozdział, w któ- rym zestawione zostały habilitacje w zakresie pedagogiki uzyskane latach 1973-2001 oraz podrozdział będący

Z zapisów skróconych przez w y­ dawcę wersji polskiej „Imperium Arsacydów”, nie zawsze można się zorientować na jaki ustęp w źródle powołuje się w

Druga karta tytułowa w języku polskim Redakcja przeprasza Autora i

weerkaatsing voor gegeven ai/ao en toenemende ai blijkt op te kunnen treden voor 35,60 < ai < 900• Hierbij neemt ar/ai in de meeste gevallen aanzienlijk toe. Een

Ou bien nous percevons dans une oeuvre des souvenirs d’une autre : nous entrons ici dans la zone floue des influences qui relèvent des lectures qu’a faites un écrivain, des

Podobnie uważają J. Wychodząc od założeń generalnych, nie sposób podzielić zapatrywania, że na gruncie obecnego stanu prawnego funkcja kasacji ogranicza się wyłącznie

Moż- na zatem przyjąć, że w polskim społeczeństwie jest jeszcze obecny głęboko zakorzeniony stereotyp matki-Polki, ale pojawia się też obraz kobiety aktyw- nej,

Como conclusión queremos resaltar un aspecto más en el que los jó- venes escritores hispanoamericanos — representados por Alberto Fuguet y su novela Por favor, rebobinar —