• Nie Znaleziono Wyników

Experiments on a super tanker model on oblique regular waves. Part - IV

N/A
N/A
Protected

Academic year: 2021

Share "Experiments on a super tanker model on oblique regular waves. Part - IV"

Copied!
37
0
0

Pełen tekst

(1)

EERThENTS CN A SUPER TANKER MODEL IN OBLIQIJE REGULAR 1AVES

PART - IV

cb= .80, L/B7.00)

AUGUST

1965

SHIP DYNA1IC3 .DJ.VISION

SHiP REARCH INSTITUTE

(2)

Iable 1 Nomenclature H ve height t w

X

lave length V Model speed Froude rwmber =

V/L

T Thrust

T Thrust increase over that of still water

N Propefler revolution Amplitude of pitch Amplitude of rofl

X

Amplitude of yaw

Ø

Maximum wave slope = HjL

Angle of encounter of model's course to wave Circular frequency of encounter

p Mean leeway angle & Mean helm angle

(3)

Table 2 Principal Particulars

of Model Ship

Length between perpendiculars, L /.500 in

Breadth extreme, B .643 in

Draft, tested ful]. load, d .248 in

Displacement, V .572 in3

Block coefficient, Cb .799

Prismatic coefficient, Op .803

Midship sectional area coefficient, C .995

terp1ane area coefficient, O, .860

Longitudinal center of buoyancy, lcb -l.iJ. %L

Length-breadth ratio, L/B '7.00

Breadth-draft ratio, B/d 2.60

Displacement-length ratio, 103V/L3 6.28

Longitudinal radius of rration,K .25 L

Scale ratio,

1/Su.00 Natural circ.uliìr frequency of pitch,

1$U

Natural circular frequency of roll, 3.07 sec'

Oenter of gravity above keel line, KG .225 ra Transverse height of metacenter, GM

.052 in

Dimensionless damping coefficient of

pitch, K/ (

.32. )

Diriensionles damping coefficient of

roll,Kc%/ù*

.011

-- of Ìodel rropeller

Diiietor, D .114 Id Number of blades

4.

±'itch ratio, 11/i) .710

Direction of turn. Right-handed

Expanded area rat±o .55 Blade section type

Nodified AU

I3os ratio .18

of Model Rudder

(4)

ab1e 3

Tezt program

900

*

*

*

*

67.50

*

*

*

1arks in Figures

y

X O 0

Nominal H.JL

1/50

( =

9.0 cm )

Remark; The test results of motions

were

converted into the

nominal wave heiht(H.

= 9.0 cm )

in linear

proportion, and

the

thrust

increment

in proportion to the

square

of the wave height.

Noin.nal

À/L

1.80

1.50

1.20

1.00

Actual 1k./L 1.77 1.h7 1.17

.99

Actual

H(cm)

7.6 6.1 7.9

8.3

1800

157.50

1350

112.50

*

*

*

*

*

*

*

*

*

*

*

*

.80

.60

.79

.59

3.4. 7.2

(5)

Table 4.

List of Figuree

Ordinate

Abscizsa

?ararneter

Group

Fig. No.

e

i/c

i

h U II It 2 u u ht U 3 T

,

N Ii Ti u j:

14

e/ev

e

(A8) VI 4. Il II 5

X/

u rl 6 ¿iT/PgBH,,2 'T bi

15

16

17

x/L

1k 7 ti U ri

8

X

U ht il

9

4T

ii ft ft

û

111f

À/L

10

T,N

V,«31

in3ti11ater

13

VI(Acta1)

V

X/L

t/i

19

bI 1* bi

u

X, IL ft ji

12

r: j: b:

(6)

*

---

¡.47

-2T

- 7/

,-47

.5-_IITI:

we D

Pj.I-I PITCHING- -SPEED

o

--r-l.0

---)ç-*---Y

-.5- .. 1.0 Y

y-1

X ¿

Y- --':

¡.0

Is

o '.5-- D L' =/g7.5 + FROUDE JVUM8ER , i: i

.°a

Jo

./

.14

.16 .I

.20

.22

=/35o

PEED

MnFLi

,

_

(&LcJ

(7)

-5-I

3 + I

-,..-

+ 2 Y

1

Y /_7 o O Q

F. t-2

PITCF-1IN- - SPEED Li

D

--V

LI + ;3

o

x

.5

1,0

Is

-- +-- +

t

-1.

-

K-OX

L 1.0 OiF MOflFI

,

£)t/)

W = 900

/5---5- 1.0 1._s-FROIJDE MJMBER , .O .10 .12 /4 16 .I

20

22

(8)

20 ¡0° ¿47 -

it?

--41T:

ET o

-o LI?

/

L

2I ROLLING - SPEED

60 U)

i,, =Ì8 0°

FRLJDE NU/V1ER, .10 .12 .14 .16 .ia .20 .22 - /5_7.5_0 I Y 3 .5-

Jo

MiWEL

.SPFFD l_17

-y

--ft

/ 350 Y

.5

1.0 1.5 LO j. s.

(9)

-J o = f_'77 y

F.2-2 ROLLINSSPEED

FR0 (iDE /YL/4IBER , .0 .10 »2 .14 .16 .J .20 22 W = 112. 5 W4

V-/

y Y .4- 1.0 /.-5-MÒDEL 5PEED

c)

(10)

-20° -J 10° o o

7'

/

o

Fiä2 -3 ROLLIN&-SPEED

1.0 o

o

+.

+ -

'f

D

a---El \X. A A FROUDE ÍVUM5ER,

O'

.10 .12 .14 .16 .1 .20 .22 X X

w

A

/

1.S o 1.0

/ç -I

MODEL 3PEE:,

V

(m/.5)

5

Si? u-A A A X X X.

o

o

(11)

-

o

tbi

0 o 00 >< o t. 4-7 -s- .5-1. 7?

_---:

El 1.0

o

.L ¡.0

t--Y

Y--- -- -1.0 X X

x---

X

--o o 1.0 X ---X ---Y---. + 1--s-41=157.5° 41=135°

= ¡/2.5°

¡.3-W

= 90°

1.5

W =675°

= ¡.17 I. 47 .10 .12 .14 -5. Y 00 1

---+

o

&o-

-.3-7 + EJ o

D=-.-ç,?

Fi.. 3

'(AWING

SPEED

¡0 /?dUDE ,'V'IJMER ., ./ .18 .20 .22

í= iao°

.(X

X

/3-X ) Y

+

n

a

DtJ-f

--¡.0

o .5-SPEED

, -_y

1.0 1.5 M0.DEL

(12)

N

I

I-o

.5

-2

JRCeÎ/4 FRO»J#rEAI

4

4

2 3

4

TUW/ÁIG FACTOR, ")

/.5

I i I-o

5

'-'7

77

Fie. 4 - PTCHNG- - ECOUN TER FREQUENCY

1.5

/575O

4

7:

WrO'N

71ER , - Ue. íec-Q

7

6

7

6 7

(13)

.5-N LU -J o

/o

.5

V=o X 1-fl

+

LU 'i

Tuív/IVG FACTOR, Aa Ü) /&)8

i I i

.5

1.0, 1.5.

- 1.17

-7? ¡.47

Fu.4-2 P!TCHIN& - ENCOUNTER )REaUENCY

4

3_

4c

/1Z5°

7

.3

4

5. :. 6

:7

cJRCkíI

AR. FRQll&WCy. 0F

EhJCOJJN.TER

, W. (.ec ')

2

4

6

7

/.0

5.

2

3 -J t..,

(14)

o -.4 V, s. IO - o

fo

.5-y=Ò f.

/

v= o/ 3 N TUfV/A'& FACTOR

= i

/W J I t I 1.0 /.S 2.0

cj

=i77

ROLLIr - ENCOUNTER FRE(UEfVCY

4. 6 7 )4í = I 0° 4c= IS?. S° .,Lr=/35°

9

3 4 g 6 7 -J

I

o

(15)

LO Jo 2 3

4

TUWIÄ/ 4CT0R,

ìl

= W TW I t I J k 1.0 1.5 2.0

F. 5-2 ROLLIW--- EWCOUNTER FREQUEWTX

3 4- 6 7

CiR(1//AR

FRQ

L1EJj1CX 0F ENC0QI1 1ER, (Sec

1,17 67..5°

-f-2

3

4

6 7

/0

.5-o

(16)

.5

'Q

.5

:kr---

' -- X

LII

* _-' '17

-.iT+r

di -u D

2

3

4

5 6 7 w4 we 47 /3 5_

.5

I. / 7 2 3

'r

L7

4 Riç .27

.S7

D0

4

g

FEQ1LEY

Fi6 'YAW1N& -ENCOUNTER FREQUENCY

-77. -5-7

±ttL

---6 7 Uf =157.5° W =1/2.5°

W =675°

1/

2 3

4

2 4 3-7 6

ENCIAUA'T7,

Ui LeCT')

(17)

30

20

¡a

.5. = - 12

/

-1.0

PITCH(N

- W4vE LET-4

w8 y

-_---//

/

/

/

i'

-j

/

À --1.5 1.0

/5-WAI(E

// MQDL

LrrTH

, Rì /12. 73 / ¡2. b

5

1.0

30 = /5_

y-/,

-, - __- /\ o

///

-- op

2

(18)

20'

300_

JO0

Fi ROLLN& - WAVE LENGTH

/

/

V

/

1.0

/5

WAVE

JFN.7f#/'&LO.DL LFWk1,\/L

I

iS7S

iOo

'3

5

I.0

I .5. 1.0 1.5 = .12 V /

N

4(

75

yo

V

1350 I ,C

(19)

1° 30 20 o 30

y=.

.12

Fi.'

YJ'WIN& - WAVE LENGTH

y 57 5b

.3-

/.0

kt'4 VE

LEN T!-# 7 MQDFL

.5

'.5

(20)

30 20 0° EFECrJV\ MAXi/AVE SLOPE RR A/LoE! (jjJ 6 O 60° LLY

5Û°

c,00 1200 120°

FI. O

PITCHING - ENCOUNTER ANGLE

/5O° -7

/ 0o

/O0

I5

/2

6o

0e

ANilLE

/.50°

io°

/20°

0F

ENCaLAN TER RI

/5

(21)

jo0

20°

/0

60° Y0° /200 /50° 1,00

'.4

I f RQLLJN& COUNTER ANGLE

.g

9 =.15

20'

i

600

L

90° /20° L

(22)

30__

o

JT

600 /20°

ANGI E

0E

ENL/J'TER

Ft2 YAWIN'T - ENCOUNTER

ANG-LE

.I2

/7

00

120°

/ ,ûo

600 /200 /50 °

(23)

25

1W 5T!LL WATJ? WT=16°C

20

5

5

r-'

--Fi?.13 REVOLUTION ,THRU5T - SPEED

j

1.0

V

(iv/s)

FROUDE NUM8ER , F F ..û .10 .12 ./4 .16 .,

2

.22 o -- 1.5

k

-3

I-. v .2

/

.5- 1.0 -, 1.5 ALOD,L. PFFD

4.m/J---HIC4

/5

-/0

(24)

2g

/5

4.

3-

-s-

.5-F. 4-I REVOLUTIOJV, TRu5T - SPEED

-I_0

MODEL

3EED

rrt

Ji)

I. S --1 I 0° 2O FROJDE NUMBER .O .10

./2

.14 .16

.J'

.20

.22

/

(25)

20 A 3 FROUPE Ml,tIBER , .o .10 .12 .14 ./ .18 .20 .22

a

L

-

PEED

Fi. ¡4-2 REVOLUTION, THRUST -SPEED

L6

y

J.0

(26)

5

2

AE

-s-PROLIDE A't/MBER , -. .10 .12 /4 .16

.I

.20

.22

I41

F. 14-3 REVOLLJTIOr', ThRUST- SPEED

f

-z

/

/

X 1/f = I3S°

2/

.5

¡,0

MOJ2EL 5PEED '.4

Lh ¡iL

(27)

4

k

20

/3- .5- .3-R0UDE IVL)MBER , .û .10 .12 .14 .16 ./ .20 .22 J_ o

14-4

REVOLUTION ,THRtJ5T- SPEED 3.PE -

t»/)

112S°

22

(28)

20

25

/0

5

3

o.- 5-2

,

T

k

/

.5---t- -s 1.0

Fu.t4-

REVOLUTION , THRUST- SPEED

23

.5

1.0

¿5

(29)

.HS4

p,

20

1

25

6 .5-4

F-3

0 .o .10 .12 .14 .16 .I .20 .22 -

-X--w

FROVDE NUMBER , I i f

A

4-6 REVOLUTIONI,THPUSTSPEED

MOJ2ELL

jcppth

I

in/S.)

.1.0

o 1.

i/ =7.5°,

(30)

-.6

.4

N / J

o

Y

2

3

k

.6

LU V, Lu

- .4

u

k

4

.2

2 'r A

fJ7

4i

'-/7

'-47

W0

s

F. ¿S1 THRU5T INCREA5E - FREQUENCY

o

M

6

+

.77

'w - iô°

7 ?,,Lr =7.5° 6 7 8 /350 3

4

5 6 7

.CJRCLJLERFcÏU/u1Y JûF,EÌKO:UNTER

25

(31)

k

k

o

2 3 L=I-77

4

-"

-fl

XXJ

2

3

4

5- 6 7 -97 + -77

F.TS-2

THRUST INCREASE - ÇREQLJENCY

),1í

//25

5

6 7 a

4

5_ 7

CiRCLLtAR FRE&VFIICY .QFI

ELVCth/NT.E,. We (5Cc:')

k

o

W=

90°

o

.4

W

(1i7

+

-fl

u

(32)

2

k

I-

3-2

/

o

y

1C°\

/ / A

,/

-

'It25°

)35V

J.0

Fj J6 T-RU5T rICREASE - WAVE LENQTh

y N

w'-'..

-A 1O /.5_

W4VE

LENcTH / öoj

V

27

(33)

'.5-8 íD

J-600 600 600 900 V

/

/

/20

1200

f7 THRU5T I7VCREASE - ENCOUNTER ANGLE

/200

AN&LE -FNCOUNTER

/O0

1.17 77

(34)

o

co

D o

000

X O O ,rJ

+

D

FkäI 1CTUAL ENCOUNTER AI'JG-LES

o D

\Y

X X

+

o

Y / YY D WAVE

y-29

(35)

jo0 -J th 0°

-5.

00

W Ic7.S

W /350 JI =1:12.5° D Ô X L/

YA

1.0 -5-O Y

FJ9-I LEEW4Y ANC-LE - 5PEED

o

A X

O.+Lç+

0+

X Y A A o

+

A -D 1.0 01 £PEED

EMÖDFi

V-

,,t/sJ

X

o

1.5 1. g

o

+

.5-

Jo

+

D

(36)

o X o

- ---

X

cI

o

ooA+x

X /0°

.5

1.0 X X

X,

o o o o X -f-o

W 67.5°

X

-et:

.o«k°x0

Xo

Fi. N- 2

LEEWAY ANGLE - SPEED

3,

LU LU l0

-.3-

1.0 o X -X

1.5.

+

Q

5PED 0FMíDEL

,

i.o

V

:

n/s)j

F

(37)

1iRz"

-'

tUt

-r' i".

i

TJ-??--1 TJ-??--1

' 7' -,

t

/4- r

4 t

L -'

.

.4 -

7

'

/ !

/C

.*

. M P

'

j

4, 7

'3

- -'

X

ui-

í L

?

d)

4

'

-;*r (i"

)

;:;r34 e:,,

x

A. :A1i'

(Vß=.0)-VD 171

7-1"3r

.y-

/4

J5

r. .- 1

't

k

HA

-

--

t -

,

\

'- 9

V' i

'7

h4&.

L7

¿4Z

c-s-7. X

cx

7S

X

Lv

Cytaty

Powiązane dokumenty

wykształcone są dwie doliny – jedna z nich skierowana jest ku północy i nawią- zuje do erozyjnej terasy Warty (ryc. 2A, sygnatura 5), druga natomiast zacho- wując

In detail, a B2B lens system consists of two high-resistivity (&gt; 5 kWcm) silicon (HRSi) lenses, between which is a piece of a double-side polished HRSi wafer coated with a thin

Z niepełnych sprawozdań szkoleniowych znaj- dujących się w Centralnym Archiwum Wojskowym oraz w Archiwum Wojsk Lot- niczych i Obrony Powietrznej wynika, że w latach 1945-1949 w

Przedstawienie funkcji kulturowej muzyki sakralnej w perspektywie integralnego rozwoju osoby implikuje przyjęcie faktu iż można ja uznać za „transmitera” wartości

In this work, we propose a hardware-based mitigation scheme to reduce the impact of aging on the memory’s address decoder; as already mentioned the address decoder is one of

With an elevation mask of 40 degrees, using satellites from one system does not allow for meaningful positioning solutions of more than 8 h within the test day, while mm-to-cm

functions from the swept sine tests are very similar in form to the transmissibility functions, as a result of the servo-control of the input force level. Direct interpretation of