• Nie Znaleziono Wyników

The interior structure of Mercury constrained by geodesy data

N/A
N/A
Protected

Academic year: 2021

Share "The interior structure of Mercury constrained by geodesy data"

Copied!
10
0
0

Pełen tekst

(1)

The interior structure of Mercury constrained by

geodesy data

Attilio Rivoldini

(2)

New Geodesy data

Margot et al. 2012 


Obliquity: 2.04 ± 0.08 arcmin MOI=0.345 ± 0.014 (4%)
 Libration amplitude: 38.5 ±1.6 arcsec (4%)

Stark et al. 2015


Obliquity: 2.03 ± 0.09 arcmin MOI=0.345 ± 0.014
 Libration amplitude: 38.9 ±1.3 arcsec

Verma et al. 2016


Tidal Love number: k2=0.46 ± 0.02

Genova et al. 2019


Obliquity: 1.97 ± 0.009 arcmin MOI=0.333 ± 0.0015 (0.5%)
 Libration amplitude: 40.0 ± 8.7 arcsec


Tidal Love number: k2=0.57 ± 0.03 (5.2%)

Konopliv et al. 2020


Obliquity: 1.99 ± 0.12 arcmin MOI=0.337 ± 0.02 (~6%)
 Tidal Love number: k2=0.53 ± 0.03 (5.6%)


MOI ↓ and k 2

core radius ↓ core radius ↑

OLDNEW

(3)

New thermoelastic data about l-Fe alloys

●●

Fe

Fe61Ni10Si29 Fe52Ni10Si38 FeSi

��������� �� ����

����������� ������ ����

�� �� �� �� �� ��

����

����

����

����

����

�������� [���]

������[��/� ]

●●

●●●

����������� ��������� ����

Fe

Fe73Ni10S17 Fe60Ni10S30 FeS

�� �� �� �� �� ��

����

����

����

����

����

����

�������� [���]

�����������[/]

• Terasaki et. al 2019: densities (up to 5 GPa) and acoustic sound velocities (up to 14 GPa) of (Fe

73

Ni

10

S

17

, Fe

60

Ni

10

S

30

) and (Fe

61

Ni

10

Si

29

, Fe

52

Ni

10

Si

38

)

• non-ideal solution model required to summarize Fe-S and Fe-Si elastic data

• liquid solution model in agreement with low pressure and high pressure data

(4)

Prior assumptions, modeling, and data

crust: density [2700, 3100]kg/m3 and thickness [15,120]km

mantle elastic properties compatible with forsterite-enstatite mixture;

corresponds to a prior mantle density [3150, 3400]kg/m3

inner core radius and light element fraction in agreement with liquidus; assume Si concentration in liquid below eutectic composition (because of unknown liquidus at those compositions); core radius prior [1800, 2200]km

prior core-mantle boundary temperature between eutectic temperature and (very likely too warm!) mantle solidus

libration amplitude calculated by taking into account gravitational core-mantle coupling and mantle induced core density stratification (Dumberry et al., 2013)

geodesy data: MOI and k2 from Konopliv 2020 and libration amplitude Margot et al. 2012

(5)

Fe-Si melting

• based on 1 bar Fe-rich

liquidus, and melting data of:

Fe9wt%Si, Fe15wt%Si, Fe15wt%Si, Fe18wt%Si

• assume equipartitioning of Si in solid and liquid Fe

• Margules model with pressure dependent interaction

coefficients

Fe Anzellini 2013

Fe9wt%Si Fischer 2013 Fe15wt%Si Morard 2011 Fe17wt%Si Yang 1999 Fe18wt%Si Asanuma 2010

�� �� �� ��

����

����

����

����

����

����

����

����

� [���]

[�]

(6)

Fe-Si melting compared to Fe-S

5wt%Si decrease Fe liquidus by about as much as 1wt%S

Fe

Fe-5wt%Si Fe-10wt%Si

�� �� �� �� ��

����

����

����

����

����

����

����

����

� [���]

[�]

Fe-S Fe-Si

8GPa 40GPa

���� ���� ���� ���� ����

����

����

����

� [��]

[�]

(7)

Results: Fe-S models compared to Rivoldini et al. 2013

0 2 4 6 8 10

1800 1900 2000 2100 2200

xS @wt%D rcmb@kmD

0 2 4 6 8 10

1800 1900 2000 2100 2200

xS @wt%D rcmb@kmD

2013 2020

MOI 0.346±0.014 0.337±0.02 g88 38.5’’±1.6’’ 38.5’’±1.6’’

Cm 0.148±0.006 0.148±0.006

k2 - 0.53±0.03

2013 2020

rcmb [km] 1965-2043 1974-2003 ricb [km] 345-1430 246-899 xS [wt%] 2.8-6.2 2.7-5.3 ρMantle[kg/m3] 3163-3449 3110-3180

20132020

With inner core Without inner core

��

����

����

����

����

����

[��%]

���[��]

��

����

����

����

����

����

[��%]

���[��]

(8)

Results

• core radius between ~1926 and 2030km

• Fe-Si models require more light elements since Fe-Si alloys are denser than Fe-S alloys

��- ��-��

�� ��

����

����

����

����

����

����� ������� �������� [��%]

����������[��]

���� ����� ����

��- ��-��

�� ��

����

����

����

����

����

����� ������� �������� [��%]

����������[��]

������� ����� ����

(9)

models with and without inner core have a comparable core radius range with the exception of the liquid Fe-Si models

liquid Fe-Si models only possible for high Tcmb≿2037K (3σ) (implying molten lower mantle?) and inner core models with Fe-Si only possible if Tcmb≿1718K (3σ)

Fe-S models ricb~[0,1214]km and Fe-Si ricb~[1507,2000] km (3σ)

mantle density ~[3100,3310]kg/m3 (3σ)

almost no constraints on crust thickness and density

With inner core

Fe-S Fe-Si rcmb [km] 1975-2002 1984-2012

ricb [km] 236-896 1673-1892 xS [wt%] 3.2-5.3 9.6-12.5

Tcmb [K] 1664-1831 1814-1892

Without inner core

Fe-S Fe-Si rcmb [km] 1973-2002 1948-1968 xS [wt%] 2.5-4.0 3.2-5.2

Tcmb [K] 1913-2006 2051-2064

Results

��-�

��-��

���� ���� ���� ���� ����

���� ������ [��]

���� ����� ����

��-�

��-��

��� ���� ���� ����

����� ���� ������ [��]

��-�

��-��

�� ��

���� ����� ������� �������� [��%]

���� ����� ����

��-�

��-��

���� ���� ���� ���� ���� ����

����-������ �������� ����������� [�]

���� ����� ����

��-�

��-��

�� ��

���� ����� ������� �������� [��%]

������� ����� ����

��-�

��-��

���� ���� ���� ���� ����

���� ������ [��]

������� ���������

��-�

��-��

���� ���� ���� ���� ���� ����

����-������ �������� ����������� [�]

������� ����� ����

(10)

Conclusions

• models with and without an inner core agree with the new geodesy data (liquid Fe-Si models only possible if T

cmb

≿2037K)

• new smaller MOI value favors models with smaller core radii


Fe-S [1975,2003]km (old [1965,2043]km) and FeSi [1950-2012]km as well as a smaller mantle density (<3310 kg/m

3

)

• Fe-S models have an inner core radius below about 1300km and for Fe-Si models the inner core radius is ~[1500,2000]km

• new MOI value favors models with smaller cores but those models

are somewhat at odds with the large k

2

value suggesting that the

mantle in the models is too stiff

Cytaty

Powiązane dokumenty

This implies that the interior structure models of this study with the large I m (0.1539 MR 2 ) and an inner core radius larger than ∼1,700 km may correspond to a libration

‣ core S composition inferences deduced from geodesy data and interior modeling are in agreement with geochemical constraints (xS≲21wt%). ‣ but those results are not in agreement

Plain Language Summary To estimate core compositions of terrestrial planets using geophysical data with high‐pressure physical property of core‐forming materials, we measure the

(2009) and experimental data (green: solid circle – solid iron, solid square – carbide, and open symbols – coexisting liquid) at 5 GPa from Chabot et al. (2008) are also plotted

• models with an inner core can have mantle boundary temperatures below the mantle solidus 1Gyr after formation and agree with the timing of occurrence of the lunar dynamo, but

Był referentem projektu kodeksu postę- powania cywilnego, lecz uczestniczył również w pracach wydziału cywilnego nad innymi gałęziami prawa, w tym także nad prawem zobowiązań

According to Gopner, the Lithuanian comrades “benefited from the total absence of sabotage on the part of the local intelligentsia of all nationalities,” which, as Gopner

Summary: We can learn about forms of Evangelical burial liturgy in Gdansk and Prussia from liturgical agendas published in Konigsberg, Gdansk and Torun.. Over ten editions enable