Statystyczne metody analizy danych
Agnieszka Nowak - Brzezińska
SZEREGI STATYSTYCZNE
SZEREGI STATYSTYCZNE – odpowiednio usystematyzowany i uporządkowany surowy materiał statystyczny.
Szeregi statystyczne dzielimy na szeregi:
• szczegółowe
• rozdzielcze (punktowe, przedziałowe)
• czasowe (momentów, okresów)
Szereg rozdzielczy
• Szereg rozdzielczy to uporządkowany i pogrupowany materiał statystyczny. Poszczególnym wariantom cech ilościowym lub jakościowym przyporządkowane są odpowiadające im liczebności.
• szereg rozdzielczy punktowy (buduje się przeważnie dla cechy skokowej).
• szereg rozdzielczy przedziałowy (budowany jest dla
cech ciągłych. Złożony jest z przedziałów klasowych, ich
granice mogą być domknięte lub otwarte. Rozpiętość
przedziału (interwał), jest różnicą między górną i dolną
granicą klasy).
Etapy budowy przedziałów w szeregach rozdzielczych przedziałowych
• mogą być następujące:
• ustalenie liczby klas
• Można skorzystać ze wzoru:
• gdzie: k – liczba klas, N – liczba obserwacji
• ustalenie wartości cechy minimalnej i maksymalnej
• Są to wartości cech odpowiednio najmniejsze (x
max) oraz (x
min), które mogą stanowić początek pierwszego przedziału (x
min) oraz koniec ostatniego (x
max).
• ustalenie rozpiętości przedziałów klasowych
• Rozpiętość można wyznaczyć następująco:
• gdzie: h - rozpiętość przedziału
• budowa przedziałów klasowych
szereg rozdzielczy punktowy - przykład
• Badaniu objęto 20 studentów pod względem liczby rodzeństwa.
Otrzymano następujące wyniki: 2, 3, 1, 0, 4, 2, 3, 1, 0, 2, 3, 2, 4, 0, 0, 4, 2, 3, 1, 5.
• Badana cecha (liczba rodzeństwa) jest cechą skokową. W celu utworzeni szeregu rozdzielczego punktowego należy obliczyć liczebność związaną z wariantami badanej cechy.
szereg rozdzielczy przedziałowy - przykład
• Badaniu objęto 20 pracowników pewnej firmy ze względu na staż pracy. Otrzymano następujące wartości: 12, 20, 2, 15, 16, 30, 6, 21, 5, 13, 12, 25, 4, 16, 21, 23, 14, 18, 16, 9.
• W tym przypadku wskazana jest budowa szeregu rozdzielczego przedziałowego. Liczbę klas oraz rozpiętość można wyznaczyć z powyrzej podanych wzorów: N=20, xmin=2, xmax=30, k=4 (po zaokrągleniu), h=6 (po zaokrągleniu).
PRZYKŁAD 1 (szereg szczegółowy i szereg
rozdzielczy)
SZEREG ROZDZIELCZY PUNKTOWY
ZALECENIA przy grupowaniu
w szereg rozdzielczy przedziałowy
Średnia arytmetyczna
• Średnią arytmetyczną - definiuje się jako sumę wartości cechy mierzalnej podzieloną przez liczbę jednostek skończonej zbiorowości statystycznej.
gdzie:
n - liczebność zbiorowości próbnej (próby), xi - wariant cechy.
Należy pamiętać, że przy pogrupowaniu danych źródłowych w szereg rozdzielczy przedziałowy następuje pewna utrata informacji.
Jeżeli policzymy średnią dla szeregu szczegółowego lub szeregu rozdzielczego punktowego, to wynik będzie dokładny i taki sam.
Dla danych w postaci szeregu rozdzielczego przedziałowego średnia będzie już przybliżeniem.
Tym większym, im szersze są przedziały klasowe, im jest ich mniej, itd.
Y
Ważniejsze własności ŚREDNIEJ arytmetycznej
Średnia geometryczna
Średnią geometryczną - stosuje się w badaniach średniego tempa zmian zjawisk, a więc gdy zjawiska są ujmowane dynamicznie.
Moda
• Modalna (dominanta D, moda, wartość najczęstsza) - jest to wartość cechy statystycznej, która w danym rozdziale empirycznym występuje najczęściej.
• Dla szeregów szczegółowych oraz szeregów rozdzielczych punktowych modalna odpowiada wartości cechy o największej liczebności (częstości).
• W szeregach rozdzielczych z przedziałami klasowymi bezpośrednio można określić tylko przedział, w którym modalna występuje, jej przybliżoną wartość wyznacza się graficznie z histogramu liczebności (częstości) lub ze wzoru interpolacyjnego:
gdzie: m - numer przedziału (klasy), w którym występuje modalna, - dolna granica przedziału, w którym występuje modalna,
nm - liczebność przedziału modalnej, tzn. klasy o numerze m, nm-1;
nm+1 - liczebność klas poprzedzającej i następnej, o numerach m -1 i m + 1, hm - rozpiętość przedziału klasowego, w którym występuje modalna.
• Modalna (Mo) zwana też dominantą (D) jest to
wartość cechy, która występuje najczęściej w
badanej zbiorowości.
Dominanta
• Dominanta (modalna, wartość najczęstsza) należy do średnich pozycyjnych i jest taką wartością zmiennej, która w danym rozkładzie empirycznym najczęściej występuje.
• Zastosowanie
– Dominanta stosowana jest do wskazania jaka wartość cechy statystycznej ma największą liczebność (jest najbardziej popularna) w określonej zbiorowości.
• Wyznaczenie modalnej możliwe jest gdy rozkład empiryczny posiada jeden ośrodek dominujący, asymetria rozkładu jest umiarkowana oraz gdy przedział dominanty i dwa sąsiednie mają taki sam interwał (rozpiętość przedziału, czyli wartość różnicy między górną i dolną granicą badanej cechy).
• dla szeregu szczegółowego i rozdzielczego punktowego W szeregach szczegółowych i rozdzielczych punktowych dominantą jest wartość cechy, której odpowiada największa liczebność.
• dla szeregu rozdzielczego przedziałowego W szeregach rozdzielczych przedziałowych modalna znajduję się w przedziale o największej liczebności. Dla wyznaczenia konkretnej wartości liczbowej wartości najczęstszej, znajdującej się w danym przedziale zastosowanie ma wzór:
Y
Y
Y
Y
Y
Modalna możemy wyznaczyć graficznie tak jak to pokazano na rysunku
Modalną wyznaczamy i sensownie interpretujemy tylko wtedy, gdy dane są pogrupowane w szereg rozdzielczy (punktowy lub przedziałowy).
2. Liczebność populacji powinna być dostatecznie duża.
3. Diagram lub histogram liczebności (częstości) ma wyraźnie zaznaczone jedno maksimum (rozkład jednomodalny).
4. Dla danych pogrupowanych w szereg rozdzielczy przedziałowy modalna nie występuje w skrajnych przedziałach (pierwszym lub ostatnim) - przypadek skrajnej asymetrii. Nie da się w takim przypadku analitycznie wyznaczyć modalnej.
5. Dla danych pogrupowanych w szereg rozdzielczy przedziałowy przedział modalnej oraz dwa sąsiednie przedziały (poprzedzający i następujący po przedziale modalnej) powinny mieć taką samą rozpiętość.
Mediana
• Mediana (Me) - wartość środkowa, inaczej: kwartyl 2 (QII).
• Jest to taka wartość cechy X, która dzieli zbiorowość na dwie równe części, tj. połowa zbiorowości charakteryzuje się wartością cechy X mniejszą lub równą medianie, a druga połowa większą lub równą.
Mediana dla szeregu szczegółowego
• Szereg musi być posortowany rosnąco !!!
• Wartość mediany wyznacza się inaczej gdy liczebność
populacji (n) jest nieparzysta, a inaczej gdy jest
parzysta.
Y
Y
Y
Y
Kwartyl pierwszy i trzeci
• Dla szeregu szczegółowego kwartyl pierwszy i trzeci wyznacza się w ten sposób, że w dwóch częściach zbiorowości, które powstały po wyznaczeniu mediany, ponownie wyznacza się medianę; mediana w pierwszej części odpowiada kwartylowi pierwszemu, a w drugiej kwartylowi trzeciemu.
• Dla szeregu rozdzielczego wyznaczenie kwartyli poprzedza się
ustaleniem ich pozycji:
• gdzie: m - numer przedziału (klasy), w którym występuje odpowiadający mu kwartyl,
- dolna granica tego przedziału,
nm - liczebność przedziału, w którym występuje odpowiedni kwartyl, - liczebność skumulowana do przedziału poprzedzającego kwartyl,
hm - rozpiętość przedziału klasowego, w którym jest odpowiedni kwartyl.
Dla szeregów szczegółowych
przykład
• Weźmy dane o liczbie braków:
• 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4
• Jak pamiętamy: n=50
Dla szeregów rozdzielczych
punktowych
Dla szeregów rozdzielczych
przedziałowych
czas dojazdu pracowników firmy Y
Rozstęp
• Najprostszą i najbardziej intuicyjną miarą zmienności przypadków w populacji próby jest rozstęp.
• Rozstęp - różnica pomiędzy wartością maksymalną, a
minimalną cechy - jest miarą charakteryzującą
empiryczny obszar zmienności badanej cechy. W
związku z tym, że przy jego obliczeniu ignoruje się
wszystkie dane (za wyjątkiem dwóch wartości -
minimalnej i maksymalnej), nie daje on jednak
informacji o zróżnicowaniu poszczególnych wartości
cechy w zbiorowości.
Dla szeregów szczegółowych
• Weźmy dane z (liczba braków):
• 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,2, 2, 2, 2, 3, 3, 3, 3, 4, 4
Inny przykład
• Weźmy dane z innego przykładu
10, 10, 10, 12, 12, 12, 12, 13, 13, 13,
13, 13, 14, 14, 15, 15, 15
Dla szeregów rozdzielczych punktowych
Dla szeregów rozdzielczych przedziałowych
• histogramy i wykresy częstości
• wykresy rozrzutu (scatterplots)
• wykresy pudełkowe (boxplot)
Graficzny opis danych
• Dla danych jakościowych
• Porządkują wiedze o danych analizowanych
• Pokazują odchylenia w danych
• Pokazują dane dominujące w zbiorze
histogramy
Histogram to jeden z graficznych sposobów przedstawienia rozkładu empirycznego cechy.
Składa się z szeregu prostokątów umieszczonych na osi współrzędnych.
Na osi „X” mamy przedziały klasowe wartości cechy np. dla atrybutu płeć:
„K, M”, na osi „Y” liczebność tych przedziałów.
Histogram
• Najpopularniejsza statystyka graficzna.
Przedstawia liczności pacjentów w poszczególnych przedziałach (nazywanych tez kubełkami) danej zmiennej.
• Domyślnie w funkcji histogram liczba kubełków dobierana jest w zależności od liczby obserwacji jak i ich zmienności.
• Możemy jednak subiektywnie wybrać
interesującą nas liczbę kubełków.
Histogram a rodzaj danych
Dane jakościowe Dane ilościowe
Wykres punktowy (rozrzutu)
Dla tych samych danych
O tym która linia regresji lepiej odwzrowuje dane decyduje współczynnik determinacji R2.
Wykresy rozrzutu pokazują relację między daną na osi X a daną na osi Y
Wykresy rozrzutu też wskazują dobrze odchylenia w danych
Typ korelacji
Scatterplot showing no discernable relationship Nieliniowa zależność danych
Korelacja ujemna
Wykres pudełkowy
• Wykres pudełkowy można wyznaczać dla pojedynczej zmiennej, dla kilku zmiennych lub dla pojedynczej zmiennej w rozbiciu na grupy.
• Wykres przedstawia medianę (środek pudełka), kwartyle (dolna i górna granica pudełka), obserwacje odstające (zaznaczane kropkami) oraz maksimum i minimum po usunięciu obserwacji odstających.
• Wykres pudełkowy jest bardzo popularną metodą
prezentacji zmienności pojedynczej zmiennej.
Co można odczytać z wykresów?
Boxplot Histogram
Kwantyl tak nie
Mediana tak nie
Wartość min tak tak
Wartość max tak tak
Wartość cechy tak tak
Liczebność nie tak
Częstość nie tak
Wzajemna korelacja
zmiennych nie tak
Wykres łodygowo-liściowy
• Diagram łodygowo-listkowy (ang. stemplot lub stem- and-leaf diagram) jest graficznym sposobem prezentacji danych ilościowych. Podobnie jak histogram, służy on do przedstawiania kształtu rozkładu, ma jednak nad nim tę przewagę, że przedstawia wszystkie dane, które tworzą rozkład.
• Diagram łodygowo-listkowy rysuje się w bardzo prosty sposób. Ustalamy najpierw, jakie liczby stanowić będą łodygę, zwykle opuszczając jedną lub dwie cyfry w zapisie dziesiętnym, a następnie sortujemy je rosnąco.
Uzyskane liczby zapisujemy w jednej kolumnie,
oddzielamy pionową kreską i dopisujemy obok obcięte
końcówki – liście.
Histogram
• wykres częstości danych. Wykonamy go za
pomocą polecenia: hist()
Scatter plot – wykres rozrzutu
• Wykres rozrzutu punktów na osiach X i Y.
plot(x-variable, y-variable)
Box-and-Whisker Plot – wykres pudełkowy.
boxplot(var1,var2) na wykresie zmienne będą zaprezentowane w takiej kolejności jak argument funkcji boxplot a więc najpierw var1 a potem var2.
> boxplot(gnp,invest)
Wykres kołowy (Pie charts)
• świetnie przedstawiają procentowy rozkład danych.
> pie(gnp)
Obowiązkowa lektura…
http://zsi.tech.us.edu.pl/~nowak/smad/smad_lab4.pdf