• Nie Znaleziono Wyników

Experimental results of the Wigley hull form with advancing forward speed in head waves

N/A
N/A
Protected

Academic year: 2021

Share "Experimental results of the Wigley hull form with advancing forward speed in head waves"

Copied!
152
0
0

Pełen tekst

(1)

DeIft University of Technology

Experimental results of the Wigley

hull form with advancing forward

speed in head waves

F.R.T. Siregar

Report 1024

February 1995

T'ti Deift

Faculty of Mechanical Engineering and Marine Technology

(2)

Contents

Introduction

2

The experiments

3

2.1. Description of the model

4

2.2. The experimental set-up

5

2.2.1. The forced heave oscillation tests

5

2.2.2. The restrained model tests

6

2.2.3.

The motion model tests

6

2.3. The test series

7

2.3.1.

The forced heave oscillation tests

7

23.2.

The restrained model tests

-

8

2.3.3.

The motion model tests

9

The experimental results

IO

Conclusions

II

Acknowledgments

12

List of Tables

13

List of Figures

14

List of Symbols

i 5

Appendix A

16

Appendix B

76

Appendix C

113

Appendix D

132

Appendix E

141

page. 1

Contents

(3)

2

The experiments

The model experiments were carried out in the towing tank no.1 of the Deift Ship

Hydrodynamics laboratory. The dimensions of the tank are L x B x D

145 [m] x 4.2 [m] x

2.5 [m]

In this tank we can assume that the water depth, 2.2 m, is much greater than the draught of

the model,

so the effect of the bottom could be neglected. An illustration of the tank is

shown in figure 2.1..

1-3The distance of the model to the tank wall

I

r-'B0.357rn

a[m]

T 0.139m

Tank depth

2.50 rn

Tank breadth = 4.20 m

i

i

Figure 2.1 An illustration of the tank

Figure 2.2 The coordinate system for the tests

page. 3

(4)

2.1

Description of the model

The model is a mathematical hull form, known as a Wigley hull form. The advantages

applying a mathematical hull form are:

a slender body, which makes it possible to apply the strip theory to numerical computation

for monohull.

the fact that the hull has two plane of symmetry and the geometry of the hull described by

the mathematical function, this gives the simplicity to apply the panel method in the

computation.

a standard hull, which gives more possibility for comparative studies

The underwater part of the model is described by the following formula:

y= (1

_2)(i _2)(l+J..,2)+2(1 Ç8)(1 _2)4,

with'EE [1,l],CE E_1,01

I-p

Figure 2.3 The hull offset of Wigley model

The right-handed coordinate system is used in this experiment,, see figure 2.2

The main particulars of the model are given in table 2.1. and the relevant particulars per

section are given in table 2.2.

To investigate the distribution of the hydrodynamic reaction forces and the wave excitation

forces, the tests were carried out with a segmented model. The model was' divided in eight

sections of equal length. Each section was shaped 'by a 'hull shell and two watertight

bulkheads. The space between the two sections was about 0,001 meter. Each section was

connected to two strain gauges, type dynamometer, measuring the vertial 'and the horizontal

forces on that section. A total number of sixteen dynamometers was connected to

a

stiffgirder. This girder was connected to the rods of the oscillator. The model was made from

Chapter 2. The experiments

(5)

Chapter 2. The experiments

a glass fibre reinforced polyester while the frames were made of a 'high density foam. An

illüstration of the model is given in figure 2.4.

Table 2.1 The main particulars of the model

The mass. of each section had: to 'be defined as an !effecli:ve mass! i.e. including the

instrumentation and the dynamometers. This effective mass has been determined by

oscillating the model in air over a range of frequencies.

1'

Z= Z coswt

(oscillation tests)

4.

5

6

section number

Length of the model = 2:50 m

Figure 2.4 The segmented model and the instrumentation

page. 5

The main particulars of the Wigley hull form

Length (L)

2.500 [rn]

Beam(B)

O.357[mj

Draught (T)

139 [m]

Volume (V)

0.06953 [m3]

L/B

7

Jjf

18

Block coefficient

0.5607

Midships coefficient

0.9090

Waterline coefficient

0.6933

LI

j1 U LIULI U

ti

- .

' ;_ '

-Umodel

>

(6)

Table 2.2 Re1vant particulars per section

For the motion tests another model was constructed with the same main dimensions as

mentioned above, but not segmented. This model has a central point of mass, for the vertical

direction, at the water plane

.

The radius of gyration of the model is 0.25 L.

An illustration of the model and the instrumentation is shown in figure 2.4.

2.2 The experfimental set-up

2.2.1 The forced heave oscillation tests

An illustration of the experimental set-up for the oscillation tests is shown in figure 2.5.

The purpose of this tests is to measured the in-phase and quadrature components of the

reaction forces in transverse- and vertical direction acting on each section of the model. For

the accuracy of the tests, the reference signal was controlled electronically, by using the

vertical displacement z of the oscillator. In the signal processing, the phases were corrected

for the filter characteristics and skew sampling, The cut-off frequency of the filters was

set-up to 10 Hertz.

Chapter 2 The experiments

page. 6

Section

Volume [m3]

Mass [kg]

Waterplane [mi

Czz (N/rn)

1

2.7306 i0

2.11

0.02916

277.0

2

7.282 lOE3

2.87

0.0723 8

695.0

3

11.1267 iO

3.26

0.09805

950.0

4

113.62118 lOE3

3.67

0.10973

11052.0

5

13.6218 iOE3

3.37

0.10973

11057.0

6

11.1267 iOE

3.25

0.09805

942.5

7

7.282 lOE3

2.87

0.0723 8

696.5

8

2.7306 iOE

2.06

0.02916

277.5

(7)

Strain gauge meier

2,rchanneLs

(2 dynamuinetera in each .eciion) Anti alia.zngFilter cut-off fieq. =10Hz

Resolver

f-- Oscillator

ZZaC&)t

T

3 secthn number Data Anquasition S}etem

A/D Canrter

-r-

v-Umodel

I

Dynamometeratoineasuxedthe

vertical and horizontal forces

Figure 2.5 The fOrced heave oscillation tests set-up

2.2.2. The restrained model tests

An illustration of the experimental set-up for the restrained model tests is shown in figure

2.6. The purpose of this tests is to measure the wave excitation forces and the phase in

transverse-, and vertical direction acting on each section of the model. The reference signal

from the wave height meter was controlled ellectronically. In the signal processing, the

phases were corrected for the filter characteristics and skew sampling. The cut-off frequency

of the filters was set-up to 10 Hertz.

2.2.3

The motion model tests

An illustration of the experimental set-up for the model motion tests is shown in Figure 2.7

Here the heave and pitch motion were measured with a potentiometer. The amplification of

this signal was done by pre-amplifier. The reference signal from the wave height meter was

Chapter 2. The experiments

(8)

also controlled ellectronically. In the signal processing, the phases were corrected for the

filter characteristics and skew sampling. The cut-off frequency of the filters was set-up to IO

hertz.

Anti alia.sing Filter cut -oft freq lO Hz

2x8 channels

(2 dynamometer.s

in each .sectim)

2 3

41

U model 6 Data

Acquasiticn

System A/D Convester section number

j Dynamometers to mea.ure& the

vertical andhorizonial fome.s

Figure 2.6 The restrained model tests set-up

Figure 2.7 The motion model tests set-up

page. 8

Chapter 2. The experiments

PC

Program

III

Wave height meter (wave zeference) Strain gauge

meter

Pm-Amplifier

Potentiometer

For Heave

-Anti alia.sing Filter cut-off fieq. 1O:Hz

IIo

Toimepmotionanly

in heave and pitch mode

4)

q1

Data

Acqua.siticin System

AID'Converter

Um1

p

iii

PC

A.syst Program Wave height mater (wave refbzenze) Dynamome r

-3

Potentiometer

For Pitch

(9)

2.3 The test series

2.3.1

The forced heave oscillation tests

When carrying out the forced heave oscillation tests, the equation of motions are presented

by :

Z = zacos(cOt)

(M + A

± B+ Cz = Fia(Ot+ CF1)

The hydrodynamic cóefflcients for each section follow from the in- and out phase terms of

the measured exciting forces:

FIaCOS(CF )

A=

M

Za.0) O)

Flasifl(EF)

Chapter 2. The experiments

B = ±

zaW

C = pgA, (the value token from the tests, see table 2.2)

The coupling coefficients of the coupling heaving into swaying are derived from:

Fyacos(EF )

A

=

2

y

,

which F,cos(eF), the inphase of the lateral force acting on the model

ZaU)

Fyasin(Cy)

B,

=

Za(J

wh1chF),s1n(EF)

,

the outphase of the lateral force acting on the model

The oscillation tests were carried out for the combination of one amplitude of oscillation,

three different forward speeds, nine frequencies and five different distances of the model to

the tank wall (including model in the middle of the tank, as monohull).

Theamplitudeof oscillation : za0.02[m] corresponding to a ratio of Za/T =0.144

: The forward: speeds: 0.743, 1.490 and 2.23 [mis], corresponding respectively to

Froude numbers 0.15,. 0.30 and 0.45

The frequencies of the oscillation: w = 2,, 3, 4, ...,9,12 [rad/s]

The'ditance of the model to the tank wall : a =0.185,, 0.375, 0.560, 1.2110 and 1.930

[m]

(10)

2.32

The restrained model tests

The wave loads in regular head waves for heave are defined by:

F

- Pzza. COS(0)et+CFC)

=Fzya.COS(COet+Fj)

In which the phase lag is related to the heave elevation at the center of gravity of each section

of the model.

The wave excitation tests were carried out for the regular head waves.

The forward speeds: 0.743, 1.490 and 2.23 [mIs] corresponding respectively to

Froude numbers 0.15, 0.30 and 0.45

The distance of the model to the tank wall : a = 0.185, 0.375, 0.560 and 1.930 [m]

The wave length :

= 1.26, 1.71, 2.04, 2.46, 3.04, 3.85, 5.03,6.86 and 9.86 [ml

2.33

The motion model tests

The heave and pitch motion in regular head waves are defined by:

Z =

Za. COS(0)et+CzC)

O :t

CoS(o)t +

e9)

in which the phaselag is related to the wave elevation at the center of gravity of the model.

The forward speeds: 0.743, 1.490 and 2.23 [m/s] corresponding respectively to

Froude numbers 0.15, 0.30 and 0.45

The distanceof the model tothe tank wall: a = 0.185, 0.375, 0.560 and 1.930 [m]

The wave length:

= 1.26, 1.71, 2.04, 2.46, 3.04, 3.85, 5.03, 6.86 and 9.86 [m}

page. 10

(11)

3

The experiment results

All results have been collected in two kind of presentatiòn. The first one was presented in

table format as in and out-phase components and the mean value of the signal, these results

are given in appendix A. The second form of the presentation was in graphic form which the

hydrodynamic forces as function of the frequency of oscillation and the wave loads and the

motion as function of the square of wave length, these results are given in Appendices B-E.

The force heave oscillation tests were carried out for the combination of one amplitude of

oscillation, three different forward speeds, nine frequencies and five different distances of the

model to the tank wall, see model tests series. The corresponding run-numbers have been

collected in table 3.1.

The wave exöitation model tests were carried out for three different fòrward speeds, nine

wave lengths and three different distances of the model to the tank wall. The corresponding

run-numbers have been collected in table 3.2.

The motion model tests (heave and pitch) were carried out for three different forward speeds,

nine wave lengths and three different distances of the model to the tank wall. The

corresponding run-numbers have been collected in table 3.3.

Chapter 3. The experiment results

(12)

Run number of the experiment results

Table 3.1 Run number of the Oscillation experiment

page. 12

Chapter 3. The. experiment results

Oscillation Experiment

Monohull (a = 1.930 Extra

O Fn.

Runz Runy

CO (a = Fn. 1.2.0 m)

cAT1O4 or a

Runz Runy

co Fn.

= 0.185 cAT21O or a

Runz Runy

co Fn.

= 0.375 cAT314

Runz Runy

Co

or

Fn.

a = 0.560 m

Runz Runy

2 0.15

206

206

2: 0.15

174

174

2 0.15

61 61

2 0.15

29

29

2 0.15

1 1 0.. 3

207

207

0.3

175

175

0.3

62 62

0.3

30 30

0.3

2 2

0.45

208

208

0.45

176

176

0.45

63 63

0.45

31 31

0.45

3 3

3 0.15

209

209

3 0.15

177

177

3 0.15

64 64

3 0.15

32 32

3 0.15

4 4

0.3

210

210

0.3

178

178

0.3

65 65

0.3

33 33

0.3

5 5

0.45

211

211

0.45

179

179

0.45

66 66

0.45

34 '34

0.45

6 6

4 0.15

212

212

4 0.15

180

180

4 0.15

67 67

4 0.15

35 '35

4 0.15

7 7

0.3

213

213

0.3

181

181

0.3

68 68

0.3

36

36

0.3

8 8

0.45

214

214

0.45

182

182

0.45

69 69

0.45

37 37

0.45

9 9

5 0.15

215

215

5 0.15

183

183

5 0.15

71 71

5 0.15

38 38

5 0.15

10 10

0.3

216

216

0.3

184

184

0.3

72 72

0.3

39 39

0.3

11

11

0.45

217

217

0.45

185

185

0.45

73 73

0.45

40 40

0.45

12 '12

6 0.15

218

218

6 0,15

187

187

6 0.15

74 74

6 0.15

41 41

6 0.15

13 13

0.3

219

219

0.3

188

188

0.3

75

75

0.3

42 42

0.3

14 14

0.45

220

220

0.45

189

189

0.45

76

76

0.45

43 43

0.45

15

15

7 0.15

221

221

7 0.15

190

190

7 0.15

77

77

7 0.15

44 44

7 0.15

16

16

0.3

222

222

0.3

191

191

0.3

78

78

0.3

45 45

0.3

17 17

0.45

223

223

0.45

192

192

0.45

79

79

0.45

46 46

0.45

18 18

8 0.15

224

224

8 0.15

193

193

8 0.15

80 80

8 0.15

47 47

8 0.15

19 19

0.3

225

225

0.3

194

194

0.3

81 81

0.3

48 48

0.3

20

20

0.45

226

226

0.45

195

195

0.45

82 82

0.45

49 49

0.45

27 27

9 0.15

227

227

9 0.15

196

196

9 0.15

83 83

9 0.15

50 50

9 0.15

21

21

0.3

228

228

0.3

197

197

0.3

84 84

0.3

51 51

0.3

22

22

0.45

229

229

0.45

199

199

0.45

85 85

0.45

52 52

0.45

23

23

12 0.15

230

.230

12 0.15

200

200

12 0.15

86 86

12 0.15

53 53

12 0.15

24 24

0.3

231

231

0.3

201

201

0._3 87 87

0.3

54 54

0.3

25 25

0.45

232

232

0.45

203

203

0.45

88 88

0.45

55

55

0.45

26

26

(13)

Run number of the experiment results

Induced Wave Experiment

Table 3.2 Run number of Induced wave loads experiment

page. 13

Chapter 3. The experiment results

Monohull (a = 1.930 m CAT1O4 or a

A

Fn

Runz Runy

A

Fn

= 0.185 m cAT2l0 or a = 0.375 m CAT314

Run z Runy

A

Fn

Run z Runy

A

Fn

or

a = 0.560 in

Runz Runy

1.26 0.15

247

247

1.26 0.15

106

106

1.26 0.15

143

143 1.26 0.15

146

146

0.3

248

248

0.3

107

107

0.3

144

144

0.3

147

147

0.45

249

249

0.45

108

108

0.45

145

145

0.45

148

148

1.71 0.15

244

244

1.71 0.15

103

103

1.71 0.15

14Ó

140 1.71 0.15

149

149

0.3

245

245

0.3

104

104

0.3

141

141

0.3

150

150

0.45

246

246

0.45

1Ô5

1Ö5

0.45

142

142

0.45

151

151

2.04 0.15

241

241

2.04 0.15

115

115

2.04 Ó.15

122

122 2.04 0.15

152

152

0.3

242

242

0.3

116

116

0.3

123

123

0..3

153

153

0.. 45

243

243

0.45

118

118

0.45

124

124

Ó.45

154

154

2.46 0.15

238

238

2.46 0.15

90 90

2.46 0.15

137

137 2.46 Ö.15

155

155

0.3

239

239

0.3

91 91

0.3

138

138

0.3

156

156

0.45

240

240

0.45

92 92

0.45

139

139

0.45

157

157

3.Ó4 0.15

235

235

3.04 0.15

112

112

3.04 0.15

134

134 3.04 0.15

158

158

0.3

236

236

0.3

113

].13

0.3

135

135

0.3

159

159

0.45

237

237

0.45

114

114

0.45

136

136

0.45

160

160

3.85 0.15

250

250

3.85 0.15

93 93

3.85 0.15

131

131 3.85 0.15

161

161

0.3

251

251

0.3

94 94

0.3

132

132

0.3

162

162

0.45

252

252

0.45

95 95

0.45

133

133

0.45

163

163

5.03 0.15

253

253

5.03 0.15

109

109

5.03 0.15

128

128 5.03 0.15

164

164

0.3

254

254

0.3

110

110

0.3

129

129

0.3

165

165

0.45

255

255

0.45

111

111

0.45

130

130

0.45

166

166

6.86 0.15

256

256

6.86 0.15

97 97

6.86 0.15

125

125 6.86 0.15

167

167

0.3

257

2 5

0.3

98 98 P0.3

126

126

0.3

168

168

0.45

258

258

0.45

99 99

0.45

127

127

0.45

169

169

9.86 0.15

259

259

9.86 0.15

100

100

9.86 0.15

119

119 9.86 0.15

170

170

0.3

260

260

0.3

101

101

0.3

120

120

0.3

171

171

0.45

261

261

0.45

102

102

0.45

121

121

0.45

172

172

(14)

Run nunber of the experiment results

Tabel 3.3 Run number of the motion experiment

page. 14

Chapter 3. The experiment results

Motion in vertical direction

Monohull

cAT1O4

O Fn

Run no

(t)

Fn

Experiment

cAT21O

Run no

w

Fn

Run no

cAT314

w

Fn

Run no.

3 0.15

284

3 0.15

419

3 0.15

387

3 0.15

354

0.3

285

0.3

420

0.3

388

0.3

355

0.45

286

0.45

421

0.45

389

0.45

356

3.5 0.15

Ò.3

281

282

3.25

3.38

0.45

0.45

435

436

3.5 0.15

0.3

384,

385

3.5 0.15

0.3

351

352

0.45

306

0.45

436

0.45

386

0.45

353

3.75

0.3

288

3.5 0.15

416

3.75 0.45

394 3.75

0.3

364

Ò.45

307

0.3

417

3.88 0.45

398 3.75 0.45

368

3.88 0.45

308

0.45

418

4 0.15

381

4 0.15

361

4 0.15

278

3.75

0.3

430

0.3

382

0.3

349

0.3

309

0.45

434

0.45

397

0.45

350

0.45

305

4 0.15

413

4.13

0.3

393 4.13

0.3

366

4.25

0.3

312

0.3

414

4.25

0.3

392 4.25 0.15

362

4.38

0.3

313

0.45

415

4.5 0.15

378

0.3

365

4.5 0.15

274

4.25

.3

428

.3

379

0.45

361

0.3

275

4.5 0.15

409

0.45

380

4.5 0.15

345

0.45

276

0.3

410

4.75 0.15

390

0.3

346

5 0.15

265

0.45

412

4.88 0.15

391

0.45

347

0.3

291

4.75 0.15

425

5 0.15

375

5 0.15

342

0.45

267

0.3

429

0.3

376

0.3

343

5.5 0.15

315

4.88 0.15

427

0.45

377

0.45

344

0.3

293

5 0.15

406

5.5 0.15

372

5.5 0.15

339

0.45

270

0.3

407

0.3

373

0.3

340

6 0.15

271

0.45

408

0.45

374

0.45

341

0.3

295

5.5 0.15

403

6 0.15

369

6 0.15

336

0.45

273

0.3

404

0.3

370

0.3

337

0.45

405

0.45

371

0.45

338

6 0.15

400

0.3

401

0.45

402

(15)

4

concilusion

From the results of the forced heave oscillation test it may be concluded that the interaction

effects can not be neglected. Especially for lower forward speed and the nearest distance of

the model to the tank waIl.The higher forward speeds the interaction shift to the wake. The

magnitude of the interaction is lower when the forward speed- and the distance of the model

to the tank wall are high.

The wave exciting force in heave mode is not affected by the distance of the model to the

tank wall. Because the Froude-krylov wave forces are dominant in the total wave exciting

forces. The part of the diffraction wave forces are almost be negleóted.

The motion response is more affected by the forward speed rather than by the distance of the

model to the tank wall. Except for the pitch motion response at certain forward speed and

the distance to the tank wall.

For the future the investigation is to be recommended in the interaction behaviour in the

horizontal plane, (sway and roll). Especially for shading effects on the wave exciting forces.

Chapter 4. Conclusion

(16)

5

Acknowledgments

I wish to express my gratitudeto Prof. Dr. Ir LA Pinkster, who gave me the opportunity to

do this investigation at the DeIft Shiphydrodynamics Laboratory.

Thanks must be extended to Dr.ir.J.A. Keuning and Ir. P.F. van Terwisga as my supervisor

in this model experiments Tò Ir. L.J.M. Adegeest, for the iiiforthation about the Wigley

model.

Special thanks to Mr. A.J. van Strien who help me with the experiments and give me a lot of

information about model experiments in the towing tank. Also to Ir. H. Ooms, for the data

processing.

I would like to thank many members of the Délft Shiphydrodynamic Laboratory for their

assistance drning the experiments.

Chapter 5. Acknowledgments

(17)

List of Tables

2.1 The main particulars of the model

7

2.2

Relevant particulars per section

9

list of

tab!es

(18)

List of Figures

2.1 An illustratiónof the tank

6

2.2 The coordinate' system of the 'test

7

2.3 The segmented model and the instrumentation

8

2.4 The forced heave oscillation test set-up

9

2.5

The restrained model tests set-up

l'O

2.6 The motion model' tests set-up

110

page. 18

(19)

List of Symbols

In order of appearance:

Hsep/B

The relation between the hull separation and hull breadth

[-1

a

The distance of the outer hull to the tank wall

[in]

t

Time

[s]

Frequency of oscillation

[radis]

z

vertical displacement

[m]

k

wave number

p

pressure

EN/m2]

p

Density of water

[kg/mi

g

Accelraflon of gravity

[m/s2]

a

2-D added mass

[kg/rn]

2-D damping

[kg/ms]

Fzd

Diffraction force component of z-th mode

[N]

M

Massj

[kg]

B

Beam

[m]

coordinates Of Wigley hull

[-I

Ls

Ship length

[m]

T

Draught

[m],

Fn

Froude number

[-]

wave length

[mI

(20)

Appendix A

page 21- 43

Theresults of heave forced oscillation tests

page 43 - 61

The results of wave exciting teSts

page 61 - 75

The results of motion model tests

page 20

(21)

Run nu6ither 206 Wagensnelh. )m/s): Omega (radis) : .743 Excitatieperiôdé )s): 2.005 Dompamplitude Cm) :, 3.133 .02ó - - Run nummer 209 Wagensnelh. (rn/a): Omega )radis) : .743 Excitatieperiode Cs):. 3.000 Dompamplitude )m) : 2.094 .020

kan, gem. mod, arg. Azz

Bzz

gem. mod, arg.

Azy

Bzy

kan, gem. mod. arg.

Azz

BZ. gem. mod, arg.

Azy

Bzy

Fn=0.15 Fn=0.15 Fn=0.15 Fn=0.15 Fn=0,15 Fn=0.15 Fn=0,,15 Fn=0.15 1 0.003 5.039 -3.471 4.229 -7.608 0.098 0.015161.889 0.178 -0.117 1 0.063 4.472 -9.513 4.165 -12.318 0.047 0.008-149.69 0.038 0.067 2 1.27612.572 -1.319 13.687 -7.215 0.013 0.086 6.433 -1.068 -0.241 2 0.97410.735 -4.048 14.862 -12.630-0.062 0.081 8.192 -0.445 -0.192 3 2.88416.889 1.104 23.027 8.115-0.018 0.117 2.947 -1.461 -0.150 3 2.12714.456 1.553 22.017 6.528-0.019 0.109 6.977 -0.601 -0.221 4 3.70918.653 3.125 26.353 25.356 0.038 0.060 0.741 -0.750 -0.019 4 2.61916.337 4.383 22.725 20.807 0.056 0.057 -8.051 i-0.314 0.133 5 2.96318.913 5.255 25.307 43.192 0.004 0.101 25.141 -1.143 -1.073 5 2.60016.971 6.334 20.368 31.206-0.056 0.152 5.738 -0.840

-0253

6 2.89917.056 7.022 20.646 51.990 Ó.019 0.045 11.027 -0.552 -0.215 6 2.05915.677 6.703 14.973 30.498-0.02è 0.060 10.337 -0.328 -0.179 7 0.90112.929 8.677 10.415 48.638-0.052 0.056-17.273 -0.668 0.416 7 0.67411.866 7.115 8.107 24.495-0.012 0.001-52.553 -0.003 0.013 8 0.524 5.348 10.698 1.605 24.756 0.050 0.013 -6.406 -0.161 0.036 8 0.351 4.980 9.211 1.464 13.286 0.008 0.011 21.255 -0.057 -0.066 9 -0.008 0.999 0.000 -0.009 1.000 0.000 9 -0.007 1.000 0.000 -0.010 1.002 0.000 125.269 187.224 -5.625 -1.363 108.681 101.872 -2.550 -0.699 Wagensnelh. (mis): Omega (rad/s) :

kan. gem. mod,

1.490 Excitatieperiode (s): - 3.104

2.024 Dompàmplitude )m) : .020

arg. Azz Bzz gem. mod, arg.

Fn=0.30 Fn=0.30

Azy

Bzy

Frì=0.30 Fn=0,30

WagensneÏh. )mis): Omega (radis)

kan, gem. mod,

1.489 Excitàtieperiode (s):

2.996 Dornpamplitude (m) :

arg. Azz Bzz gem. mod,

Fn=0.30 Fn=0.30

2.097

020

arg.

Azy

Bzy

Fn=0.30 Fn=0.30 1 0.697 4.421-10.857 12.507 20.573 0.337 0.285117.698 1.656 -6.309 1 0.839 3.537 1.431 9.051 1.474 0.267 0.046 16.145 -0.245 -0.213 2 4.08711.476 -4.054 27.065 -20.039 0.028 0.098 6.421 -1.217 -0.274 2 4.060 9.833 8.425 20.376 24.045-0.078 0.072 9.788 -0.394 -0.204 3 8.14616.097 0.394 32.170 2.736 0.022 0.098 13.327 -1.192 -0.565 3 7.73114.693 10.862 22.199 46.208 0.038 0.086 22.540 -0.441 -0.549 4 9.74218.081 3.136 32.777 24.432 0.103 0.063 10.789 -0.774 -0.295 4 9.04816.837 12.277 21.891 59.748 0.082 0.069-47.971 -0.257 0.854 5 10.54918.793 7.476 27.225 60.399-0.028 0.180 13.778 -2.185 -1.072 5 10.50117.804 15.366 18.757 78.735-0082 0.175 7.376 -0.964 -Ó.374 6 12.40017.978 11.926 12.126 91.769 0.214 0.075-16.841 -0.897 0.543 6 11.84017.723 17.758 7.732 90.211 0.079 0.043 17,544 -0.228 -0.216 7 5.04614.639 11.588 -8.883 72.639 0.486 0.041-88.034 -0.018 1.024 7 4.95314.685 16.008 -4.904 67.587-0.013 0.001-97.171 0.001 0.017 8 -1.860 5.474 6.528 -0.704 15.374 0.076 0.037 73.543 -0.131 -0.887 8 -1.881 5.264 10.990 0.074 16.746 0064 0.052 52.177 -0.177 -.0.685 9 -0.007 0.999 0.000 -0.013 1.000 0.000 9 -0.007 1.000 0.000 -0.011 1.002 0.000 134.283 226.737 -4.758 -7.833 95.176 384.754 -2.706 -1.371 Wagensnelh. )mis): Omega (radis) :

kan, gem. mod,

2.230 Excitatieperiode (s): 3.133

2.005 Dompamplitude Cm) : .020

arg. Azz

Bzz

gem. mod, arg. Fn=0.45 E'n=0.45

Azy

Bzy

Fn=0.45 Fn=0..45

Wagensnelh. (mis):

Omega (rad/s) :

kan, gem. mod.

2.230 Excitatiepériode (s): 2.094

3.000 Dompamplitude )rn( : 020

arg..

Azz

Bzz gem. mod, arg.

Fn=0.45 Fn=0.45 Azy

Bzy

Fn=0.45 Fn=0.45 1 5.665 3.605 -3.612 22.045 -5.662 0.051 0.286148.645 3.053 -3.720 1 6.075 3.266 -0.846 10.526 -0.804 0.291 0.273129.211 0.959 -3.525 2 20.32410.113 3.690 44.483 16.227-0.038 0.082-25.153 -0.928 0.871 2 20.895 9.390 7.093 22.585 19.326-0.029 0.044 18.242 -0.232 -0.230 3 37.06316.359 8.246 31.682 58.502-0.039 0.167 -9.088 -2.061 0.659 3 37.50115..543 10.475 17.385 47.101 0.136 0.102 21.172 -0.528 -0.614 4 37.12820.107 10.894 12.438 94.755 0.061 0.092 0.354 -1.150 -0.014 4 37.13819.430 13.066 8.068 73.215 0.237 0.041-43.621 -0.165 0.471 5 27.29520.273 13.662 14.538 119..392-0.065 0.021 21.652 -0.244 -0.194 5 27.78319.816 17.748 9.223 100.681 0.034 0.078 26.115 -0.389 -0.572 6 12.25018.860 12.528 2.206 102.005-0.032 0.095150.894 1.038 -1.155 6 11.95518.468 17.694 3.728 93.553 0.203 0.114131.388 0.419 -1.425 7 -6.09813.550 8.366 2.643 49.158-0.030 0.060-68.217 -0.278 1.393 7 -6.09112.887 13.576 3.927 50.415-0.010 0.000-80.182 0.000 0.000 8 -4.224 5.275 8.797 2.137 20.114-0.006 0.051 31.497 -0.544 -0.666 8 -4.240 4.978 15.654 2.143 22.388-0.156 0.091 2.370 -0.153 -1.445 9 -0.007 0.999 0.000 -0.012 1.000 0.000 9 -0.008 1.000 0.000 -0.011 1.002 0.000 132.172 454.491 -1.115 -2.826 77.585 405.875 -0.090 -7.341

Run nummer 207 Run nummer 210

(22)

Appendix A

Run nummer

214

Run nummer

217

Wagensnelh. )m/s):

2.230

Excitatieperiode (s):

1.569

Wagensrìelh.

)rn/s):

2.231

Excitatieperiode (s):

1.265

Oméga )rad/s)

:

4.005

Domparhpîitudé

)r9) :

.020

-

Omega (rad/s)

:

4.967

Dompamplitude (m)

:

.020

kan,

gem. mod.

arg.

Azz

Bzz gem. mod,

arg.

Azy

Ezy

kan,

gem. rood,

arg.

Ais

Bzz gem. mod,

arg.

AZy Bzy

Fn=0.45 Fn0,45

Fn=0.45 Fn=045

Fn=0.45 Fn=Ó.45

Fri=0.45 Fn=0.45

i

6.03

2.974

0.398

5.888

0.258 0.342 0.174123.323

0.299

-1.817

1

5.702 2.680

1.636

3.688

0.770 0.386 0.125148.108

0.212

-0.660

2

20.735 8.746 10.495

13.651

19B88 0.034 0.052 13.138

-0.158

-0.148

2

20.100 8.162 13.559

9.221

19.262 0,087 0.022 24.974

-0.040

-0.093

3

37.16814.303 13.219

12.561

40.832 0.135 0.135 23.818

-0.386

-'0.681

3

36.78613.026 17,176

10.025

38722 0;119 0.124 16.824

-0.237

-0.359

4

36.76117.834 14.970

8.209

57:510 0.238 0.038-46.638

-0.082

0.345

4

36.98115.698 18.120

8.735

49.147 0.200 0.076-58.076

-0.080

0.645

5

27,60018,487 21.519

8.916

84.655 0.133 0.163 22.921

-0.469

-0.794

5

28.08016.598 26.283

9.313

73.986 0.048 0.154

0.278

-0.308

-0.007

6

11.63717.501 22.448

5.087

83.425 0,227 0.118113.335

0.146

-1.354

6

12,18616.307 27.893

5.744

76.794 0.191 0100109.781

0.068

-0.941

7

-5.91311.867 18.885

4;552

47.948 0.318 0.105-96.030

0.034

1.305

7

-5.66910.918 25.008

4.309

46.462 0.380 0.-114-124,25

0.128

0.942

8

-4.340 4.601 22.689

2.009

22.153-0.152 0.085 63.599

-0.118

-0.952

8

-4.361 4.269 30.696

1.748

21.940 0.015 0.044 66.538

0.035

-0.404

9

-0.008 0.997

0.000

-0.012 0.998

0.000

9

-0.007 0.996

0.000

-0.012 0.998

0.000

60.873 356.669

-0.734

r4. 096

52.783 327.083

-0.292

-0.877

Nagensnel-h.

(rn/a) :

Omega (rad/s)

:

kan,

gem. mod.

.743

Excitatieperiode (s)

4.016

Dompamplitude (m)

arg.

Azz Bzz gem.

Fn=0.15 Fn=0.15

:

1.565

:

.020

mod,

arg.

Azy

Ezy

Fn=0.15 Fñ=0.15

Wagensneih.

(roIs):

Omega (radIs)

:

kan.

gem.

mod,

743

Excitatieperiode (s):

1.252

5.020

Dompamplitude )m)

:

.020

arg.

Azz

Bzz

gem.

mod,

arg.

Fn=0. 15 E'n=O. 15

Azy

Bzy

Fri=0. 15 Fn=0.. 15

1

0.101 4.441 19.576

2.093

18.526 0.010 0.098-86.763

-0.017

1223

1

0.053 3.194 27.260

3.249

14.571 0.083 0.155-152.05

0.274

0.72,6

2

1.15112.971 26.716

4.303

72.602-0.036 0.174-169.23

0.534

0.406

2

1.013 9.528 28.630

8.117

45.472 0.007 0.116140.053

0.178

-0.745

3

2.58719.144 21.966

0.603

89.156-0.032 0.348110.863

0.387

-4.065

3

2.22113.218 27.485

11.174

60.760-0.022 0.098 84.949

-0.017

-0.976

4

3.1?519.814 13.905

1.930

59.286 0.035 0.389 69.519

-0.425

-4.555

4

2.77113.731 26.095

13.611

60.156 0.054 0.064 83.439 -0.015

-0.636

5

2.94818.000 11.178

7424

43.443-0.030 0.392 25.824

-1.103

-2.134

5

2.89513.943 27.308

13.994

63.714 0.011 0.089 58.089

-0.094

-0.755

6

2.28315.249 12.786

9.088

4..016-0.033 0.187 -7.703

-0.579

0.313

6

2.08113.649 26,574

9.932

60.817-0.002 0.055 69.699

-0.038

-0.516

7

0.77312.126 15.683

3.122

40.811-0.013 0.001-48.250

-0.002

0.009

7

1.09711.609 22.Ò54

2.421

43.418-0.032 0.032 78.742

-0.012

-0.314

8

0.492 5.333 12.891

-0.972

14.815-0.034 0.010 95.212

0.003

-0.124

B

0.398 4.853 15.152

-0.342

12.635 0.006 0.033 61.874

-0.031

-0.291

9

-0.007 1.001

0.000

-0.010 1.002

0.000

9

-0.006 0.998

0.000

-0.010 0.999

0.000

27.591 380.655

-1.202

-8.927

62.156 361.543

0.244

-3.507

Run nummer

213

Run nummer

216

Wagensnelh.

(rn/a):

1.491

Excitatieperiode (s):

1.571

Wagensneih.

(rn/a):

1.490

Excitatieperiode (s):

1.250

Omega )rad/s)

:

4.000

Dompamplitudé

)rn) :

.020

Omega (radis)

:

5.027

Dompamplitude )m)

:

.020

kan,

gem.

mod,

arg.

Azz

Bz gem.

Fn=0.30

n=0.30

mod,

arg.

Azy

Bzy

E'n=0.30 Fn=0.30

kan,

gern. mod,

arg.

Azz

zz

gém.

Fn=0,.30 Fn=0.30

mod,

arg.

Azy

Bzy

Fn=0.30 Fn=0.30

1

0.824 3.434

3.694

4.494

2.765 0.303 0.065-172.42

0.201

0.107

1

0.938 3.111

7,535

2.751

4.058 0.356 0.068140.987

0.106

-0.428

2

3.939 9.823 11.642

10.503

24.778-0.035 0.077 19.790

-0.226

-0.326

2

3.940 9.205 15.196

7,059

24.000 0.025 0.057 36.820

-0.091

-0.342

3

7.62414.166 13.753

13.117

42.096 0.036 0.111 28.397

-0.305

-0.660

3

7.52012.805 17.539

10.177

38.386 0.050 0.092 39.596

-0.142

-0.586

4

9.02315.623 15.400

15.011

51.862 0.100 0.050-51.053

-0.098

0.486

4

9.26413.335 20.630

13.269

46.736 0.036 0.031-82.494

-0.008

0.307

5

10.69916.-382 19.874

14.548

69.616-0.022 0.213

8.855

-0.658

-0.410

5

11.18414.153 27.368

13.592

64.718-O.081 0.084

2.027

-0.168

-0.030

6

11.77616.604 21.749

7.461

76.908 0.097 0.045 21.171

0.131

-0.203

6

12.08014.964 28.709

8.080

71.501 0.108 0.040 37.467

-0.063

-0.243

7

5.41014.072 18.966

-1.928

57.173-0.050 0.047-J06.79

0.042

0.562

7

5.16713.021 23.617

0.086

51.890-0.030 0.046-136.24

0.066

Ò..318 8

-2.002 4.862 15.115

0.615

15.850 0.098 0.050 58.747

-0.081

-0.534

8

-2.056 4.330 21.390

0.945

15.707-0.034 0.067 43.999

-0.096

-0.-465

9

-0.007 0.997

0.000

-0.011 0.999

0.000

9

-0.007 0.998

0.000

-0.011 0.999

0.000

63.821 341.048

-1.256

-0.977

55.959 316.996

-0.397

-1.469

(23)

Wagensnelh. (mis):

Omega (radis)

:

kan,

gem. mod,

.743

Excitatieperiode (s):

6.048

Dompamplitude Cm)

:

arg.

Az±

Bzz

gem.

mod,

Fn=0.1

Fn=0.15

1.039

.020

arg.

Azy

Bzy

Fn=0.15 Fn=0.15

Wagensnelh. (mis):

Òmega (radis)

:

kan,

gem. mod,

.743

Excitatieperiode (s):

.898

7.000

Dompamplitude (ru)

.020

arg.

Azz

Bzz gem rood,

arg.

Fn=0,15 E'n=0.15

Azy

Bzy

Fn=0,15 Fn=0.15

1

0.022 3.059 15.462

L432

6.743 0.096 0.030-162.90

0.040

0.073

I

0.070 2.599 16.230

0.996

5.189 0.119 0.049148.339

0.043

-0.184

2

0.931 9.047 23.293

4.772

29.576 0.033 0.079 48.363

-0.073

-0.492

2

1.079 7.990 23.746

3.81

22.983 0.058 0.085 33.888

-0.072

-0.33

3

2.11911.761 27.370

8.435

44.702-0.032 0.113 21.659

-0.146

=0.348

3

2.222 9.730 29.629

7.497

34.362-0.025 0.095 26.451

-0.087

-0.302

4

2.70711.242 31.248

11.953

48.211 0.038 0.053 16.516

-0.071

-0.126

4

2.837 8.389 40.350

11.276

38.800 0.028 0.063 83.933

-0.007

-0.447

5

2.87511453 36.418

12.929

56.209-0.022 0.053 24.876

-0.067

-0.186

5

2.940 9,074 50.493

12.312

50.010-d.001 0.082 ¿2,877

-0.Ö38

-0.521

6

2.06411.676 35.141

9.465

55.561-0.006 0.062 22.477

-0.080

-0.198

6

2.098 9.983 46969

9.034

52.126 0.000 0.069 27.505

-0.062

-0.228

7

1.00610.172 27.744

2.866

39.417-0.046 0.014 19.025

-0018

-0.038

7

0.981 ¿.938 35.324

2.904

3.913-0.052 0.031-10.276

-0.031

0.040

¿

0.371 4.115 19.785

0.234

11.514 0.005 0.023 76.296

-0.008

-0.186

8

0.371 3.474 26.115

0.421

10.922 0.001 0.037102.045

0.008

-0.258

9

-0.007 0.998

0.000

-0.011 0.999

0.000

9

-0.006 0.998

0.000

-0.011 0.998

0.000

52.086 291.933

-0.422

-1.499

48.291 251.305

'0.247

-2.240

Run nummer

219

Run nummer

222

Wagensnelh. )m/s):

1.490

Excitatieperiode (s):

1.042

Wagensrrelh.

(mis):

1.490

Excitatieperiode (s):

.896

Omega (radis)

:

6.032

Dompamplitude Cm)

:

.020

Omega (radis)

:

7.009

Dompamplitude (a)

:

.020

kah,

gem. mod.

arg.

Azz.

Bzz

gem.

Fh=0.3Ó Fn=0.30

mod,

arg.

Azy

Bzy

Fn=0.30 Fn=0.30

kan,

gem. mod,

arg.

Azz

Bzz

gem.

FnO.30 Fñ=0.30

mod,

arg.

Azy

Ezy

Fn=0,30 Fn=O.30

1

5.755 2.271

2.098

2.397

0.690 0.405 0.161126.809

0.134

-1.074

1

5.576 1.929 -1.315

1.624

-0.318 0.511 0.116111.883

0.044

-0.769

2

20.250 7.238 16.629

6727

17.192 0.082 0.086 76.285

-0.028

-0.696

2

19.945 6.263 18.691

5.369

14.430 0.110 0.081 61.784

-0.042

-0.548

3

36.99011.413 21.942

8.334

35.397 0.134 0.143 41.865

-0.148

-0.795

3

36.697 9.628 26.144

7.449

30.505 0.122 0.133 31508

-0.116

-0.496

4

37.12512.856 23.619

9.091

42.753 0.240 0.030-64.046

-0.018

0.225

4

37.206 9.856 31.872

9.431

37.420 0.220 0.066-100.52

0.012

0.464

5

28.12513.901 34.817

10.034

65.881 0.096 0.108 35.029

-0.123

-0.517

5

28.23611.213 47.601

10,672

59.538 0.062 0.068 13.624

-0.067

-0.114

6

12.12314.451 36.010

6.616

70.523 0.207 0.157 83.445

-0.025

-1.300

6

12.23112.561 46.374

7.280

65.378 0.194 0.126 72.335

-0.039

-0.858

7

-5.784 9,570 34.922

4.512

45.473 Ô.268 0.105-131.98

0.098

0.650

I

-5.134 8.438 47.144

4.600

44.476 0.328 0.116-143.64

0.095

0.491

8

-4.384 3.920 43.276

1.655

22.305-0.185 0.072 40.769

-0.076

-0.392

8.

-4.401 3.708 56.940

1.587

22.344-0.056 0.028 59.339

-0.015

-0.172

9

-0.007 0.997

0.000

-0.012 0.998

0.000

9

-0.008 0,997

0.000

-0.012 0.998

0.000

49.366 300.214

-0.186

-3.899

48.012 273.773

-0.127

-2.002

1

0.905 2.792

9.234

1.716

3.715 0.404 0.032161.366

0.042

-0.085

1

0.826 2.435

7.899

1.073

2,387 0.463 0.054171.032

0.054

-0.060

2

4.038 8.494 16.805

5.058

20.355 0.030 0.065 11.596

-0.088

-0.109

2

3.965 7.486 16.858

3.986

15.486 0.052 0.051 41.050

-0.039

-0.239

3

7.78311.198 19.819

8.373

31.473 0.026 0.114 24.739

-0.144

-0.398

3

7.67

8.922 21.936

7.655

23.776 0.028 0.109 22.417

-0.103

-0,297

4

9.26710.675 26.769

12.147

39.855 0.070 0.016-125.74

0.013

0.108

4

9.091 7.473 38.403

11.783

33.117 0.062 0.014140.160

0.011

-0064

5

11.07611.679 3.471

12.944

58.894-0.039 0.046-15.296

-0.062

0.101

5

10.828 9.219 55.300

12.804

54.067=0.043 0.067

8.185

-0.068

-0.068

6

12.02713.194 37.721

8.312

66.915 0.109 0.067 22.960

-0086

-0.218

6

11.80511.516 50.812

8.529

63.672 0.110 0.07

27.870

-0.065

-0.240

7

5.24511.863 29.391

1.068

48.262-0.060 0.042-134.87

0.041

0.248

7

5.17510.600 37.179

1.711

45.697-0.072 0.042-168.59

0.042

0.059

8

-1.990 3.795 29.235

i.Òi1

15.362 0.039 0.050 33.798

-0.058

-0.232

8

-1.988 3.274 40.519

1.056

15.172-0.006 0.050 34.814

-0.042

-0.204

9

-0.006 0.997

0.000

-0.011 0.999

0.000

9

-0.007 0.998

0.000

-0.011 0.998

0.000

50.635 284.831

-0.341

-0.584

48.597 253.374

-0.209

-1.113

Run nummer

220

Run nummer

223

Wagensnelh. )m/s(:

2.230

Excitatieperiode Cs):

L043

Wagensnelh.

(mis):

2.231

Excitatieperiode (s(:

.904

Omega (radis)

:

6.024

Dompamplitude Cm)

:

.020

Omega (rad/s)

:

6.954

Dompamplitude (m)

:

.020

kan,

gem. moth

arg.

Äzz

Bzz gem. mod,

arg.

Azy

Bzy

kan,

gern. mod,

arg.

Azz Bzz gem. mod,

arg.

Azy

Bzy

FnrnO.45 Fn=0,45

Fn=0.45 Fn=0,45

Fn=0.45 Fn=0.45

E'n=0,45 Fn=0.45

(24)

1

1.043 1.873 -0.948

0.745

-0.193 0216 0.064-157.20

0.046

0.155

2

4.234 5.828 12.923

3.529

8.131 0.076 0.050 44.085

-0.028

-0.217

3

8.064 5.604 23.347

7.525

13.857-0.019 0.085 17.904

-0.063

-0.163

4

9.868 4.145 72.729

11.751

24.695 0.038 0.038115.853

0.013

-0.214

5

11.866 7,854 86.678

12.733

48.917 0.012 0.052

3.677

-0.041

-0.021

6

12.59410.376 69.662

8.617

60.696' 0.007 0.063 28.336

-0.043

-0.187

7

5.281 9.310 48.517

2.173

43.513-0.053 0.038172.730

0.029

-0.030

8

-2.006 2.849 58.395

1.098

15.136 0.028 0.021 46.377

-0.011

-0.095

9

-0.006 0.998

0.000

-0.011 0.999

0.000

48.171 214.752

-0.098

-0.772.

Run nummer,

226

Wàgenshelh. (mis):

2.231

Excitatieperiode (s):

.786

Omega (radis)

7.994

Dompamplïtude )m)

:

.020

kan.

gem.

moth

arg.

Azz

Bzz

gern.'

mod,

arg.

Azy

Bzy

Fn=0.45 Fn=0.45

Fn=0.45 Fn=0.45

1

0.874 1.125-26.687

0.690

-2.807 0.638 0.077-176.07

0.047

0.029

2

4.125 3.569

3.433

3.513

1.187 0.112 0.029 93.257

0.00].

-0.161

3

7.960 1.477 36.377

7.737

4.866 0.037 0.048 29.274

-0.026

-0.130

4

9.351 5.300145.885

12.030

16.516 0.026 0.048 59.856

-0.015

-0.231

5

10.979 9.419123.850

12.922

43.464-0.001 0.045 30.414

-0.024

-0.127

6

11.96210.343 94.234

8.860

57.311 0.110 0.083 38.340

-0.040

-0.286

7

5.326 8.312 64.7.56

2.542

41.711-0.071 0.025134.065

0.011

-0.100

8

-1.996 2.712 81.610

1.122

14.907-0.022 0.020 50.184

-0.008

-0.085

9

-0.007 0.998

0.000

0.011 0.999

0.000

49.416 177.155

-0.054

-1.090

Run nummer

229

Wagensnelh.

(mis):

2.230

Excitatieperiode (s):

.699

Omega (radis)

:

8.987

Dompamplitude

rn) :

.020

kan.

gem. mod..

arg.

Azz

Bzz

gem. mod,

arg.

Fn=0.45 Fn=.0.45

Azy

Bzy

Fn=0.45 Fri=0.45

Appendix A

Run nurr)±nér 224

Wagensnelh. (mis):

Omega (radis)

:

kan,

gem.

mod,

.743

Excitatieperiodé (s):

.784

8.014

Dmpainplitudè )m(

:

.020

arg.

Azz Bzz gem. mod,

arg.

Fn=0.15 Fn=0.J.5

Azy

Bzy

Fn=0.15 Fn=0.15

Run nummer

227

Wagensnelh.

(mis):

.743

Excitatieperiode (s):

Oméga (radis)

:

8.999

Domparnplitude )m)

:

kan,

gem. mod,

arg.

Azz

Bzz gem. mod,

Fn=0.15 Fn=0.15

.698

.020

arg.

Azy

Bzy

Fn=0.15 Fn=0.15

1

0.081 1.848 20.345

0.854

4.009 0.216 0.054127.355

0.026

-0.268

1

0.113 0.986 29.205

0.779

2.673 0.275 0.033138.294

0.015

-0.122

2

1.147 5.980 26.216

3.774

16.482 0.076 0.084 54.451

-0.038

-0.427

2

1.273 3.530 34.113

3.908

11.001 0.089 0.080 49.357

-0.032

-0.337

3

2.443 6.204 36.021

7.625

22.762-0.019 0.079

3.867

-0.062

-0.033

3

2.598 2.424 75.179

8.088

13.023-0.023 0.050 26.564

-0.028

-0.124

4

3052 4.641 69.649

11.453

27.147 0.038 0.052-17.681

-0.039

0.099

4

3.238 5.261143. 959

11.948

17.200 0.035 0.088 51.074

-0.034

-0.380

5

3.206 6.735 80.967

12.264

41.497 0.012 0.056-43.040

-0.032

0.239

5

3.356 7.617126.461

12.477

34.037 0.021 0.217 62.331

-0.062

-1.068

6

2.284 8.224 67.053

8.928

47.248 0.007 0.017-27.617

-0.012

0.049

6

2.464 7.818 96.491

8.934

43.162 0.002 0.088 41.328

-0.041

-0.323

7

0.990 7.453 47.571

3.060

34.321-0.053 0.033178.480

0.026

-0.005

7

1.149 6.42.4 66.402

3.143

32.708-0.062 0.028 94.531

0.001

-0.155

8

0.399 2.714 37.833

0.592

10.387 0.028 0.039115.855

0.013

-0.219

8

0.439 2.161 58.753

0.674

10.267 0.000 0.056104.979

0.009

-0.301

9

0.007 0.998

0.000

-0.011 0.999

0.000

9

-0.006 0.998

0.000

-0.010 0.998

0.000

48.550 203.853

-0118

-0.567

49.951 164.071

-0.171

-2.810

Run nummer

225

Run nummer

228

Wagenaneih.

(mIs):

1.489

Excitatieperiode (s):

.784

Wagensnelh. (mis):

1.490

Excitatieperiode (s):

.698

Omega (rad/s)

:

8.014

Dompañiplitude (m)

:

.020

Omega (radis)

:

8.999

Dompamplitude )m)

:

.020

kan,

gem. mod,

arg.

Azz

Bzz

gem.

mod,

arg.

Fn=0.30 Fn=0.30

Azy

Bzy

Fn=0.30 Fn=03O

kan,

gem.

mod,

arg.

Azz Bzz gem.

Fn=0.30 Fn=0.30

mod,

arg.

Azy

Bzy

Fn=0.30 Fn=0.30

I

5.749 1.466-12.956

1.107

-2.056 0.558 0.051104.185

0.010

-0.309

1

5.702 1.081-47.037

0.863

-4.399 0.542 0.041146124

0.021

-0.127

2

20.358 4.952 20.143

4.368

10.666 0.129 0.083 56.543

-0.036

-0.433

2

20.322 3.200 16.757

3.837

5.133 0136 0.089 29.721

-0.048

-0.245

3

36.993 7.221 32.358

6.834

24.172 0.131 0.116 35,817

-0.073

-0.424

3

36.990 4.083 44.863

6.710

16.022 0.142 0.164 41.343

-0.076

-0.602

4

37.440 6.421 51.142

9.640

31.276 0.230 0.077-112.81

0.023

0.444

4

37.632 4.513104.303

10.044

24.332 0.250 0.019-174.27

0.012

0.011

5

28.202 8.953 73.529

11.185

53.701 0.111 0.037 26.615

-0.026

-0.104

5

28.324 9.285110.62.7

11.741

48.345 0.281 0.255 59.588

-0.080

-1.222

6

12 24610 720 64 688

7 913

60 614 0 201 0 118 61 538

-0 044

-0 648

6

12.39710.130 90.596

8.484

56.355 0.205 0.176 49.864

-0.070

-0.748

7

-5.807 7.586 67.401

4.748

43.808 0.298 0.141-145.93

0.091

0.494

7

-5755 7.758 91.196

4.853

43.151 0.187 0.103-163.32

0.061

0.164

8

-4.329 3.743 75.014

1.525

22.616-0.117 Ò.014142.298

0.009

-0.054

8

-4.322 4:084 92.717

1.495

22.695-0.288 0.063 77.666

-.0.008

-0.342

9

-0.008 0.997

0.000

-0.011 0.999

0.000

9

-0.006 0.997

0.000

-0.011 0.999

0.000

47.320 244.797

-0.046

-1.034

48.027 211.634

-0.188

-3.110

(25)

Wagensnelh.

(this) :

.743

Excitatieperiode (s) :

.524

Omega (rad/a)

:

11.999

Dornpamplitude (m)

:

.020

kan,

gem.

mod,

arg.

Azz

Bzz gem. mod,

arg.

Fn=0.15 E'n=0.15

Azy

Bzy

Fn=0.15 Fn=0.15

Wagensnelh. )mis):

Omega (radis)

:

kan.

gem.

mod,

.743

Excitatieperiode (s):

3.150

1.995

Dompathplitude )m)

:.

.020

arg.

Àzz Bzz gem. mod,

arg.

Fri=O,15 Fn=0,15

Azy

Bzy

Fn=0,15 Fn=0.15

1

0.201 2.8-7-171.66

0.796

-1.727

0.087165.070

0.029

-0.093

1-0.12.7 4.929 -0.436

5.563 -10.926 0.075 0.026 49.965

-0.209

-0.498

2

1.518 7.163179.148

4445

0.444 0.299 0.065137.332

0.017

-0.184

2 0.4512.420 -0.619

15.724 -15.526-0.047 0.150

8.277

-1.855

-0.540

3

2.72418.533-179.62

9.775

-0.503 0.105 0.109170.567

0.037

-0.074

3 1.58616.717 -0.097

25.429

-2.4400.044 0.208

2.710

-2.597

-0.246

4

3.17930.102179.288

14.090

1.558-0.009 0.027

7.660

-0.009

-0.015

4 2.17818.447

0.575

28.922

14.401 0.038 0.171

2.506

-2.135

-0.187

5

3.36229.292-172.384

14.055

16.177 0.023 0.144116.284

0.022

-0.538

5 2.03618.682

1.322

21.521

33.127-0.038 0.182 -3.202

-2.27.1

0.254

6

2.70219.488159.193

9.623

28.846 0.057 0.078 47.017

-0.018

-0.238

6 1.45416.815

1.747

22.323

43.799-0.015 0.138-11.322

-1.691

0.677

7

1.345 9.689139.415

3.523

26.267 0.012 0.033147.385

0.010

-0.074

7 0.45912.718

1.697

11.364

42.543-0.023 0.118-23.690

--1.351

1.185

8

0.451 3.663141.694

0866

9.461-0.065 0.058149.534

0.017

-0.123

8 0.086 5.234

0.898

1.915

22.512 0.067 0.050-63.932

-0.275

1.123

9

-0.005 0.997

0.000

0.029 0.998

0.000

9-0.008 0.997

0.000

-0.011 0.998

0.000

57.173

80.523-0.010

0.105

-1.339

138.761- 127.490

-12.385

1.769

Run nummer

231

Run nummer

175

Wagensnelh. (mis):

1.490

Excitatieperiode (s):

.523

Wagerìsnelh. (mis):

1.490

Excitatieperiode (s):

3.154

Omega (radis)

:

12.014

Dompamplitude )m)

:

.020

Omega (rad/s)

:

1.992

Dompamplitude (rn)

.020

kan,

gem. mod,

arg..

Azz

Bzz

gem.

Fn=0.30 Fn=0,30

mod,

arg.

Azy

Bzy

Fn=0,30 Fn=0.30

kan,

gem. mod,

arg.

Azz

Bzz gem.

Fn=0,30 E'n=0,30

mod,

arg.

Azy

Bzy

Fn=0.30 Fn=0,30

1

1.067 3.387-153.00

0.854

-6.399 0.590 0.112-152.02

0.034

0.219

1-0.127 4.929 -0.436

16.95

-5.638 0.075 0.026 49..9

-2.824

5.343

2

4.736 7.904-157.39

4.472 -12.643 0.108 0.074126.165

0.015

-0.249

2 0.64512.420 -0.619

33.700

10.434-0.047 0.150

8.277

-3.342

14.866

3

8.73411.933-16ä.55

9.410 -14.808 0.069 0.067155.707

0.021

-0.115

3 1.58616.717 -0.097

36.167

38.002-0.044 0.208

2.710

-1.269

15.823

4

10.04328.685-178.7

13.552

-2.341 0.011 0.035 73.354

-0.003

-0.140

4 2.i7818.447

0.575

33.470

54.66-3 0.038 0.171

2.506

1.283

13.20-3

5

11.45229.229166.010

13.777

29.408-0.046 0.274123.185

0.052

-0.955

5 2.03618.682

1.322

24.892

84.090-0.038 0.182

3.202

1.737

7.785

6

12 57221 346146 692

9 459

48 782 0 111 0 129 59 082

-0 023

-0 461

6 1.45416.815

1.747

7,134 108.916-0.015 0.138-11.322

1.390

5.147

7

5,87011,189126,657

3.269

37.355-0.061 0.013146.943

0.004

-0.030

70.45912.718

1.697 -14.16.4

80.8520;023 0.118-23.690

1.198

4.784

8

-1.812 5.194137.349

1.186

14.646-0.115 0.085127.942

0.018

-0.279

8 0.086 5.234

0.898

-2.683

16.266 0.067 0.050-63.-932

2.666

-2.528

9

-0.006 0.997

0.000

-0.011 0.998

0.000

9-0.008 0.997

0.000

-0.011 0.998

0.000

55.979

94.000

0.118

-2.010

135.441 387,585

0.838

64.424

Run nummer

232

Run nuthmer

176

Wagensnelh. (mis):

2.2-30

Excitatieperiode (s) :

.523

Wagensnelh. (mis):

2.230

Excitatieperiode (s):

3.150

Omega (radis)

12.014

Dompamplitude )m)

:

.020

Omega (rad/s)

:

1.995

Dompamplitude (m)

:

.020

kan,

gem. mod.

arg.

Azz Bzz gem. mod,

arg.

Fn=0,45 Fn=045

Azy

Bzy

Fn=0,45 Fn=0,45

kan.

gém. mod,

arg.

Azz

Bzz

gem.

mod,

arg.

Azy

Bzy

Fn=0.45 Fn=0.45

Fn=0.45 Fn=0,45

1

5,778 3.647-137.56

0.741 -10.242 0.507 0.979132.429

0.019

-0.243

1 5.638 3.675 -4.080

21.449

-6.554 0.131 0.336165.367

4.064

-2.122

2

20.711 5.855-153.58

3.761 -10.84Ó 0.17 0.074149.131

0.022

-0.158

220.31910.295

3.08

42.625

13.857-0.123 0.042-65.665

-0.216

0.957

3

37,51412,234-174.74

7.541

-4668 0.167 0.092 83.561

-0.004

-0.381

337.08516.613

1,431

28.485

53.858 0.032 0.105 -6.096

-1.30-5

0.279

4

38.03523.200175.684

11.632

7.267 0.227 0.018 74.084

-0.002

-0.072

437.02120.374

9.827

8.453

87.171 0.159 0.049-64.538

-0.263

1.106

5

28.50528.204161.761

13.231

36,737 0.196 0.358 88.498

-0.003

-1.491

527.72120,528 12.384

10.329 110355 0.028 0,038-69,720

-0.165

0.891

6

12,54422.300148,793

9.886

48.085 0.212 0.153 63.918

-0.023

-0,573

611.80919.036 11.194

-1.032

92.636 0.356 0,159-179,73

1.987

0.019

7

-5.62115.791139.853

5.1-36

42.371 0.253 0.116-159.42

0.038

0.170

7-5.99713.596

7.298

1.711

43.296 0.623 0.070-115.22-

0.373

1.583

8

-4.277 7.138129.260

1.427

23.002-0.241 0.167117.991

0.027

-0.614

8-4.473 5274

7.796

2.025

17.932 0.388 0.092126.114

0.678

--1.858

9

-0.007 0.996

0.000

-0.012 0.997

0.000

9-0.009 0.997

0.000

-0.012 0.998

0.000

53.355 131.712

0,074

-3.362

114.045 412.551

5.153

0.854

Cytaty

Powiązane dokumenty

Za pomocą protokołu REST można generować żąda- nia HTTP, wykorzystując takie metody jak GET, POST, PUT oraz DELETE.. Używana metoda

Zastosowane metody dyfrakcji rentgenowskiej (XRD), fluorescencji rentgenowskiej (XRF) oraz analizy obra- zu przy użyciu skaningowego mikroskopu elektronowe- go (SEM), pozwoliły

Wiernos´c´ dziedzictwu Jana Pawła II znajdowała wyraz w kształtowaniu przez Ksie˛dza Profesora u studentów z˙ywej s´wiadomos´ci tego, z˙e Papiez˙ Polak jako pierwszy

Застосовуючи змістовний (діяльнісний) підхід до визначення поняття «державна політика у сфері запобігання домашньому

Augustyn ukazując przykład swojego życia staje się mistrzem życia duchowego tak dla swych słuchaczy, jak i dla tych, za których czuje się odpowiedzialny jako pasterz

Na zakończenie sprawozdania z działalności Towarzystwa Miłośników Torunia pragniemy podziękować za pomoc udzielaną nam przez liczne insty­ tucje, a więc:

Jeszcze żywszą reakicję gdańszczan w yw ołała skandaliczna również próba uspra­ wiedliwienia rozhiórki opinią, że kamienice Heweliusza nie nadaw ały się do

electrons and the value of the parameter increases for an increasing concentration of vacancy-type defects. The W parameter reflects the fraction of positron annihilation with