• Nie Znaleziono Wyników

Reconstruction of atmospheric lead and heavy metal pollution in the Otrębowskie Brzegi peatland (S Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Reconstruction of atmospheric lead and heavy metal pollution in the Otrębowskie Brzegi peatland (S Poland)"

Copied!
18
0
0

Pełen tekst

(1)

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land)

Fatima PAWE£CZYK1, *, Karolina BLOOM2, Witold JUCHA3, Adam MICHCZYÑSKI1, Dan iel OKUPNY3, Jaros³aw SIKORSKI1, Julita TOMKOWIAK2, Ewelina ZAJ¥C4 and Nathalie FAGEL5

1 Silesian Uni ver sity of Tech nol ogy, In sti tute of Phys ics – Cen tre for Sci ence and Ed u ca tion, Konarskiego 22B, 44-100 Gliwice, Po land

2 Uni ver sity of Szczecin, Fac ulty of Geosciences, Ge ol ogy and Palaeo ge ogra phy Unit, Mickiewicza 18, 70-383 Szczecin, Po land

3 Ped a gog i cal Uni ver sity of Cra cow, Fac ulty of Geaography and Bi ol ogy, Podchor¹¿ych 2, 30-084 Kraków, Po land

4 Uni ver sity of Ag ri cul ture in Krakow, Fac ulty of En vi ron men tal En gi neer ing and Land Sur vey ing, Mickiewicza 21, 31-120 Kraków, Po land

5 Uni ver sity of LiÀge, De part ment of Ge ol ogy, AGEs Argiles, Géochimie et Environnements sédimentaires, 14 Allée du 6 aoõt, Quartier Agora, B18, B-4000, LiÀge, Bel gium

Pawe³czyk, F., Bloom, K., Jucha, W., Michczyñski, A., Okupny, D., Sikorski, J., Tomkowiak, J., Zaj¹c, E., Fagel, N., 2019.

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land). Geo log i cal Quar terly, 63 (3): 568–585, doi: 10.7306/gq.1487

We re con struct palaeoenvironmental changes since the Late Ho lo cene in the Orava–Nowy Targ Ba sin, with an em pha sis on anthropogenic in flu ence (Walker et al., 2018). This re con struc tion em ploys multiproxy anal y ses of the Otrêbowskie Brzegi poor fen. We com bined ra dio car bon and 210Pb dat ing with el e men tal geo chem is try, sta ble lead iso topes, and palaeobotanical anal y ses. The core we in ves ti gated cov ers a pe riod from 4200 ± 100 BC to the pres ent, with a peat ac cu mu - la tion rate vary ing be tween 0.001 and 0.243 cm y–1. Heavy metal con cen tra tions, Pb iso to pic ra tios, and a palynological anal - y sis re vealed a sig nif i cant im pact of hu man ac tiv i ties in the past. The high est con cen tra tion and ac cu mu la tion rate of Pb, were found around 1950 AD. The 206Pb/207Pb quo tient ranged be tween 1.168 and 1.223, with av er age value around 1.198.

Most of the in ter pre ta tion was based on Pb and its sta ble iso topes; how ever, other el e ments were also im por tant in di ca tors of nat u ral and anthropogenic en vi ron men tal changes. Our re sults re vealed sim i lar i ties be tween the geo chem i cal com po si tion of the peatland stud ied and other peatlands from the Orava–Nowy Targ Ba sin.

Key words: Pb iso topes, pol lu tion, el e men tal re cord, hu man ac tiv ity, 14C and 210Pb dat ing, palynological anal y sis.

INTRODUCTION

Peat sed i ments, hav ing ac cu mu lated for thou sands of years, can pro vide im por tant in for ma tion about nat u ral and anthropogenic en vi ron men tal changes, e.g., dry and wet pe ri - ods, changes in plant spe cies, and hu man ac tiv i ties in the past (e.g., Mauquoy et al., 2002; Bar ber et al., 2003; Fia³kiewicz et al., 2008; Fia³kiewicz-Kozie³ et al., 2014a). These sed i ments are also col lec tors of at mo spheric par ti cles of crustal and anthropogenic or i gin, among them pol lut ants. Re cords of trace el e ments in peatlands show pe ri ods of in creased at mo spheric pol lu tion caused by hu man ac tiv i ties, such as coal min ing and com bus tion, smelt ing, ag ri cul ture, and even ur ban traf fic (e.g.,

Martínez-Cortizas et al., 2002; Coggins et al., 2006; Komárek et al., 2008; De Vleeschouwer et al., 2009; Fia³kiewicz-Kozie³ et al., 2008, 2011, 2014b, 2015). In par tic u lar, Pb, which is highly toxic to peo ple and the en vi ron ment (Kabata-Pendias, 2011), is one of the most in ten sively in ves ti gated el e ments in re cent years (e.g., Poller et al., 2001; Renson et al., 2008; De Vleeschouwer et al., 2010; Hansson et al., 2017). The iso to pic ra tios of sta ble lead iso topes: 204Pb, 206Pb, 207Pb and 208Pb, can be used to de ci pher sources of Pb and their changes in the past (Shotyk et al., 1998).

The lead iso tope ap proach is a very help ful tool for en vi ron men tal re search, how ever, the par tial mo bil ity of lead iso topes in peatlands has been dis cussed by some au thors. Also, other chem i cal el e ments are widely dis cussed in terms of their mo bil ity (Novak and Pacherova, 2008; Œmieja-Król et al., 2010, 2015;

Kabata-Pendias, 2011). This study is part of a larger work, in - clud ing com par a tive anal y sis of two peatlands in South ern Po - land – Otrêbowskie Brzegi and Wolbrom. These peatlands dif fer in terms of lo ca tion, li thol ogy and anthropogenic im pact (see Pawe³czyk et al., 2017, 2018a, 2018b). In this study we in ves ti - gated a core from the Otrêbowskie Brzegi poor fen, lo cated in the

* Cor re spond ing au thor, e-mail: fatima.pawelczyk@polsl.pl Re ceived: April 8, 2019; ac cepted: June 14, 2019; first pub lished on line: September 18, 2019

(2)

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 569

Orava–Nowy Targ Ba sin. It is an ex ten sive, mid-moun tain ous ba sin in the Outer West ern Carpathians, in south ern Po land. In this area nu mer ous peatlands were formed dur ing the Ho lo cene (£ajczak, 2009). This lo ca tion makes them very in ter est ing ma te - rial for palaeo eco logi cal re search, in clud ing for re con struc tions of en vi ron men tal changes and hu man ac tiv i ties. Early stud ies of the Orava–Nowy Targ Ba sin peatlands con cerned changes in veg e - ta tion (Dyakowska, 1928; Koperowa 1962; Wójcikiewicz, 1979).

Later geo chem i cal anal y sis (Ho³yñska et al., 1998) showed an anthropogenic im pact. Sub se quently peat sed i ments in this re - gion have been stud ied in terms of hu man in flu ence and deg ra - da tion (e.g., Fia³kiewicz-Kozie³ et al., 2011, 2014a, 2015, 2018;

Michczyñska and Margielewski, 2016; Pawe³czyk et al., 2018b).

Other Carpathian peatlands (in Slovakia and Ro ma nia) have been stud ied as well. At tempts to re con struct the his tory of the Carpathian re gion have been made by e.g. Rybnièek and Rybnièkova (1985, 2002), Rösch and Fischer (2000), Hájková et al. (2012) and Jamrichová et al. (2014).

The first phase of land uti li za tion in Orava–Nowy Targ Ba sin took place in the Bronze and Iron ages and was con nected with for ag ing, hunt ing and the first set tle ments in the river val leys (£adygin, 1984; Rydlewski and Valde-Nowak, 1984). At the be - gin ning of the 13th cen tury more reg u lar col o ni za tion be gan, mostly con nected with graz ing. The 14th cen tury was a pe riod of in ten si fied set tle ment and ag ri cul ture in this re gion. At that time, the Czarny Dunajec, Odrow¹¿ and Bañska set tle ments were es tab lished. Around the end of the 14th cen tury, when Wallachian shep herds ar rived in that re gion, the de vel op ment of pastoralism be gan. The be gin ning of met al lurgy in the area stud ied took place in the 15th cen tury and was con nected with first found ries in the Hucisko vil lage, not far from Babia Góra moun tain (Jost, 2004). From that time, min ing and met al lurgy was the main fac tor of set tle ment de vel op ment in the Carpathian fore land (Solecki, 1977). In the Tatra Moun tains iron, sil ver and cop per ores were ex tracted. In 19th cen tury, many steel works pro cessed the Tatra flysch rocks, in the Orava–Nowy Targ Ba sin and its vi cin ity, i.e. in Stryszawa, Maków, Podczerwone, Huciska. Koœne Hamry, KuŸnice, Jaworzyna Spiska and so on (Fig. 1C; Jost, 1962, 2004).

The Carpathian re gion is an area with a long his tory of hu - man pres ence as re gards min ing and met al lurgy (Borcoº and Udubaºa, 2012; Longman and Veres, 2016; Longman et al., 2016, 2018). While the char ac ter is tics of past emis sion sources and ef fects of heavy metal pol lu tion are well known in West ern Eu rope, there is a def i cit of such stud ies in East ern Eu rope. This study aims to par tially fill this gap, by re con struc - tion of the anthropogenic im pact on the Otrêbowskie Brzegi peatland, along with the course of its nat u ral changes in the past. We per formed geo chem i cal anal y sis, with spe cial em - pha sis on heavy metal con cen tra tions and lead iso to pic com - po si tion. These data, as well as bo tan i cal and palynological anal y ses, were com piled with 14C and 210Pb chro nol ogy. As a re sult, we re con structed the his tory of the peatland from

~4200 BC to the pres ent.

MATERIAL AND METHODS

STUDY SITE, CORING AND SAMPLING

Otrêbowskie Brzegi is a poor fen, which means that the sources of wa ter and nu tri ents are mainly pre cip i ta tion, with sec ond ary con tri bu tions from ground wa ter and flow ing wa ters.

The peatland is lo cated in the west ern part of the Orava–Nowy Targ Ba sin, near the vil lage of Jab³onka (Fig. 1A), at ~1 km from the Pol ish-Slo vak bor der (Fig. 1B, C). The peatland is sit u ated

close to the moun tains. The mas sif of Babia Góra is about 10 km NW from the peatland and the Tatra Moun tains are about 30 km to the south, thus the area is par tially pro tected from pol lu tion com ing from the main Pol ish min ing ar eas (Olkusz, Silesia) and cen tral ur ban ar eas (Katowice, Kraków).

How ever, the Otrêbowskie Brzegi peatland may re ceive some pol lu tion from the west, from the Orava re gion.

The peatland is about 600 m long and 500 m wide – 42 ha (Lipka and Zaj¹c, 2014), sit u ated 620 m above sea level and gently slop ing to ward the south (Fig. 1B, C). The cli mate of the Orava–Nowy Targ Ba sin is slightly more se vere than the av er - age con di tions in Po land, with mean an nual tem per a ture about 5.5°C and mean an nual pre cip i ta tion vary ing around 800 mm (Olszewski, 1988). West erly and south west erly winds pre vail.

The Otrêbowskie Brzegi peatland has been de scribed by sev - eral au thors: the de vel op ment con di tions by £ajczak (2009, 2013), a strati graphic transect by Lipka and Zaj¹c (2014) and there have been some anal y ses of mer cury con tent (S³awiñska et al., 2018). How ever, the chro nol ogy of Otrêbowskie Brzegi, its palaeobotanical his tory, ma jor and trace el e ment con cen tra - tions and iso tope geo chem is try have not been in ves ti gated.

In Sep tem ber 2016 the Otrêbowskie Brzegi peatland was probed us ing a peat corer to mea sure the peat thick ness. An in - ter po lated model was de vel oped by us ing the kriging in ter po la - tion method on 71 drillings (Fig. 2). The av er age thick ness of peat is about 1.63 m; the thick est layer of peat oc curs north of the cen ter of the study area. In the south ern part of the peatland, the thick ness of the peat layer grad u ally de creases to ward the me an der ing chan nel of the Czarna Orawa River. A 3.21 m long peat core (JB-1) was taken us ing an Instorf corer at N49°27.771’ E19°39.278’. The core was trans ported to the lab - o ra tory, di vided into sam ples and stored prior to dat ing and other anal y ses.

CHRONOLOGY

The chro nol ogy for Otrêbowskie Brzegi was con structed by merg ing ra dio car bon and 210Pb dates. For ra dio car bon dat ing, 13 sam ples were se lected: ten were pre pared fol low ing the pro - ce dure of Skripkin and Kovaliukh, (1998) and dated us ing the liq uid scin til la tion tech nique (LSC) on a Quantulus 1220TM spec trom e ter in the Gliwice Ra dio car bon Lab o ra tory (Pawlyta et al., 1998). The other three sam ples were dated us ing ac cel - er a tion mass spec trom e try (AMS) be cause of the smaller amount of peat in the up per part of the core. The sam ples were pre pared in ac cor dance with the pro to col by Piotrowska (2013).

The up per 20 cm of the cores were also dated by mea sur ing

210Pb ac tiv ity us ing al pha spec trom e try (Sikorski and Bluszcz, 2008). De tails of prep a ra tion and mea sure ment meth ods for both ra dio car bon and 210Pb dat ing are de scribed in Pawe³czyk et al. (2017). In or der to build the fi nal age-depth model, 14C and

210Pb data were cal i brated and ana lysed us ing OxCal soft ware (Bronk Ramsey and Lee, 2013) with the cal i bra tion data set of the IntCal13 (Reimer et al., 2013) and Bomb13 NH1 cal i bra tion curves (Hua et al., 2013). The re sult ing age-depth model was used to cal cu late the Pb ac cu mu la tion rate (AR in mg m–2 y–1) ac cord ing to the for mula:

AR=c b´ ´ar´10

where: c – the con cen tra tion of the el e ment mea sured in mg kg–1, b – the bulk den sity of peat in g cm–3 ; ar – ac cu mu la tion rate of peat in cm y–1.

A peat core was di vided into sam ples, in tended for dif fer ent anal y ses, and dried di rectly af ter cor ing. This pro ce dure caused

(3)

a lack of fresh peat ma te rial, so bulk den sity was es ti mated us - ing the data from Ilnicki (1967). The val ues of den sity were in the range of 0.08 to 0.185 g cm–3.

PALAEOBOTANICAL ANALYSES BOTANICAL COMPOSITION

The de gree of de com po si tion and the types of peat were re - corded in 12 sam ples from dif fer ent depths, us ing stan dard meth od ol ogy (Maciak and Liwski, 1996; Maksimow, 1965;

Myœliñska, 2001; Tobolski, 2000). Mi cro scopic anal y sis (PN-G-04595, 1997) was used to de ter mine bo tan i cal com po si - tion, us ing com par a tive sam ples and lit er a ture (Kac et al., 1977;

Tobolski, 2000; Mauquoy and Van Geel, 2007). The sam ples were washed on a 0.2 mm sieve and each sam ple was di vided into 3 slides, which were ana lysed un der a mi cro scope at mag - ni fi ca tion 100–400´. Ty po logi cal units of peat were de fined us - ing the ge netic clas si fi ca tion of To³pa et al. (1967). The types of gyttja were de fined us ing the clas si fi ca tion of Ilnicki (2002). The

anal y ses were per formed at the De part ment of Land Rec la ma - tion and En vi ron men tal De vel op ment, at the Uni ver sity of Ag ri - cul ture in Kraków.

POLLEN ANALYSIS

Twenty-nine 1 cm3 sam ples from JB-1 were taken at res o lu - tions of 2 cm (from the top to 35 cm depth) and 10 cm (from 35 to 315 cm depth). The ma te rial was mac er ated in HF for 10 days, then washed in 10% HCl and dis tilled wa ter. Next, the sam ples were boiled in 10% KOH so lu tion in a wa ter bath and then treated with acetolysis, us ing stan dard meth od ol ogy (F³gri and Iversen, 1989). Two Lycopodium tab lets pro duced by the De part ment of Qua ter nary Ge ol ogy, the Uni ver sity in Lund (Batch No. 483216) were added to the sed i ment in or der to en able the pol len con cen tra tion to be cal cu lated (Stockmarr, 1971). The sam ples were not sub jected to a dye ing pro cess.

Mi cro scopes (Nikon Eclipse E200 and Zeiss Axio Im age A2 with Nomarski’s con trast) were used at 400´ to count at least 1000 ar bo real pol len grains. Non-ar bo real pol len and non-pol - Fig. 1A–C – site lo ca tion (vil lages lo ca tion dates af ter Jost and Paulo, 1985; Jost, 2004)

(4)

len palynomorphs – mostly fun gal spores and mi cro scopic char coal par ti cles – were also counted. Sporomorphs were counted on the whole sur face of the slide. The col lec tion of ref - er ence slides at the De part ment of Ge ol ogy and Palaeo ge ogra - phy of Szczecin Uni ver sity were used to iden tify the sporomorphs. Ref er ence books and il lus trated hand books were also used (e.g., F³gri and Iversen, 1989; Moore et al.

1991; Beug, 2004). The no men cla ture of palynological taxa was adopted ac cord ing to the Pol ish Palynological Da ta base.

The pol len anal y sis re sults are pre sented in the form of per - cent age di a grams de vel oped in POLPAL 2004 soft ware, ver.

2011.11 (Walanus and Nalepka, 2004). The ba sis of the per - cent age cal cu la tion is the sum of AP + NAP; AP com prises pol - len grains of all trees and shrubs, while NAP in cludes sporomorphs of ter res trial herbs, i.e. graminides. In gen eral, pol len of limnophytes and telmatophytes are not in cluded in the cal cu lated sum. Palynological anal y sis was per formed at the Ge ol ogy and Palaeo ge ogra phy Unit in the Fac ulty of Geosciences at the Uni ver sity of Szczecin.

GEOCHEMICAL ANALYSIS ELEMENTAL CONCENTRATIONS

The con cen tra tions of se lected ma jor and trace el e ments (Na, K, Ca, Mg, Fe, Mn, Cu, Zn, Pb, Ni, and Cr) were mea sured in 48 peat sam ples. Ev ery sam ple con sisted of about 1 g of man u ally ground peat. The sam ples were ho mog e nized and thor oughly dried at 105°C. Next, the sam ples were combusted at 550°C for 5 hours to re move or ganic mat ter, and then di - gested in 8 ml of 65% HNO3, 2 ml of 10% HCl, and 2 ml of 30%

H2O2 in in di vid ual PTFE vi als. Af ter wards they were put into a mineralizer for 1 hour. Af ter min er al iz ing, the sam ples were trans ferred into poly propy lene beak ers and di luted to 50 ml with de-ion ized wa ter. The con cen tra tions of ma jor and trace el e - ments were mea sured us ing atomic ab sorp tion spec trom e try (AAS). Whole chem i cal prep a ra tion and mea sure ments were per formed in the Geo chem i cal Lab o ra tory at the Fac ulty of Geosciences of the Uni ver sity of Szczecin, Po land. The rou tine meth od ol ogy of the lab o ra tory was used. The geo chem i cal zones from the JB-1 core were dis tin guished us ing multivariate sta tis ti cal anal y sis with clus ter anal y sis from the PAST soft ware (Ham mer et al., 2001).

Pb ISOTOPES

Thirty sam ples from JB-1 were se lected to mea sure their ra - tios of sta ble lead iso topes. The sam ples were dried, ho mog e - nized, and ground in an au to matic ag ate mor tar. Af ter dry ing (105°C, 12 h) the sam ples were combusted (550°C, 5h), dis - solved in a mix ture of 1ml of 14 N HNO3 and 4 ml of 22 N HF at 125°C for 48 h in a lam i nar flow clean air cab i net. Af ter dry ing, the sam ples were dis solved again in 2 ml of 6 N HCl and 2 ml of 14 N HNO3 at 125°C to evap o ra tion. The sep a ra tion of Pb, us ing ex - change mi cro-col umns filled with pre-con di tioned AG1-X8 an - ionic resin, was per formed ac cord ing to the pro to col of Weis et al.

(2005). The chem i cal prep a ra tion was car ried out at the De part - ment of Ge ol ogy of the Uni ver sity of LiÀge in Bel gium. Pb iso to - pic mea sure ments were per formed us ing multi-col lec tor in duc - tively cou pled plasma mass spec trom e try, Nu plasma (MC-ICP-MS) at the De part ment of Earth and En vi ron men tal Sci ences at the Free Uni ver sity of Brussels, Bel gium.

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 571

Fig. 2. The thick ness of the Otrêbowskie Brzegi peatland

(5)

RESULTS

AGE-DEPTH MODEL

The re sults of ra dio car bon dat ing are shown in Ta ble 1. The age-depth model de rived is shown in Fig ure 3. The chro nol ogy of the up per 16.5 cm of the core is very well-de fined by nine

210Pb dates and one 14C date. It cov ers a time span from

~1890 AD to the pres ent. The 14C date from a depth of 9 cm is in agree ment with 210Pb dates. The first 14C date be low that part of the chro nol ogy (from 19 cm depth) is much older (605–680 AD;

95.4% con fi dence in ter val) than the last 210Pb date (from 16.5 cm). It shows that a hi a tus oc curs at a depth of 17–18 cm.

The re main ing dates, down to the bot tom of the peat pro file, lo - cated at 285 cm depth and dated at 2250 BC ± 120 yrs, pres ent an un dis turbed strati graphic or der. The last sam ple at 288 cm (dated at 4370–3985 BC) is a gyttja sam ple older than the bot - tom of the peat pro file. This dif fer ence may be caused by an ag - ing ef fect. A res er voir ef fect is highly prob a ble be cause the bot - tom sam ple is a lake sed i ment-or ganic gyttja (see Ta ble 2); in - ter pre ta tion of the bot tom part should with cau tion. The to tal agree ment in dex of the model is al most 60%, suf fi cient to con - sider the model re li able.

PALAEOBOTANICAL DATA

The anal y sis of bo tan i cal macrofossils dem on strates the oc cur rence of nu mer ous Carex and Sphag num re mains (Ta -

ble 2). This bo tan i cal com po si tion is char ac ter is tic of poor fens.

The lower parts of the JB-1 pro file (220–280 cm) con tain Alnus re mains, char ac ter is tic of fen peat. The low est parts of the pro - file (286–293 cm) con sist of or ganic and clay gyttja, which in di - cates a lac us trine or i gin of the Otrêbowskie Brzegi peatland. A part of the peatland, from which the JB-1 core was taken, was clas si fied as a Rheic Hemic Histosol (Dystric), ac cord ing to in - ter na tional soil clas si fi ca tion (WRB).The palynological di a gram (Fig. 4) re veals the main taxa in the Otrêbowskie Brzegi peatland. It shows chang ing trends in the com po si tion of AP and NAP. Four lo cal pol len as sem blage zones (LPAZ) are char - ac ter ized in Ta ble 3.

GEOCHEMICAL ANALYSIS

The geo chem i cal anal y sis showed vari abil ity of both the el e - ments mea sured and geo chem i cal in di ces (Fig. 5). The high est con cen tra tion of Pb is also re flected in the cal cu lated ac cu mu la - tion rate for this el e ment (Fig. 6).

Us ing the PAST soft ware (Ham mer et al., 2001) three zones with ad di tional sub-zones were dis tin guished in the peat pro file:

– GZ1 (321–212 cm); from 4370–3985 BC to 1510–1325 BC. This zone was di vided into two sub-zones:

a. 321–279 cm; from 4370–3985 BC to 2430–1970 BC;

this zone cov ers gyttja de pos its and the low est part of the peat pro file. At the bot tom of this zone the con tent of or ganic mat ter (OM) reaches its low est value (about Lab code Depth

[cm]

Con ven tional 14C age/ra dio ac tiv ity

[BP/ pMC]

Mod elled age range 68.2%

[cal BC/AD]

Mod elled age range 95.4% [cal BC/AD]

GdA-5222 9 136.81 ± 0.36 1958–1964 AD 1958–1958 AD (91.4%)

1974–1977 AD (4.0%)

GdA-5223 19 1370 ± 30 635–670 AD 605–680 AD

GdA-5224 27 1615 ± 30 505–540 AD 485–550 AD

GdS-3479 37 1510 ± 55 425–475 AD 410–500 AD

GdS-3562 53 1650 ± 50 255–300 AD (37.0%)

325–365 AD (31.2%) 245–395 AD

GdS-3563 73 1895 ± 50 20–115 AD 40 BC–145 AD

GdS-3530 98 2510 ± 55 460–405 BC 520–395 BC

GdS-3569 125 2490 ± 55 760–640 BC 790–590 BC

GdS-3480 164 2935 ± 60 1120–1015 BC 1180–970 BC

GdS-3570 189 3045 ± 50 1320–1230 BC 1380–1195 BC

GdS-3526 213 3150 ± 50 1505–1430 BC 1605–1580 BC (1.8%)

1545–1385 BC (93.6%)

GdS-3531 254 3570 ± 55

2015–1995 BC (4.2%) 1985–1870 BC (59.6%)

1845–1825 BC (4.4%)

2035–1770 BC

GdS-3396 288 5385 ± 90

4335–4220 BC (36.3%) 4210–4160 BC (13.7%) 4135–4065 BC (18.2%)

4370–3985 BC

lab codes GdA – AMS method, lab codes GdS – LSC method

T a b l e 1 Re sults of 14C anal y sis, 14C data were used to con struc tion of an age-depth model, us ing

OxCal soft ware (Bronk Ramsey and Lee, 2013) with the cal i bra tion data set of IntCal13 (Reimer et al., 2013) and Bomb13 NH1 cal i bra tion curves (Hua et al., 2013)

(6)

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 573

Fig. 3. Age-depth model of the JB-1 core

(7)

T a b l e 2 Otrêbowskie Brzegi – re sults of bo tan i cal anal y sis

Peat spe cies were clas si fied ac cord ing to To³pa et al. (1967) and gyttja as per Ilnicki (2002); de gree of de com po si tion (D) was de ter - mined ac cord ing to Pol ish Stan dard (PN-G-04595, 1997)

(8)

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 575

eroc 1-BJ eht fo mar g aid lacigolonylaP .4 .giF

(9)

2%), then in creases up to about 70%. K, Mg, Fe and Cr reach their high est val ues (5131.6, 7458.4, 18,182.6 and 38.2 µg g–1, re spec tively). The con tent of Ca is low at the bot tom of the zone (133.2 µg g–1), then in creases rap idly up to over 11,000 µg g–1 at the sub-zone bound - ary. In this sub-zone the Na/K ra tio in creases rap idly and reaches its high est value at 285 cm (1.6).

b. 279–212 cm; from 2430–1970 BC to 1510–1325 BC; in this sub-zone the con tent of OM in creases from ~70%

to 93%. The con cen tra tions of all mea sured el e ments de crease.

– GZ2 (212–6 cm); from 1510–1325 BC to 1960–1990 AD, was di vided into three sub-zones:

a. 212–105 cm; from 1510–1325 BC to 465–540 AD; this sub-zone is char ac ter ized by a high con cen tra tion of OM (>93%). Con cen tra tions of Ca, Fe, and Mn de - crease, while con cen tra tions of heavy met als (Cu, Zn, Pb and Cr) slightly in crease. There is a dis tinct peak of Cu at 129 cm (52 µg g–1). The Cu/Zn ra tio reaches its high est value in this zone (6.3).

b. 105–49 cm; from 465–540 AD to 275–425 AD; in this sub-zone the con cen tra tion of OM is high and rather sta ble – only small vari a tions, be tween 95 and 97%, oc - cur. The con cen tra tions of Cu, Zn, and Pb still in crease, while the con tents of Ca, Fe, and Mn de crease slightly.

c. 49–6 cm; from 275–425 AD to 1965–1985 AD – the de - pos its of this sub-zone are char ac ter ized by de creas ing con cen tra tions of OM (down to 90%). The con cen tra - tions of Na, K, Ca, Mg, Fe, Zn, and Pb in crease and Pb

con tent reaches its high est value (102.6 µg g–1). The Fe/Mn ra tio in creases, and it is very high at the bound - ary be tween GZ2 and GZ3 (~9000, while the av er age value for the whole core is about 200). In this sub-zone a hi a tus oc curs. The in creased con cen tra tions of metal el - e ments, to gether with in creased con tent of min eral mat - ter, may be an ef fect of de com po si tion of or ganic mat ter.

– GZ3 (6–0 cm); from 1960–1990 AD to 2016 AD; this zone re flects mod ern times, ca. the past 40 years. It is char ac ter ized by in creas ing con tent of OM (up to over 95%), Ca, Mg, Mn, Cu, Zn, and Ni and de creas ing con - cen tra tions of Pb. The con cen tra tions of Na, Mn, Cu, Zn, and Ni are the high est of those in the en tire core, reach - ing 617.1, 881, 139.2, 403.6 and 186.8 µg g–1, re spec - tively).

Pb ISOTOPIC COMPOSITION

The lead iso to pic com po si tion is re ported in Ta ble 4. The val ues of 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb ra tios in the deep est part of the peat core (283 cm) are 38.9863 ± 0.0028 (max i mum value), 15.6997 ± 0.0010 and 19.1401 ± 0.0012, re - spec tively. The val ues of 207Pb/204Pb, and 206Pb/204Pb ra tios slightly in crease with de creas ing depth in the lower part of the core (be tween ~4200 BC and 1530 BC) and reach their max ima at a depth of 219 cm: 15.7115 ± 0.0007 and 19.2225 ± 0.0008, re spec tively. The value of the 208Pb/204Pb ra tio gen er ally de - creases up wards along the core. From about 23 cm depth (~580 AD) the val ues of all mea sured Pb ra tios (208Pb/204Pb, Lo cal

PAZ Name of PAZ Depth

[cm] Approx ages

BC/AD De scrip tion of pol len spec tra

JB-1-1 Pinus–Alnus 300 4200 BC

Curves of Pinus rel a tively sta ble with high value 45%;

Betula in crease; Corylus and Tilia sta ble rep re sented by low val ues;

Alnus de crease (mean. 14%, max. 16%); Poaceae max 3%, Ar te mi sia less than 1%;

High value of Polypodiaceae curve (14%);

JB-1-1/JB-1-2 limit Pinus and de crease, Picea in crease

JB-1-2 Picea–Carpinus–Poaceae 250 1870 BC

Quercus, Fraxinus, Carpinus, Abies, Fagus curves ap pears;

High per cent age of Pinus (mean. 11%, max. 28%); Betula in crease (max. 11%); Corylus sta ble with value be tween 1 and 4%;

Picea curve re mains high (38%) sim i lar to Poaceae (10%); Carpinus is rep re sented by high val ues (5%);

Sphag num curve ris ing and later dom i nates in di a gram sim i lar to Cyperaceae;

Plantago lanceolata curve ap pears;

JB-1-2/JB-1-3 limit Betula and Fagus in crease, Pinus de crease

JB-1-3 Betula–Fagus–Abies 36 460 AD

Pinus de crease, Betula curve rises to 15%;

In creas ing val ues of Corylus and Alnus;

Ulmus and Tilia are rep re sented in low per cent age; rel a tively sig nif i cant pro por tion of Abies;

Picea val ues be tween 11 and 26%; high per cent ages of Poaceae (11%);

Curves of crops, cul ti vated plants and field weeds ap pear;

Amount of char coal par ti cles rise max. 26%;

Curves of Telmatophytes and Limnophytes ap pear, with max i mum of Menyantes tri foli ata (5%);

JB-1-3/JB-1-4 limit in crease of Pinus and Picea

JB-1-4 Pinus–Picea–Calluna 10 1945 AD

Dra matic in crease of Pinus (max. 54%);

curve fluc tu a tions of Betula, Corylus and Alnus;

Picea rise to 13%; con tin u ous curve of Atremisia;

Sharp in crease of Calluna with max. 55%;

Typha is rep re sented at high per cent age 9%;

Poaceae pol len val ues be tween 3 and 6%.

T a b l e 3 Char ac ter is tics of lo cal pol len as sem blage zones (LPAZ)

(10)

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 577

Fig. 5. Con cen tra tions of se lected el e ments, ob tained by AAS anal y sis, con tents of or ganic mat ter and geo chem i cal in di ces d.m. – dry mass, GZ – geo chem i cal zone

(11)

207Pb/204Pb and 206Pb/204Pb) start to de crease more rap idly and at about 6 cm depth (1975 AD) they reach their min ima:

38.1947 ± 0.0021, 15.6128 ± 0.0007 and 18.2467 ± 0.0008, re - spec tively. This stra tum is also the bound ary be tween GZ2 and GZ3. Then, to wards the sur face (1 cm depth, pres ent), the val - ues of 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ra tios in crease, reach ing 38.2642 ± 0.0015, 15.6260 ± 0.0006 and 18.3315 ± 0.0007, re spec tively.

These vari a tions clearly co in cide with changes in the Pb con cen tra tion. The bi nary di a gram 208Pb/206Pb vs. 206Pb/207Pb, shown in Fig ure 7A, is help ful in de ter min ing the or i gin of lead in the Otrêbowskie Brzegi peatland. It in cludes the iso to pic ra tios of 29 peat sam ples, as well as the data from Puœcizna Ma³a and Puœcizna Krauszowska peatlands (Fia³kiewicz-Kozie³ et al., 2018) and from S³owiñskie B³oto peatland (De Vleeschouwer, et al., 2009). The di a gram in Fig ure 7B shows the sam ples from Otrêbowskie Brzegi, grouped by age, with re spect to the Pb iso - to pic ra tios of up per con ti nen tal crust (UCC, data from Millot et al., 2004) and mod ern in dus trial aero sols (Bollhöfer and Rosman, 2001).

Fig ure 8 shows the re la tion be tween Pb con cen tra tion (see Fig. 5) and iso to pic com po si tion (Ta ble 4), in or der to doc u ment any changes in 206Pb/207Pb cor re spond ing to Pb con tam i na tion.

The in crease in Pb con tam i na tion is strongly as so ci ated with an in crease in the iso to pic ra tio (R2 = 0.9367).

DISCUSSION

Palynological data and bo tan i cal macrofossils an a lyzes showed that the de vel op ment of the peatland is strongly marked through the well-de fined pres ence of Sphag num and Carex. There are no tice able changes in the spe cies com po si - tion of tree stands from the deep est lay ers to ward the sur face with prox im ity to the more open ar eas. The be gin ning of the peatland de vel op ment (fen-type) is vis i ble ~2150 BC (Fig. 9).

Then, the con tent of Sphag num in creased up to its max i mum

~1120 BC, when the peatland evolved into a raised bog. Next, the con tent of Sphag num de creased down to a min i mum at 100 cm depth (460 BC), which oc curred si mul ta neously with a max i mum of AP. At that time, the PAR and PbAR slowed down.

From ~840 BC the first slight in creases in Zn, Pb, and other heavy metal con cen tra tions were ob served. In that pe riod, a de - crease in AP and in crease of Cyperaceae is observeable, which sug gests some nat u ral pro cesses lead ing to de for es ta - tion and ex po sure of the area to in creased con tam i na tion from the at mo sphere. At that level, slight changes in Pb iso to pic com po si tion are vis i ble. The next lo cal min i mum of AP, with co-oc cur rence of an in crease in Sphag num, is vis i ble at about 70 cm depth (~100 AD). From that point, an in crease in Pb con - cen tra tion is pro nounced. That peat layer cor re sponds to the be gin ning of the Ro man Pe riod, so changes in chem i cal com - po si tion may be sus pected to have an anthropogenic or i gin.

This sup po si tion is sup ported by changes in Pb iso to pic com po - si tion. Ad di tion ally, the ap pear ance of Plantago lanceolata at the BC/AD bound ary sug gests graz ing, thus the changes may be con nected with de for es ta tion. Be tween 70 and 45 cm depth (100–380 AD) a vis i ble change in lead iso to pic com po si tion oc - curs, with co-oc cur rence of an in crease of lead con cen tra tion.

These changes are ob vi ously as so ci ated with hu man ac tiv ity.

The near est Zn-Pb ore de posit that could be a source of Pb in JB-1 is in the Olkusz re gion. It is lo cated ~100 km to the north of the Orava-Nowy Targ Ba sin. The val ues of the 206Pb/207Pb ra tio in JB-1 in the Ro man Pe riod range be tween 1.194–1.206; cor - re spond ing val ues for ga lena (Pb ore) from the Olkusz re gion range be tween 1.177–1.179 (De Vleeschouwer, 2009), and for peat from the Wolbrom mire be tween 1.174–1.183 (Pawe³czyk et al., 2018a). These find ings sug gest that ores from the Olkusz re gion could not be the only source of Pb in JB-1. An other pos - si ble source could be min ing ac tiv ity in the Carpathian re gion, which started in the Ro man Pe riod (Borcoº and Udubaºa, 2012). Be tween 405 and 585 AD a vis i ble in crease in

206Pb/207Pb ra tio was no ticed. This is con nected with the Great Mi gra tion Time – a pe riod in Eu rope with ex tremely cold cli mate con di tions. Dur ing that time, hu man ac tiv ity de creased. From about 500 AD Calluna vulgaris and Cerealia in co-oc cur rence of char coal re mains are pres ent, which cor re lates with de for es ta - tion, vis i ble in the AP/NAP ra tio. The pres ence of Ledum palustre, Empetrum, Vaccinium and in creas ing value of Typha latifolia in di cates an in crease in hu mid ity. In ter est ingly, while the gen eral di rec tion of his tor i cal set tle ment in Orava-Nowy Targ Ba sin was from the east (see Fig. 1C), the ap pear ance of ce real pol len in Otrêbowskie Brzegi took place a few hun dred years ear lier than in Puœcizna Wielka (see Kr¹piec et al., 2016). About 630 AD (20 cm depth) a sharp in crease of Pb and other heavy metal con cen tra tions in the JB-1 pro file is ob served. That pe riod also showed a be gin ning of rapid changes in lead iso to pic com - po si tion: the 206Pb/207Pb ra tio started to de crease. This change Fig. 6. Pb ac cu mu la tion rate in the JB-1 core

(12)

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 579

Depth [cm]

208Pb/204Pb 2s 207Pb/204Pb 2s 206Pb/204Pb 2s 208Pb/206Pb 2s 206Pb/207Pb 2s

1 38.264153 0.001528 15.626005 0.000610 18.331530 0.000690 2.087357 0.000033 1.173142 0.000015 5 38.194683 0.002120 15.615223 0.000826 18.246696 0.000846 2.093230 0.000048 1.168520 0.000022 7 38.197218 0.00197 15.612814 0.000718 18.252252 0.000844 2.092743 0.000036 1.169056 0.000016 9 38.222210 0.002120 15.614909 0.000838 18.268449 0.001022 2.092295 0.000044 1.169936 0.000017 11 38.256788 0.002220 15.617840 0.000820 18.290690 0.000926 2.091644 0.000039 1.171141 0.000015 13 38.290174 0.001842 15.619256 0.000650 18.314920 0.000752 2.090665 0.000043 1.172586 0.000015 15* 38.364760 0.002080 15.626628 0.000806 18.384243 0.000882 2.086824 0.000032 1.176469 0.000015 15* 38.366522 0.002520 15.628103 0.000918 18.385938 0.001022 2.086763 0.000046 1.176466 0.000015 17 38.500809 0.001478 15.641062 0.000612 18.540347 0.000718 2.076609 0.000036 1.185364 0.000017 19 38.650229 0.001814 15.661787 0.000714 18.709403 0.000842 2.065828 0.000036 1.194589 0.000016 21 38.676215 0.001604 15.665228 0.000658 18.751735 0.000732 2.062504 0.000039 1.197029 0.000017 23 38.791384 0.002200 15.679210 0.000792 18.881939 0.001018 2.054439 0.000039 1.204266 0.000017 25 38.802875 0.001748 15.679784 0.000648 18.897347 0.000866 2.053380 0.000035 1.205205 0.000016 27 38.808430 0.001850 15.681871 0.000718 18.899300 0.000866 2.053450 0.000032 1.205169 0.000014 29 38.798024 0.001398 15.680515 0.000518 18.888424 0.000632 2.054081 0.000035 1.204579 0.000015 31 38.827412 0.001450 15.685340 0.000588 18.920423 0.000708 2.052163 0.000027 1.206249 0.000013 33 38.809449 0.001598 15.681594 0.000638 18.908195 0.000800 2.052556 0.000032 1.205757 0.000014 41 38.812546 0.001980 15.682493 0.000820 18.905009 0.001032 2.053016 0.000030 1.205485 0.000015 45 38.627465 0.001466 15.659862 0.000580 18.693583 0.000684 2.066367 0.000035 1.193726 0.000015 53 38.800763 0.002920 15.679664 0.001010 18.907427 0.001010 2.052136 0.000043 1.205857 0.000016 61 38.797903 0.002240 15.682689 0.000870 18.902045 0.001026 2.052607 0.000033 1.205281 0.000014 69 38.658893 0.002020 15.663161 0.000752 18.748074 0.000862 2.062027 0.000044 1.196953 0.000014 77 38.862397 0.002620 15.690569 0.000950 18.998450 0.001112 2.045606 0.000040 1.210820 0.000017 85 38.866721 0.002220 15.693928 0.000758 19.008371 0.000852 2.044774 0.000041 1.211193 0.000017 113 38.859943 0.002300 15.690284 0.000872 19.023683 0.001002 2.042718 0.000035 1.212450 0.000016 145 38.916753 0.002540 15.700797 0.000886 19.136266 0.001154 2.033678 0.000033 1.218809 0.000014 185 38.944079 0.001486 15.706575 0.000566 19.182106 0.000746 2.030176 0.000033 1.221279 0.000015 219 38.955528 0.001904 15.711526 0.000728 19.222495 0.000832 2.026572 0.000040 1.223465 0.000018 249 38.938959 0.002140 15.705576 0.000874 19.179028 0.001068 2.030290 0.000030 1.221160 0.000014 283 38.986251 0.002840 15.699702 0.000982 19.140067 0.001174 2.036933 0.000038 1.219136 0.000016

* – rep li cates

T a b l e 4 Lead iso tope quo tients of sam ples from the JB-1 core with 2s un cer tainty

(13)

Fig. 7. 208Pb/206Pb ver sus 206Pb/207Pb di a grams

A – peat sam ples from Otrêbowskie Brzegi (this work), 14 sam ples from Puœcizna Ma³a, 10 sam ples from Puœcizna Krauszowska (Fia³kiewicz-Kozie³ et al., 2018) and 12 sam ples from S³owiñskie B³oto (De Vleeschouwer et al., 2009); B – peat sam ples from Otrêbowskie Brzegi dis tin guished on the ba sis of geo chem i cal zones (GZ 1–3), mod ern ur ban air borne par ti cles from Eu rope (Bollhöfer and Rosman, 2001) and Up per Con ti nen tal Crust (UCC) (Millot et al., 2004); the er ror bars are neg li gi ble

(14)

is con nected with a strong anthropogenic im pact, i.e. min ing, smelt ing, coal com bus tion, etc. Sim i lar changes have been no - ticed in other peatlands in the Orava–Nowy Targ Ba sin, in clud - ing Puœcizna Ma³a and Puœcizna Krauszowska at a sim i lar time (606 AD in Puœcizna Ma³a and 625 AD in Puœcizna Krauszowska; Fia³kiewicz-Kozie³ et al., 2018). A lo cal min i mum of Sphag num is also vis i ble. From that time the level of AP de - creased rap idly, a likely ef fect of de for es ta tion and ag ri cul tural cul ti va tion in the neigh bor hood of the peatland. The pres ence of char coal sug gests that for ests were burned to clear ar eas for cul ti va tion. Be tween 640 and 1905 AD there was a pe riod of hi - a tus. At about 10 cm depth (~1945 AD), a max i mum con cen tra - tion of Pb and min i mum of AP were ob served. At that time the pres ence of Erica tetralix is vis i ble. It is a very rare spe cies, oc - cur ring mostly in the north ern part of Po land, so its pres ence in Orava–Nowy Targ Ba sin needs ad di tional re search. It may be an ef fect of an i mal or hu man mi gra tions. This was a time of to tal dis ap pear ance of Sphag num, rep re sent ing the end of peatland de vel op ment, with clear symp toms of anthropogenic des ic ca - tion (changes of LOI, palynological com po si tion). It was the time of max i mum anthropogenic im pact, in clud ing de for es ta tion, ag - ri cul ture, min ing, in dus try, and coal com bus tion. This im pact is also con sis tent with changes in geo chem i cal com po si tion, such as in creases in K and heavy metal con cen tra tions, and in Pb iso to pic ra tios. The 206Pb/207Pb ra tio reaches its min i mum value (1.169) dur ing this pe riod. The de crease may have been in flu - enced by waste in cin er a tors that were built in the Czech Re pub - lic and Slovakia at the be gin ning of the 20th cen tury AD, as well as an in tro duc tion of leaded gas o line. Av er age val ues of the

206Pb/207Pb ra tio for ashes from waste in cin er a tors are 1.14–1.16 (Komárek et al., 2008) and for Pol ish gas o line, 1.174 (Yao et al., 2015). From that time up to the pres ent, the AP con - tent in creases and Pb con tent de creases.

The Pb iso to pic anal y sis sup ported re con struc tion of the lead sources in the peatland. In the bi nary di a gram (Fig. 7B), the sam ples from Otrêbowskie Brzegi are scat tered lin early be - tween nat u ral crust and mod ern ur ban air borne sources, which

sug gests a gen er ally un dis turbed lead sup ply and shows the con tri bu tion of two main sources of lead:

– the first end-point is char ac ter ized by high 206Pb/207Pb (1.224) and low 208Pb/206Pb (2.027) ra tios; its to tal con - cen tra tion of Pb (1.25 µg g–1) cor re sponds to the old est GZ1 sam ples (4200–1460 BC). The first end-point is com pat i ble with a nat u ral crustal source rep re sented by UCC (Millot et al., 2004);

– the sec ond end-point is lo cated on the op po site site of the di a gram and is char ac ter ized by low 206Pb/207Pb (1.169) and high 208Pb/206Pb (2.093) ra tios. At this point the to tal con cen tra tion of Pb is 38.67 µg g–1. This end-point is con nected with the GZ3 and in di cates mod - ern air borne par ti cles as a source of lead pol lu tion in the peat sam ples.

CONCLUSIONS

The pro file JB-1 from Otrêbowskie Brzegi rep re sents the time pe riod from 4200 BC to the pres ent (2016 AD), how ever, the in ter pre ta tion of the old est gyttja sam ple should be qual i fied be cause of a prob a ble ag ing ef fect. In the deep est layer (321–205 cm), which cor re sponds to the pe riod from 4370–3985 BC to 1500–1310 BC, the peat is un dis turbed and no ev i dence of hu man ac tiv ity is ob served. Us ing that layer as a nat u ral back ground al lowed for the re con struc tion of Pb pol lu - tion in this area in the past.

As the Pb iso to pic anal y sis showed, the deep est and old est sam ples are as so ci ated with up per con ti nen tal crust, while the up per part of the core, which cor re sponds to the pe riod from the In dus trial Rev o lu tion to the pres ent, is char ac ter ized by mod ern air borne pol lu tion.

From about 140 cm depth (840 BC) a slight in crease of heavy metal con cen tra tions was noted. Tak ing into ac count the re sults of palynological anal y sis, we in fer that this ef fect was caused by nat u ral pro cesses. How ever, at the same time, Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 581

Fig. 8. 206Pb/207Pb vs. 1/Pb bi nary di a gram, dis tin guish ing the geo chem i cal zones in JB-1, con structed by com bin ing 206Pb/207Pb data from Ta ble 4 with Pb con cen tra tion data (see Fig. 5)

(15)

Fig. 9. Hu man im pact re corded in the Otrêbowskie Brzegi peatland (on the ba sis of pol len anal y sis), in com par i son with other peatlands from the Orava–Nowy Targ Ba sin (Rybnièek and Rybnièkova, 2002; Ko³aczek et al., 2010; Kr¹piec et al., 2016) PW-2 – Puœcizna Wielka; PM – Puœcizna Ma³a; PKra – Puœcizna Krauszowska; OK-1-B – Bobrov; eco nomic ac tiv i ties af ter £ajczak (2016): 1 – set tle ment and ag ri cul ture; 2 – flysch rocks ex trac tion; 3 – cut ting down for ests for pastoralism; 4 – pastoralism; 5 – for estry

and wood man age ment; Ho lo cene chronostratigraphy af ter Starkel et al. (2013), Walker et al. (2018)

(16)

a slight in crease in 208Pb/206Pb ra tio as well as a de crease in

206Pb/207Pb ra tio was ob served, which may re flect some hu man ac tiv i ties, such as smelt ing. The next well-marked changes in chem i cal com po si tion, in clud ing changes in Pb iso to pic ra tios, are con nected with de for es ta tion and graz ing in the Orava–Nowy Targ Ba sin. These ob ser va tions may also re flect some min ing and smelt ing oc cur ring in the Carpathian or Olkusz re gions dur ing the Ro man Pe riod. The in crease of Zn and Pb con cen tra tions, cor re lated with sig nif i cant changes in lead iso to pic com po si tion and the pres ence of Plantago lanceolata, in di cates the ac tiv ity of the Przeworsk Cul ture peo - ple (see Fig. 9). A pe riod of de creased hu man ac tiv ity, sup - ported by Pb iso to pic changes, was no ticed dur ing the Great Mi gra tion Time, be tween the 5th and 6th cen tu ries AD.

The top 30 cm of the pro file (cor re spond ing to a pe riod from

~500 AD to the pres ent), given the pres ence of anthropogenic in di ca tors such as Calluna vulgaris and ce real pol len grains, in - di cates fires/burn ing and hu man ac tiv ity (see Behre, 1981).

Changes in chem i cal com po si tion in di cate that as well. At the end of the hi a tus that oc curred about 1890 AD more rapid in - creases of Pb con cen tra tion and 208Pb/206Pb ra tio were ob - served. That was also a pe riod of an abrupt in crease of PbAR, linked to in ten sive hu man ac tiv i ties such as coal com bus tion, waste in cin er a tion, and smelt ing dur ing the in dus trial pe riod, and also to the in tro duc tion of leaded gas o line. The max i mum of lead con cen tra tion oc curred about 1960 AD as a di rect ef fect of fuel com bus tion (leaded gas o line) and in ten si fied in dus try af - ter the Sec ond World War. Af ter 1970, the level of Pb pol lu tion de creased, con sis tent with the with drawal of leaded gas o line.

From the sec ond half of the 20th cen tury AD, the peatland de te - ri o rated and be came over grown by trees.

The geo chem i cal pat tern of the Otrêbowskie Brzegi peatland as well as its lead iso to pic com po si tion dur ing the 19th and 20th cen tu ries is sim i lar to that of other peatlands from the Orava–Nowy Targ Ba sin, i.e. Puœcizna Krauszowska and Puœcizna Ma³a. The pat terns, how ever, dif fer in ear lier pe ri ods.

While there was a hi a tus in JB-1, dis tur bances were ob served

in the other two peatlands (see Fia³kiewicz-Kozie³ et al., 2018).

In com par i son to the S³owiñskie B³oto peatland, dif fer ences in lead iso to pic com po si tion are ap par ent, es pe cially in the top lay ers of the pro files, where re gional pol lu tion is more pro - nounced.

Be cause of a hi a tus in the pro file, in ter pre ta tion of the por - tion be tween 19 and 16 cm depth (640–1890 AD) should be made with cau tion. The max ima of heavy metal con cen tra tions were found im me di ately af ter the hi a tus, which is why we in fer that the hi a tus was caused by des ic ca tion of the peatland and de com po si tion of peat.

This work shows the use ful ness of peatlands, in clud ing poor fens, as nat u ral ar chives of palaeoenvironmental in for ma - tion, es pe cially in terms of anthropogenic in flu ence. Our re sults com ple ment re search on old min ing and met al lurgy in Cen tral Eu rope, in di cat ing peaks in metal pro duc tion over some time pe ri ods, dur ing which pro duc tion was thought to be low. How - ever, the anal y ses should be viewed with cau tion for the por tion of the pro file cor re spond ing to the hi a tus. Lead con cen tra tions and sta ble lead iso topes are very help ful tools in re con struc tion of anthropogenic at mo spheric con tam i na tion in the past, at both lo cal and re gional scales.

Ac knowl edg ments. Work re lated to the mea sure ment of lead iso topes was funded by the Wal loon Re gion un der the frame work of the MSWiA and WBI – bi lat eral agree ments be - tween Po land and Bel gium (WBI 2017-2019; PI: N. Fagel, B. Sensu³a). F.P. would like to thank peo ple from the Uni ver sity of LiÀge: J. Ottën for his as sis tance and help dur ing chem i cal prep a ra tion and M. Allan for help ful con sul ta tions and ad vice.

The au thors would like to ac knowl edge N. Mattielli and the work ers from the ULB G-Time Lab o ra tory for ICP-MS anal y ses.

We would like to thank the two re view ers for care ful read ing of our manu script. Their con struc tive com ments and sug ges tions helped to im prove the qual ity of this manu script. We would also like to thank the Ed i tor-in-Chief of the jour nal, Prof. M. Kr¹piec, for thor ough ed i to rial han dling.

REFERENCES

Bar ber, K.E., Cham bers, F.M., Maddy, D., 2003. Ho lo cene palaeoclimates from peat stra tig ra phy: macrofossil proxy cli - mate re cords from three oce anic raised bogs in Eng land and Ire - land. Qua ter nary Sci ence Re views, 22: 521–39.

Behre, K.E., 1981. The in ter pre ta tion of anthropogenic in di ca tors in pol len di a grams. Pol len et spores, 23: 225–245.

Beug, H.J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende (Guide to pol len iden ti fi ca tion for Cen tral Eu - rope and ad ja cent ar eas) (in Ger man). VerlBag Dr. Friedrich Pfeil, München.

Bollhöfer, A., Rosman, K.J.R., 2001. Iso to pic source sig na tures for at mo spheric lead: the North ern Hemi sphere. Geochimica et Cosmochimica Acta, 65: 1727–1740.

Borcoº, M., Udubaºa, G., 2012. Chro nol ogy and char ac teri sa tion of min ing de vel op ment in Ro ma nia. Ro ma nian Jour nal of Earth Sci ences, 86: 17–26.

Bronk Ramsey, C., Lee, S., 2013. Re cent and Planned De vel op - ments of the Pro gram OxCal. Ra dio car bon, 55: 720–730.

Bronk Ramsey, C., 2017. Oxcal soft ware ver sion 4.3.2.

http://c14.arch.ox.ac.uk/oxcal/OxCal.html

Coggins, A.M., Jennings, S.G., Ebinghaus, R.,2006. Ac cu mu la - tion rates of the heavy met als lead, mer cury and cad mium in

ombrotrophic peatlands in the west of Ire land. At mo spheric En - vi ron ment, 40: 260–278.

De Vleeschouwer, F., Fagel, N., Cheburkin, A., Pazdur, A., Sikorski, J., Mattielli, N., Renson, V., Fialkiewicz, B., Piotrowska, N., Le Roux, G., 2009. Anthropogenic im pacts in North Po land over the last 1300 years – a re cord of Pb, Zn, Cu, Ni and S in an ombrotrophic peat bog. The Sci ence of the To tal En vi ron ment, 407: 5674–5684.

De Vleeschouwer, F., Cham bers, F.M., Swin dles, G.T., 2010. Cor - ing and sub-sam pling of peatlands for palaeoenvironmental re - search. Mires and peat, 7.

Dyakowska, J., 1928. Historia torfowiska „Na Czerwonem” pod Nowym Targiem w œwietle analizy py³kowej (in Pol ish).

Sprawozdanie Komisji Fizjograficznej Polskiej Akademii Umiejêtnoœci, 63: 128–150.

F³gri, K., Iversen, J., 1989. Text book of Pol len Anal y sis. John Wiley & Sons, Chichester-New York-Bris bane-To ronto-Sin ga - pore.

Fia³kiewicz, B., Œmieja-Król, B., Sikorski, J., Palowski, B., 2008.

The minerotrophic peat bog “Bagno Bruch” as a po ten tial ar - chive of past changes in heavy metal con cen tra tions. Pro ceed - ings of the 13th In ter na tional Peat Con gress, Af ter Wise Use – Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 583

(17)

The Fu ture of Peatlands, 2: 13–16. The In ter na tional Peat So ci - ety, Tullamore.

Fia³kiewicz-Kozie³, B., Œmieja-Król, B., Palowski, B., 2011.

Heavy metal ac cu mu la tion in two peat bogs from South ern Po - land. Studia Quaternaria, 28: 17–24.

Fia³kiewicz-Kozie³, B., Ko³aczek, P., Piotrowska, N., Michczyñski, A., £okas, E., Wachniew, P., Woszczyk, M., Sensu³a, B., 2014a. High-res o lu tion age-depth model of a peat bog in Po land as an im por tant ba sis for paleoenvironmental stud ies. Ra dio car bon, 56: 109–125.

Fia³kiewicz-Kozie³, B., Œmieja-Król, B., Piotrowska, N., Sikorski, J., Ga³ka, M., 2014b. Car bon ac cu mu la tion rates in two poor fens with dif fer ent wa ter re gimes: In flu ence of anthropogenic im - pact and en vi ron men tal change. The Ho lo cene: 1–11 (pub - lished on line be fore print).

Fia³kiewicz-Kozie³, B., Ko³aczek, B., Michczyñski, A., Piotrowska, N., 2015. The con struc tion of a re li able ab so lute chro nol ogy for the last two mil len nia in an anthropogenically dis - turbed peat bog: lim i ta tions and ad van tages of us ing a ra dio-iso - to pic proxy and age-depth mod el ling. Qua ter nary Geo chron ol - ogy, 25: 83–95.

Fia³kiewicz-Kozie³, B., De Vleeschouwer, F., Mattielli, N., Fagel, N., Palowski, B., Pazdur, A., Smieja-Król, B., 2018. Re cord of Anthropocene pol lu tion sources of lead in dis turbed peatlands from South ern Po land. At mo spheric En vi ron ment, 179: 61–68.

Hájková, P., Grootjans, A., Lamentowicz, M., Rybníèková, E., Madaras, M., Opravilová, V., Mi chae lis, D., Hájek, M., Joosten, H., Wolejko, L., 2012. How a Sphag num fuscum-dom i nated bog changed into a cal car e ous fen: the unique Ho lo cene his tory of a Slo vak spring-fed mire. Jour nal of Qua ter nary Sci ence, 27: 233–43.

Ham mer, O., Harper, D.A.T., Ryan, P.D., 2001. PAST:

Paleontological sta tis tics soft ware pack age for ed u ca tion and data anal y sis. Palaeontologia Electronica, 4: 1–9.

Hansson, S.V., Claustres, A., Probst, A., De Vleeschouwer, F., Baron, S., Ga lop, D., Mazier, F., Le Roux, G., 2017. At mo - spheric and terrigenous metal ac cu mu la tion over 3000 years in a French moun tain catch ment: Lo cal vs dis tal in flu ences.

Anthropocene, 19: 45–54.

Ho³yñska, B., Ostachowicz, B., Ostachowicz, J., Samek, L., Streli, C., Wachniew, P., Wêgrzynek, D., 1998. Zmiany stê¿enia metali ciê¿kich w torfie z Puœcizny Rêkowiañskiej (in Pol ish). Krajowe Sympozjum „Technika w przemyœle, medycynie, rolnictwie i ochronie œrodowiska”, Kraków:

135–140.

Hua, Q., Barbetti, M., Rakowski, A.Z., 2013. At mo spheric ra dio - car bon for the pe riod 1950–2010. Ra dio car bon, 55: 2059–2072.

Ilnicki, P., 1967. Kurczliwoœæ torfów w czasie suszenia w zale¿noœci od ich struktury i w³aœciwoœci fizycznych (in Pol ish). Zeszyty Problemowe Postêpów Nauk Rolniczych, 76: 197–311.

Ilnicki, P., 2002. Torfowiska i Torf (in Pol ish). Wydawnictwo AR, Poznañ.

Jamrichová, E., Hájková, P., Horsák, M., Rybníèková, E., Lacina, A., Hájek, M., 2014. Land scape his tory, cal car e ous fen de vel - op ment and his tor i cal events in the Slo vak East ern Carpathians. Veg e ta tion his tory and archaeobotany, 23:

497–513.

Jost., H., 1962. O górnictwie i hutnictwie w Tatrach Polskich (in Pol - ish). Wydawnictwa Naukowo Techniczne.

Jost., H., 2004. Dzieje górnictwa i hutnictwa w Tatrach Polskich (in Pol ish). Towarzystwo Muzeum Tatrzañskiego im. Dra Tytusa Cha³ubiñskiego, Zakopane.

Jost, H., Paulo, A., 1985. Z³o¿a dawne, górnictwo i przemys³ (in Pol ish). In: At las Tatrzañskiego Parku Narodowego. Praca zbiorowa. Tatrzañski Park Narodowy, Polskie Towarzystwo Przyjació³ Nauk o Ziemi, Zakopane-Kraków.

Kabata-Pendias, A., 2011. Trace el e ments in soils and Plants.

Fourth edi tion. CRC Press, Boca Raton.

Kac, N.J., Kac, S.W., Skobiejewa, E., 1977. At las rastityelnykh ostatkov w torfakh (in Rus sian). Nedra, Moskwa.

Ko³aczek, P., Fia³kiewicz-Kozie³, B., Karpiñska-Ko³aczek, M., Ga³ka, M., 2010. The last two mil len nia of veg e ta tion de vel op -

ment and hu man ac tiv ity in the Orawa-Nowy Targ Ba sin (south-east ern Po land). Acta Palaeobotanica, 50: 133–148.

Komárek, M., Ettler, V., Chrastný, V., Mihaljeviè, M., 2008. Lead iso topes in en vi ron men tal sci ences: a re view. En vi ron ment in - ter na tional, 34: 562–577.

Koperowa, W., 1962. The his tory of Late Gla cial and Ho lo cene veg - e ta tion in Nowy Targ Ba sin. Acta Paleobotanica Polonica, 2:

30–75.

Kr¹piec, M., Margielewski, W., Korzeñ, K., Szychowska- Kr¹piec, E., Nalepka, D., £ajczak, A., 2016. Late Ho lo cene palaeoclimate vari abil ity: the sig nif i cance of bog pine dendrochronology re lated to peat stra tig ra phy. The Puœcizna Wielka raised bog case study (Orawa–Nowy Targ Ba sin, Pol ish In ner Carpathians). Qua ter nary Sci ence Re views, 148:

192–208.

Lipka, K., Zaj¹c, E., 2014. Stratygrafia torfowisk Kotliny Orawsko-Nowotarskiej (in Pol ish). Art-Tekst, Kraków.

Longman, J., Veres, D., 2016. Base metal pol lu tion as a re sult of his tor i cal ore smelt ing in the Ro ma nian Carpathians through out the Ho lo cene. GEOREVIEW: Sci en tific An nals of Stefan cel Mare Uni ver sity of Suceava. Ge og ra phy Se ries, 26: 53.

Longman, J., Ersek, V., Veres, D., Salzmann, U., 2016. The smelt - ing of met als in the Ro ma nian Carpathians through out the Ho lo - cene. EGU Gen eral As sem bly Con fer ence Ab stracts, 18.

Longman, J., Veres, D., Finsinger, W., Ersek, V., 2018. Ex cep tion - ally high lev els of lead pol lu tion in the Bal kans from the Early Bronze Age to the In dus trial Rev o lu tion. Pro ceed ings of the Na - tional Acad emy of Sci ences, 115: E5661–E5668.

£adygin, Z., 1984. 7 dni na Orawie Polskiej (in Pol ish). Przewodnik turystyczny. PTTK Kraj, Warszawa-Kraków.

£ajczak, A., 2009. De vel op ment con di tions and dis tri bu tion of peat bogs in the Orava-Nowy Targ Ba sin (in Pol ish with Eng lish sum - mary). Przegl¹d Geologiczny, 57: 694–702.

£ajczak, A., 2013. Re duc tion of the ex tent of peat de pos its and their wa ter re ten tion ca pac ity in the Orava-Nowy Targ Ba sin and Bieszczady Mts. due to hu man ac tiv ity (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 61: 532–540.

£ajczak, A., 2016. An out line his tory of eco nomic ac tiv ity on Mt.

Babia Góra and in the sur round ing area (West ern Carpathians) (in Pol ish with Eng lish sum mary). Przegl¹d Geograficzny, 88:

5–30.

Maciak, F., Liwski, S., 1996. Æwiczenia z torfoznawstwa (in Pol ish).

Wydawnictwo SGGW, Warszawa.

Maksimow, A., 1965. Torf i jego u¿ytkowanie w rolnictwie (in Pol - ish). PWRiL, Warszawa.

Martínez-Cortizas, A., García-Rodeja, E., Pontevedra-Pombal, X., Nóvoa Muñoz, J., Weiss, D., Cheburkin, A.K., 2002. At mo - spheric Pb de po si tion in Spain dur ing the last 4600 years re - corded by two ombrotrophic peat bogs and im pli ca tions for the use of peat as ar chives. The Sci ence of the To tal En vi ron ment, 292: 33–44.

Mauquoy, D., Engelkes, T., Groot, M.H.M., Markesteijn, F., Oudejans, M.G., van der Plicht, J., van Geel, B., 2002.

High-res o lu tion re cords of late Ho lo cene cli mate change and car bon ac cu mu la tion in two north-west Eu ro pean ombrotrophic peat bogs. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol - ogy, 186: 275–310.

Mauquoy, D., van Geel, B., 2007. Mire and peat mac ros. In: En cy - clo pe dia of Qua ter nary Sci ence (ed. S.A. Elias): 2315–2336.

Elsevier B.V., Am ster dam.

Michczyñska, D.J., Margielewski, W., 2016. Palaeoenvironmental changes of Orawa-Nowy Targ Ba sin in the Late Gla cial and Ho - lo cene re corded in sed i ments of Grel raised bog. GEOREVIEW:

Sci en tific An nals of Stefan cel Mare Uni ver sity of Suceava. Ge - og ra phy Se ries, 26: 61–62.

Millot, R., AllÀgre, C.J., Gaillardet, J., Roy, S., 2004. Lead iso to pic sys tem at ics of ma jor river sed i ments: a new es ti mate of the Pb iso to pic com po si tion of the Up per Con ti nen tal Crust. Chem i cal Ge ol ogy, 203: 75–90.

Moore, P.D., Webb, J.A., Collinson, M.E., 1991. Pol len anal y sis.

Blackwell Sci ence Publishers, Ox ford.

(18)

Myœliñska, E., 2001. Grunty organiczne i laboratoryjne metody ich badania (in Pol ish). Wydawnictwo Naukowe PWN, Warszawa.

Novak, M., Pacherova, P., 2008. Mo bil ity of trace met als in pore wa - ters of two Cen tral Eu ro pean peat bogs. Sci ence of the to tal en - vi ron ment, 394: 331–337.

Olszewski, K., 1988. Warunki klimatyczne Torfowisk Orawsko-Nowotarskich (in Pol ish). In: Dokumentacja Podstawowa Projektowanego Parku Krajobrazowego Torfowiska Orawsko-Nowotarskie (ed. J. Kondracki), un pub - lished manu script. Fac ulty of Ge og ra phy and Re gional Stud ies, Uni ver sity of War saw.

Pawe³czyk, F., Chróst, L., Magiera, T., Michczyñski, A., Sikorski, J., Tudyka, K., Zaj¹c, E., 2017. Ra dio car bon and lead-210 age-depth model and trace el e ments con cen tra tion in the Wolbrom fen (S Po land). Geochronometria, 44: 40–48.

Pawe³czyk, F., Michczyñski, A., Tomkowiak, J., Tudyka, K., Fagel, N., 2018a. Mid-to Late Ho lo cene el e men tal re cord and iso to pic com po si tion of lead in a peat core from Wolbrom (S Po - land). Mires and Peat, 21.

Pawe³czyk, F., Okupny, D., Michczyñski, A., 2018b.

Zró¿nicowanie zawartoœci pierwiastków œladowych w osadach torfowisk Wolbrom i Otrêbowskie Brzegi odzwierciedleniem wp³ywu antropopresji (in Pol ish). Acta Geographica Lodziensia, 107: 175–190.

Pawlyta, J., Pazdur, A., Rakowski, A., Miller, B.F., Harkness, D.D., 1998. Com mis sion ing of QuantulusTM liq uid scin til la tion beta spectrome-ter for mea sur ing 14C and 3H at nat u ral abun - dance lev els. Ra dio car bon, 40: 201–209.

Piotrowska, N., 2013. Sta tus re port of AMS sam ple prep a ra tion lab o ra tory at GADAM Cen tre, Gliwice, Po land. Nu clear In stru - ments and Meth ods in Phys ics Re search Sec tion B: Beam In ter - ac tions with Ma te ri als and At oms, 294: 176–181.

PN-G-04595, 1997. Torfy i wyroby z torfu. Oznaczanie stopnia rozk³adu (in Pol ish). Polski Komitet Normalizacyjny.

Poller, U., Todt, W., Kohut, M., Janak, M., 2001. Nd, Sr, Pb iso tope study of the West ern Carpathians: im pli ca tions for the Pa leo zoic evo lu tion. Schweizerische Mineralogische und Petrographische Mitteilungen, 81: 159–174.

Renson, V., Fagel, N., Mattielli, N., Nekrassoff, S., Streel, M., De Vleeschouwer, F., 2008. Ro man road pol lu tion as sessed by el - e men tal and lead iso tope geo chem is try in East Bel gium. Ap - plied Chem is try, 23: 3253–3266.

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Ed wards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kai ser, K.F., Kromer, B., Man ning, S.W., Niu, M., Reimer, R.W., Rich ards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., S.M. Turney, C., van der Plicht, J., 2013.

IntCal13 and Marine13 ra dio car bon age cal i bra tion curves 0-50,000 years cal BP. Ra dio car bon, 55: 1869–1887.

Rösch, M., Fischer, E., 2000. A ra dio car bon dated Ho lo cene pol len pro file from the Banat moun tains (South west ern Carpathians, Ro ma nia). Flora, 195: 277–86.

Rybníèek, K., Rybníèková, E., 1985. A palaecological re con struc - tion of precultural veg e ta tion in the intermontane bas ins of the west ern Carpathians. Ecologia Mediterranea, 11: 27–31.

Rybnièek, K., Rybnièkova, E., 2002. Veg e ta tion of the Up per Orava re gion (NW Slovakia) in the last 11000 years. Acta Paleobotanica, 42: 153–170.

Rydlewski, J., Valde-Nowak, P., 1984. Z najdawniejszej przesz³oœci Orawy (in Pol ish). Wierchy, 51: 7–25.

Sikorski, J., Bluszcz, A., 2008. Ap pli ca tion of a and g spec trom e try in the 210Pb method to model sed i men ta tion in ar ti fi cial re ten tion res er voir. Geochronometria, 31: 65–75.

Shotyk, W., Weiss, D., Appleby, P.G., Cheburkin, A. K., Frei, R., Gloor, M., Kramers, J.D., Reese, S., Van Der Knaap, W.O., 1998. His tory of at mo spheric lead de po si tion since 12,370 14C yr BP from a peat bog, Jura Moun tains, Swit zer land. Sci ence, 281: 1635–1640.

Skripkin, V., Kovaliukh, N., 1998. Re cent de vel op ments in the proce-dures used at the SSCER Lab o ra tory for the rou tine prep - a ra tion of lith ium car bide. Ra dio car bon, 40: 211–214.

S³awiñska, J., Tomkowiak, J., Ligenza, P., Okupny, D., Borówka, R. K., 2018. Rtêæ w osadach torfowisk wysokich Kotliny Orawsko-Podhalañskiej (in Pol ish). IX Sesja Paleolimnologiczna: Dynamika zmian klimatycznych w czwartorzêdzie oraz granica póŸny glacja³/holocen w osadach biogenicznych po³udniowej Polski, Kraków (poster).

Solecki, A., 1977. Osadnictwo na Podhalu: geneza i rozwój ukszta³towania przestrzennego (skrót pracy habilitacyjnej) (in Pol ish). Zeszyty Naukowe Akademii Rolniczej w Krakowie, Rozprawy, 142.

Starkel, L., Michczyñska, D., Kr¹piec, M., Margielewski, W., Nalepka, D., Pazdur, A., 2013. Prog ress in the Ho lo cene chrono-climatostratigraphy of Pol ish ter ri tory. Geochrono - metria, 40: 1–21.

Stockmarr, J., 1971. Tabletes with spores used in ab so lute pol len anal y sis. Pol len et Spores, 13: 615–621.

Œmieja-Król, B., Fia³kiewicz-Kozie³, B., Sikorski, J., Palowski, B., 2010. Heavy metal be hav iour in peat – a min er al og i cal per - spec tive. Sci ence of the To tal En vi ron ment, 408: 5924–5931.

Œmieja-Król, B., Janeczek, J., Bauerek, A., Thorseth, I.H., 2015.

The role of authigenic sul fides in im mo bi li za tion of po ten tially toxic met als in the Bagno Bory wet land, south ern Po land. En vi - ron men tal Sci ence and Pol lu tion Re search, 22: 15495–15505.

Tobolski, K., 2000. Przewodnik do Oznaczania Torfów i Osadów Jeziornych (in Pol ish). Wydawnictwo Naukowe PWN, Warszawa.

To³pa, S., Jasnowski, M., Pa³czyñski, A., 1967. Sys tem der genetischen Klassifizierung der Torfe Mitteln-Europas (in Ger - man). Zeszyty Problemowe Postêpów Nauk Rolniczych, 76:

9–99.

Walanus, A., Nalepka, D., 2004. POLPAL. Ap pli ca tion for plot ting pol len di a grams, count ing pol len grains and per form ing nu mer i - cal anal y sis (with data stored in text files, in MS Ex cel, Word, Note pad etc.). Instytut Botaniki PAN, Kraków.

Walker, M., Head, M.J., Berkelhammer, M., Björck, S., Cheng, H., Cwynar, L., Fisher, D., Gkinis, V., Long, A., Lowe, J., Newn - ham, R., Ras mus sen, S.O., Weiss, H., 2018. For mal rat i fi ca - tion of the sub di vi sion of the Ho lo cene Se ries/Ep och (QuaternarySystem/Pe riod): two new Global Bound ary Stratotype Sec tions and Points (GSSPs) and three new stages/subseries. Ep i sodes, https://doi.org/10.18814/epii - ugs/2018/018016

Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W., Barling, J., 2005. High-pre ci sion Pb-Sr-Nd-Hf iso to pic char ac ter iza tion of USGS BHVO-1 and BHVO-2 ref er ence ma te ri als. Geo chem is - try, Geo phys ics, Geosystems, 6: 1–10.

Wójcikiewicz, M., 1979. Stratygrafia torfowiska Bór na Czerwonem z uwzglêdnieniem zespo³ów subfosylnych oraz rozmieszczenia i zró¿nicowania wspó³czesnych zbiorowisk roœlinnych (in Pol - ish). Zeszyty Naukowe Akademii Rolniczej w Krakowie, 153:

133–193.

Yao, P.H., Shyu, G.S., Chang, Y.F., Chou, Y.C., Shen, C.C., Chou, C.S., Chang, T.K., 2015. Lead iso tope char ac ter iza tion of pe tro - leum fu els in Tai pei, Tai wan. In ter na tional Jour nal of En vi ron - men tal Re search and Pub lic Health, 12: 4602–4616.

Re con struc tion of at mo spheric lead and heavy metal pol lu tion in the Otrêbowskie Brzegi peatland (S Po land) 585

Cytaty

Powiązane dokumenty

da odpowiedniości (a więc dopasowania metody do problemu badawczego), w jaki sposób moż- liwe jest łączenie badań ilościowych i jakościo- wych w jednym projekcie oraz jakie

Regarding soil pollution classes, the results of Student’s t- test showed that lichens collected at sites assigned to high polluted class accumulated signi ficantly higher amounts

Cytogenetic index and functional genome alterations in Chironomus piger Strenzke (Diptera, Chironomidae) in the assessment of sediment pollution: A case study of Bulgarian and

According to the classification of river and lake sediments prepared by the Polish Geological Institute (PIG) [1], sediments of Rzeszów Reservoir can be classified as

Total metal contents of the suspended sediment are for most elements several orders of magnitude larger than in the present top layer of the flood plain soil..

The research objectives are: 1) to analyze several parameters of the aquatic environment that affect the lead accumulation in shellfish body (Anadara granosa

problems of these banking groups would lead to disrup� ons not only in the group’s home country, but in the host countries (including Poland) as well

So to design the sampling criterion in such cases, we use the aforementioned dense spatial samples as a candidate set and then select a subset of it to get a near-optimal