• Nie Znaleziono Wyników

Momentum space 3N Faddeev calculations of hadronic and electromagnetic reactions with proton-proton Coulomb and three-nucleon forces included

N/A
N/A
Protected

Academic year: 2022

Share "Momentum space 3N Faddeev calculations of hadronic and electromagnetic reactions with proton-proton Coulomb and three-nucleon forces included"

Copied!
6
0
0

Pełen tekst

(1)

D OI 10.1140/epja/i2011-11030-7

T E

P HYSICAL J OURNAL A

R egular A rticle - T h eo retical Physics

Momentum space 3N Faddeev calculations of hadronie and electromagnetic reactions with proton-proton Coulomb and three-nucleon forces included

H. W ita ła 1,a, R. S kibiński1, J. G o lak 1, an d W . G löckle2

1 M. Smoluchowski In stitu te of Physics, Jagiellonian University, PL-30059 K rakow , Poland 2 In s titu t für theoretische P hysik II, R uh r-U n iv ersität Bochum , D-44780 Bochum , G erm any

Received: 15 D ecem ber 2010 / Revised: 24 Ja n u ary 2011 P ublished online: 2 M arch 2011

© T he A uthor(s) 2011. T his article is published w ith open access a t Springerlink.com C om m unicated by M.C. Birse

Abstract. We extend our approach to incorporate th e p ro to n -p ro to n (pp) Coulom b force into th e three- nucleon (3N) m om entum space Faddeev calculations of elastic pro to n -d eu tero n (pd) scatterin g and breakup to th e case w hen also a three-nucleon force (3NF) is acting. In addition, we form ulate th a t approach in th e application to electron- and y-induced reactions on 3He. T he m ain new ingredient is a 3-dim ensional screened pp Coulom b i-m a trix obtained by a num erical solution of a 3-dim ensional Lippm ann-Schw inger equation (LSE). T he resulting equations have th e sam e stru c tu re as th e Faddeev equations w hich describe pd scatterin g w ith o u t 3NF acting. T h a t shows th e practical feasibility of b o th presented form ulations.

1 Introduction

T h e long-range n a tu re of th e C oulom b force prevents th e ap p licatio n of th e s ta n d a rd techniques developed for sh o rt-ra n g e intera ctio n s in th e analysis of nuclear reac­

tions involving two p rotons. O ne proposal to avoid the difficulties including th e C oulom b force is to use a screened C oulom b in te ra c tio n an d to reach th e p u re C oulom b lim it th ro u g h ap p licatio n of a ren o rm alisa tio n p rocedure [1-4].

E lastic p d sc a tte rin g first calculations, w ith m odern nuclear forces a n d th e ex act C oulom b force in coordinate re p resen ta tio n included, have been achieved in a varia­

tio n al hyperspherical h arm onic approach [5]. Recently, the inclusion of th e C oulom b force was u n d e rta k e n also for the p d b re a k u p reactio n using a screened p p C oulom b force in m o m en tu m space and in a partial-w ave basis [6]. To get th e final predictions w hich can be com pared to th e d a ta , th e lim it to th e unscreened situ a tio n has been perform ed num erically applying a ren o rm alizatio n to th e resulting 3N on-shell am p litu d es [6,7].

O ne m ain concern in such ty p e of calculations is th e ap p licatio n of a partial-w ave decom position to th e long- ran g ed C oulom b force. E ven w hen screening is applied, it seems reasonable to tr e a t from th e beginning th e screened p p C oulom b t-m a trix w ith o u t partial-w ave decom position because th e req u ired lim it of vanishing screening leads nec­

essarily to a d ra stic increase of th e n u m b er of partial-w ave a e-mail: w i t a l a @ i f .u j . e d u . p l

sta te s involved [8]. In consequence, th is leads to an explo­

sion of th e nu m b er of 3N p a rtia l waves req u ired for con­

vergence. T he very successful app ro ach to include th e pp C oulom b force in to th e 3N F addeev calculations of refs. [6] an d [7] revealed a fast convergence in th e screening ra ­ dius using a tw o-nucleon partial-w ave basis of large size. It ap p ears th a t an in d ep en d en t calcu latio n al schem e should be carried th ro u g h w here th e tre a tm e n t of th e C oulom b p a rt to ta lly avoids a partial-w ave decom position an d th u s providing an in d ep en d en t check of th e results o b tain ed in [6,7].

Therefore, we developed in [9,10] a novel app ro ach to include th e p p C oulom b force into th e m o m en tu m space 3N Faddeev calculations. It is based on a s ta n d a rd for­

m u latio n for sh o rt-ran g e forces an d relies on th e screening of th e long-range C oulom b in teractio n . In order to avoid all u n certain ties connected w ith th e ap p licatio n of th e partial-w ave expansion, in ad e q u a te w hen w orking w ith long-range forces, we used d irectly th e 3-dim ensional pp screened C oulom b t-m a trix . We d e m o n stra te d in [9, 10]

th e feasibility of th a t ap p ro ach in th e case of elastic p d sc a tte rin g and b reak u p using a sim ple dynam ical m odel for th e nuclear p a rt of th e in teractio n . In th is first study, we applied th e m ost sim ple expo n en tial screening of th e C oulom b force w ith pow er n = 1 for which th e 3-dim ensional m o m en tu m space m a trix elem ent can be ob­

ta in e d analytically. A p proxim ating th e 3-dim ensional pp screened C oulom b t-m a trix by th e p o te n tia l allowed us to avoid th e tim e-consum ing, m any-dim ensional interpo-

(2)

Page 2 of 6 T he E u ro p e an Physical Jo u rn al A

lations w hen solving th e Faddeev equations. In addition, w hen calcu latin g th e observables, we neglected in th e tr a n ­ sition am p litu d e th e la st te rm of eq. (62) of ref. [9]. How­

ever, in fu tu re ap plications to d a ta analysis an d p articu lar- ily w hen th e com parison to th e ap p ro ach of ref. [7] will be perform ed, b o th these approxim ations m u st be rem oved.

In th e p resen t p a p e r we ex ten d th a t app ro ach to in­

clude a 3N F into th a t form ulation. Also, we show how th a t form ulation can be applied to electrom agnetic pro­

cesses induced by electrons or 7’s on 3He.

In sect. 2, for th e convenience of th e reader, we sh o rtly describe th e m ain points of th e form alism o u tlin ed in de­

ta il in [9,10] for th e case of 3N Faddeev calculations w ith pairw ise forces only an d ex ten d th e corresponding equa­

tions to th e case w hen a 3N F is also acting. In sect. 3 we ap p ly th a t form ulation to electrom agnetic reactions on 3He. T he su m m ary is given in sect. 4.

2 Faddeev equations with screened pp Coulomb force

W hen only pairw ise forces are actin g we use th e Faddeev eq u atio n in th e form [1 1,1 2]

T\ E) = t P \ E) + t P G 0T\ P), (1)

\pqa) = p q (ls)j ( A ^ I (j I )J Ct2 T (2)

p2dpq2dq \pqa) (pqa\ =

P ro je c tin g eq. (1) for T \ P) on th e \pqa) an d \pqß) states one gets th e following system of coupled in teg ral equa­

tions:

(pqa\T\&) = (pqa\ t N+CP\&)

+ (pqa\tN+cPGo p l2d plql2dql \plqla l)(plq'a'\T\<E) a

+ (pqa\tN+cPGo ^ / p l2d p lql2dql \plqlß l)(p lqlß l \T \P),

(4) ( p q ß \T\$) = ( p q ß \t RP\ $)

+ (pqß\tc P G o ^ / p l2dplql2dql \plqla l)(plqla l \T\<P)

w here th e p e rm u ta tio n o p e ra to r P is defined in term s of tra n sp o sitio n o p e rato rs P j of nucleons i an d j , P = P 12P 23 + P1 3P2 3, G 0 is th e free 3N p ro p ag ato r, an d \P) is th e in itial s ta te com posed of a d e u tero n s ta te and a m o m en tu m eig en state of th e p ro to n . K now ing T\ P) the b rea k u p as well as th e elastic p d sc a tte rin g am plitudes can be gained in th e s ta n d a rd m an n er [11]. T he physical co n ten t of eq. (1) is revealed a fter ite ra tin g it. T he re su lt­

ing m u ltip le-sc atterin g series contains all possible re sc a t­

te rin g co n trib u tio n s induced by interactio n s of th re e nu­

cleons an d free p ro p ag atio n in betw een.

We use our sta n d a rd m o m e n tu m space partial-w ave basis \pqa)

+ ( p q ß \ t R P G o Y J p12dplql2dql \plqlß l)(plqlß l \ T \$), (5) ß' J

w here t N + c an d t R are t-m a tric e s g en e rate d th ro u g h a LSE by th e in teractio n s VN + V cR an d VCR , respectively. Namely, for sta te s \a) w ith a tw o-nucleon sub sy stem to ta l isospin t = 1 th e corresponding t-m a trix elem ent (pa\tN+c ( E -

43mq2)\pla l) is a linear com bination of th e pp, tRp+c, and th e n eu tro n -p ro to n (np), t np, t = 1 t-m atrices, w hich are gen erated by th e in terac tio n s V p Ton9 + VR an d VßpTon9, respectively. T he coefficients of th a t com b in atio n d epend on th e to ta l 3N isospin T an d T l of th e sta te s \ a) and

\aß [9,13]:

t = 1T = 1 \tN+c\tl = 1T l = 11 ) = \ _ 1 tnp + 1 22 t R 2 / = 3 tnp + 3 lpp+cl

3 \ 2 1

= 1T = 2 \t N +c\t = 1T = 2 ^ = 3 t np + 3 t pp+c,

t = 1T = 2 \tN+c\tl = ,R Ul _ 11 rpl _ 3 \ _ T l = 2 ) = ^ ( t n p - tRp+c),_!_R bN+c\

2 t N + c \

t = 1T = ^ \t N + c \t l = 1t1 = 2 ) = ^ ( t n p - tRp+c). (6)

an d d istin g u ish betw een th e partial-w ave sta te s \pqa) and

\pqß). T he \pqa) are sta te s w ith to ta l 2N a n g u lar m om en­

tu m j below some value j max: j < j max, in w hich the nuclear, VN , as well as th e p p screened C oulom b in terac­

tion, VcR (in isospin t = 1 sta te s only), are acting. In the sta te s \pqß) w ith j > j max, only VcR is actin g in th e pp subsystem . T h e sta te s \pqa) a n d \ pqß) form a com plete set of state s

For th e isospin t = 0, in w hich case T = T l = 2

( t = 0T = 2 \tN+c\tl = 0T l = 1 ^ = t np. (7)

In th e case of t R only th e screened p p C oulom b force VcR is acting.

T he th ird te rm on th e rig h t-h a n d side of (5) is pro ­ p o rtio n a l to ( pqß\tRP G 0\plqlß l)( plqlß l \tR. A d irect calcu­

la tio n of its isospin p a rt shows th a t in d ep en d en tly of th e value of th e to ta l isospin T it vanishes [9].

In sertin g ( p q ß \ T \E) from (5) in to (4) one gets (pq a \ T \ E) = (pqa\tN+cP\&) + (pqa\ t N+cPGot R P\<P) p 2dp q2dq ( ^ \pqa)(p q a \ + ^ \pqß)(p q ß \ j = L (3) - ( p q a \ t N +cP G o ^ J p l2dplql2dql \plqla l)(plqla l \ t RP\ $)

ß

a

(3)

+ (pqa\tN+cPGo J p ,2dp' q,2dq' \ p' q' a' )( p' q' a' \ T\ $) a

+ (p q a \t N+cP G0t R P G ( ^ j p ' 2 d p ' q 2d q \ p q a ) (p q a \ T \<P) a

- ( p q a \ t N +c P G o ^ J p ' 2dp'q'2dq' \p' q ' a ' ) ( p' q ' a' \ t RPGo a

X Z ) J p''2dp''q''2dq''\p''q''a'')(p''q''a''\T\&). (8) a"

T his is a coupled set of in teg ral equations in th e space of th e sta te s \a) only, w hich in co rp o rates th e c o n trib u tio n s of th e p p C oulom b in teractio n from all partial-w ave sta tes u p to infinity. It can be solved by ite ra tio n an d P ad e sum ­ m atio n [9,11].

W h en com pared to our s ta n d a rd tre a tm e n t w ith o u t screened C oulom b force [11] th e re are tw o new leading term s: (pqa\tN+cP G o t RP\&) a n d - ( p q a \ t N + cP G o \ a ' ) X (a'\ t RP\&). T he first te rm m u st be calcu lated using di­

rectly th e 3-dim ensional screened C oulom b t-m a trix t R, while th e second te rm requires only th e p a rtia l-w a v e- p ro je cted screened C oulom b t-m a trix elem ents in the

\a) channels. T he kernel also contains tw o new term s:

th e te rm (pqa\tN+cP G 0t RP G 0\ a' )( a' \T\ P) m u st again be c alcu lated w ith a 3-dim ensional screened C oulom b t - m a trix t R , while th e second one, - ( p q a \ t N + cP G 0\a') X (a' \tRPG0\ a'' )(a' ' \T\&) , involves only th e p artia l-w a v e- p ro je cted screened C oulom b t -m a trix elem ents in th e |a) channels. T h e calcu latio n of those new term s w ith th e p artia l-w a v e-p ro je c te d C oulom b t -m atrices follows our s ta n d a rd p rocedure [11]. Namely, th e tw o sub-kernels t N +CP G 0 an d t R P G 0 are applied consecutively to th e corresponding s ta te . T he d eta ile d expressions how to cal­

culate th e new te rm s w ith th e 3-dim ensional screened C oulom b t-m a trix are given in ap p en d ix A of ref. [9].

T he tra n sitio n am p litu d e for b reakup, ( $ 0\U0\P), is given in te rm s of T\ P) by [1 1,1 2]

($o\Uo\$) = ( ^ ( 1 + P )T\<P), (9) w here \&0) = \ p q m 1m 2m 3v 1v 2v3) is th e free s ta te and th e Jacobi m o m en ta p an d q specify com pletely a p a r­

tic u la r exclusive b re ak u p configuration of th re e o u tgo­

ing nucleons. T he p e rm u ta tio n s actin g in m om entum , spin-, an d isospin-spaces can be applied to th e b ra -sta te (&0\ = ( p q m 1m 2m 3v 1v 2v3 \ changing th e sequence of nucleons spin an d isospin m agnetic q u a n tu m num bers m 2 an d v 2 an d leading to well-known linear com bina­

tions of th e Jacobi m o m e n ta p and q. T h u s ev alu at­

ing (9), it is sufficient to reg a rd th e general am plitudes (p q m 1m 2m 3v 1v 2v3 \T\P) = ( p q \ T \ P ) . U sing eq. (5) and th e com pleteness re la tio n (3) one gets:

(pq \ T\<P) = (pq \ ^ J p ' 2dp'q'2dq' \p' q'a') (p'q'a'\T\<P) a

- W \ p '2d p 'q '2dq' \p'q'a') (p' q' a' \ t RP\<P) a

- ( Pp \ J p ' 2 dp'q'2dq' \p'q'a') {p'q' a'\tR P Gq

a

X p " 2d p "q "2dq" \p''q''a'') (p''q''a''\ T\&) a"

+ (pq \ t R P \ $ ) + (pq \ t R P Gq

x ^ J p ' 2dp'q'2dq' \ p ' q ' a ' ) ( p ' q ' a ' \ T \ P ) . (1 0) a

It follows th a t, in a d d itio n to th e am p litu d es (pqa\T\&), also th e p artia l-w a v e-p ro je c te d am p litu d es (pqa\tRP\ P) an d (pqa\tR P G 0\ a' )( a' \T\ P) are required.

T he expressions for th e c o n trib u tio n s of these th re e term s to th e tra n sitio n am p litu d e for th e b reak u p reactio n are given in ap p en d ix B of ref. [9].

T he la st two te rm s in (10) again m u st be calcu­

la te d using d irec tly th e 3-dim ensional screened C oulom b t -m atrices. In ap p en d ix C of ref. [9] th e expression for ( p q \ t RP\ P) is given an d in ap p en d ix D for th e last m a­

trix elem ent ( p q \ t RP G 0\a' )(a' \T\&).

T he tra n sitio n am p litu d e for elastic scatterin g , U , con­

ta in s in ad d itio n to all re scatterin g s P T also a d irect ex­

change te rm P G - 1 an d is given by

(P\U\<P) = ( P \ P G - 1 + P T \ P ) , (11) w here th e outgoing p ro to n -d e u te ro n s ta te \ P ) differs from

\P) by th e directio n of th e relative p ro to n -d e u te ro n m o­

m entum . I t can be o b ta in ed by q u a d ra tu re using (10).

It was show n in [9] th a t th e elastic p d sc a tte rin g am ­ p litu d e has a w ell-defined screening lim it an d does n o t require ren o rm alisatio n . To get th e physical b re a k u p am ­ p litude, however, it is unavoidable to perform th e renor­

m alisatio n of th e p p half-shell t-m atrices [10]. Such a b e­

havior of th e elastic sc a tte rin g a m p litu d e in our schem e is in c o n tra d ictio n to th a t in th e screening an d renorm aliza­

tio n m e th o d derived in [1,2] an d applied in [6,7]. T here th e screening of th e elastic sc a tte rin g a m p litu d e is u n ­ avoidable as was d e m o n stra te d in [14]. Very p ro b ab ly it reflects different form s of th e e q u atio n s to be solved. Nev­

ertheless it m u st b e checked if th e ap p ro x im atio n s used in our feasibility calculation of ref. [9], m entioned in th e in tro d u ctio n , does n o t in tro d u ce a w rong behavior. T he resolution of th a t co n trad ictio n aw aits to be solved.

W h en on to p of pairw ise forces th re e nucleons in te ra c t also th ro u g h a 3N F ad d itio n al re scatterin g s g en erated by th a t 3N F a p p e a r in th e m u ltip le-scatterin g series an d th e F addeev eq u atio n for th e s ta te T\ P) changes to [15]:

T \ $ ) = t P \ $ ) + ( 1 + t G o ) v ( 1] (1 + P M + t P G o T \ p + ( 1 + tG o)V4(1)(1 + P ) GqT \ p . (12) T he 3N force v 4 is n a tu ra ly sp lit in to 3 p a rts

V4 = V4(1) + V4(2) + V4(3), (13) w here V4(i) is sy m m etrical u n d e r th e exchange of nucle­

ons j an d k ( i , j , k = 1, 2, 3, i = j = k). Such a sp littin g

(4)

Page 4 of 6 T he E u ro p e an Physical Jo u rn al A

is always possible an d in th e case of th e n -n exchange 3NF corresponds to th e th re e possible choices of th e nu­

cleon undergoing off-shell nN sc atterin g . E q u a tio n (12) contains tw o new term s: one leading te rm an d one in th e kernel. T h ey reflect a d d itio n al co n trib u tio n s to the m u ltip le-sca tte rin g series caused by th e 3NF.

Perform ing analogous step s as for (1) an d s ta rtin g w ith th e p ro jectio n of (1 2) on th e \pqa) an d \pqß) sta te s one gets

(pqa\T\&) = (pqa\tN+cP\&)

+ (p q a \( 1 + t N+cG 0) V ) ( 1 + P ) \^ ) + (pqa\tN+cPGo\a' ) ( a' \ T \ $) + ( pqa\tN+cPGo\ß' ) ( ß ' \ T \$)

+ ( p q a \ ( 1 + t N + c G o V 1 ( 1 + P )G o \a') (a' \T\P) + (pqa\(1+ tN+cGo)V( 1 (1 + P )Go\ß') ( ß ' \ T \ $ ) , (14) and

(p q ß \ T \$) = (pqß\ t R P \ $ )

+ (pqß\ (1+ t R Gq)V4( 1 ) ( 1 + P ) \ $ )

+ (pqß\ t R PG o \ a ' ) ( a' \ T \ $) + ( p q ß \ t R P Go \ ß') ( ß ' \ T \$) + (pqß\ ( 1 + t RGo) V( 1 ) (1 + P )G o \a') (a' \T\P)

+ (pqß\ (1+ t RGo) V( 1 (1 + P )Go\ß') ( ß ' \ T \&) . (15) Here an d in th e following we sh o rten ed our n o ta tio n by ne­

glecting th e su m m a tio n sign over in term ed iate sta te s | a ') ( \ß ')) an d th e in te g ra tio n sign over th e corresponding J a ­ cobi m o m en ta p' an d q' . T herefore w henever a p ro jectio n o p e ra to r \a' )(a' \ ap p ears in in te rm ed iate sta te s m eans th a t th e following su m m atio n a n d in te g ratio n s m u st be perform ed:

\ a ' ) ( a ' \ ^ ^ ^ f p ' 2dp'q'2dq' \ p'q'a' )(p'q' a'\. (16) a

Since a 3N F is sh o rt-ran g e d its m a trix elem ents con­

ta in in g \ß) channels vanish:

(a\V( 1 (1+P )\ß) = (ß \ vRl ) (1+P )\a ) = ( ß \ v Rl ) (1+P ) \ ß ) = 0 . (17) T hus in th e \ß) channels only th e p p C oulom b force is acting an d therefore (15) reduces to

(p q ß \ T \$) = (pqß\tR P \ $ )

+ ( p q ß \ t R P G o \ a ' ) ( a ' \ T \ $ ) + ( p q ß \ t R P G o \ ß ' ) ( ß ' \ T \$) = (p q ß \ t R P \&) + ( p q ß \ t R P G o \ a ' ) ( a ' \ T \$). (18) A gain we have used th e fact th a t th e th ird te rm in (18) vanishes (see also th e rem ark afte r (7)). Also n o te th a t t R is diagonal in th e high p a rtia l waves an d consequently v R 1 does n o t co n trib u te .

In sertin g (18) in to (14) one gets (pqa\T\<P) = (pqa\tN+cP\&)

+ (pq a \ ( 1 + t N+cG 0)V4(1) ( 1 + P ) \^ )

+ (pqa\tN+cPGo\a' ) ( a ' \ T \ $ ) + (pqa\tN+cPGo \ ß ' ) x [ ( ß ' \t RP\ $) + (ß ' \ tRPGo \ a ' ) (a'\T\$)]

+ (pqa\(1 + t N + cGo)vR )(1 + P )G o \a') (a'\T\<P) + (pqa \( 1 + t N+cG o)V4 ) ( 1 + P ) G o\ß ' )

x [ ( ß ' \tRP\<P) + (ß ' \ tRPGo \ a ' ) (a'\T\<P)]. (19) Thus,

(pqa\T\&) = (pqa\tN+cP\&)

+ (p q a \(1 + t N+cG 0)V4 ) ( 1 + P ) \^ ) + (pqa\ t N+ c P G o \ ß ' ) ( ß ' \ t R P \$)

+ (pqa\(1 + t N + c G o W } 1 ( 1 + P )Go\ ß' ) ( ß' \t R P\&) + (pqa\tN+cPGo\a' ) ( a ' \ T \ $ )

+ (pqa\ t N+c PGo \ ß' )( ß ' \ t RPGo \ a' ') (a' ' \T\ $) + (pqa\(1 + t N + cGo)VR )(1 + P )G o \a') (a'\T\<P) + (p q a \(1 + t N+cG o)V4 ) ( 1 + P ) G o\ß ')

x ( ß ' \ t R P G o \ a ' ) ( a ' \ T \ P ) . (2 0) D ue to (17) th e te rm in th e fo u rth line of (20) an d th e last te rm of (20) can b e d ro p p ed . U sing th e com pleteness relatio n (3) for th e |a) an d |ß) sta te s one finally is left w ith th e coupled set of in teg ral equations in th e space of

\a) channels only:

(pqa\T\<P) = (pqa\tN+cP\&)

+ (p q a \(1 + t N+cG 0)V4 )( 1 + P ) \^ )

+ (pqa\ t N+cPGot RP \ & ) - ( p q a \ t N + c P G o \ a ' ) ( a ' \ t RP\&) + (pqa\tN+cP G o \ a ' ) ( a ' \ T \ $ )

+ ( pqa\ t N+c PGot RPGo\ a' ) (a' \T\P)

- ( p q a \ t N + c P G o \ a ' ) ( a ' \ t R P G o \a'') (a'' \T\P)

+ ( p q a \ ( 1 + t N

+

cGq)vR1)(1 + P )G o \a') (a'\T\&) . (21) C om paring it to eq. (8) w ith 2-body forces only, th ere is one ad d itio n al c o n trib u tio n in th e leading term , (pqa\(1 + t N+cG 0)V4(1)(1 + P)\&), an d one in th e kernel, (pqa\(1 + t N + cGo)VR1') ( 1 + P ) Go\a' )(a' \T\&), b o th con­

tain in g v R 1 ( 1 + P ).

T he tra n sitio n am p litu d e for b reak u p is again given by (9) and for elastic sc a tte rin g tw o new te rm s driven by Vj (1 + P ) ap p e a r [15]:

( P \ U \ $ ) = ( P \ P G - 1 + P T + v R 1} ( 1 + P )

+ V4(1) ( 1 + P ) GqT \ $ ) . (22) Since th e s tru c tu re of th e set (21) is analogous to th e s tru c tu re of th e set (8) describing p d sc a tte rin g w hen only

(5)

pairw ise forces are acting, it follows th a t th e inclusion of th e 3N F in to th e F addeev calculations of p d elastic sc a t­

te rin g an d b re ak u p reactio n requires no new m a trix el­

em ents and num erical tools beyond th o se used in [9, 10]

an d [15].

3 The electromagnetic reactions on 3He

It was show n in [16] th a t th e basic eq u atio n s describing reactions on 3He induced by p h o to n s or electrons have th e sam e stru c tu re as th e 3N co n tin u u m Faddeev equa­

tions (1) an d (12). T he new physical ingredient is th e p h o to n ab so rp tio n o p era to r, lets call it O [16]. For a com ­ p lete b re a k u p of 3He induced by p h o to n s th e nuclear m a­

trix elem ent N , from w hich all observables can be d e te r­

m ined, is given by an au x iliary s ta te |U) w hich fulfills th e Fad d eev -ty p e equation:

\U) = tGo + x ( P + 1)V( )Gq(1 + tGo) ( 1 + P )O\&i)

+ ( t G o P + 2 ( P +1)V 4(1)G q ( 1 + tGo)P^j \U). (23)

T hen,

N = (^ o \(1 + tG o ) ( 1 + P ) O \ $ i ) + ( $o\ ( 1+ t G o ) P \ U ). (24) Here \'^i ) is th e in itial 3He b o u n d s ta te a n d \@0) is the fully an tisy m m etrized free s ta te of th re e outgoing nucle­

ons, given in te rm s of th e ir Jacobi m o m en ta and spin and isospin q u a n tu m num bers.

For th e p d b re a k u p of 3He th e nuclear m a trix elem ent is given [16] by

N Pd = ( $ q\( 1 + P )O\&i) + (<Pq\ P \ U), (25) w here th e final s ta te is d eterm in ed by th e p ro to n -d e u tero n relative m o m en tu m eig en state |qq ) an d th e d e u tero n wave function \4>d):

(&q\ = (^ d \ (q \. (26)

L et us consider first th e case w ith o u t 3NFs:

\U) = tG o(1 + P )O\&i) + t G o P \ U ). (27) P ro je c tin g eq. (27) on sta te s |a) an d |ß) (in th e |ß) sta te s only th e screened C oulom b force VcR is acting) one gets

(p q a \U ) and (pqß|U)

(p q a \t N +cG 0 ( 1 + P ) O Wi) + (p q a \t N+cG 0P \U)

= (pqß\tRGo(1 + P )O\&i) + ( p q ß \ t R Go P \U) = ( p q ß \ t R G o ( 1 + P )O\&i) + (pqß\tR G o P \ a ' ) ( a ' \ U ) + ( pq ß \ t R G o P\ ß ' ) ( ß ' \ U). (29) Since in above eq u atio n s th e p h o to n ab so rp tio n op er­

a to r O comes always w ith 3He b o u n d s ta te therefore ( ß \ O \ ^ i ) = ( ß \ P O \ ^ i ) = 0. C onsequently th e first te rm

in (29) vanishes. T h e la st te rm is p ro p o rtio n a l to (pqß|

t R G 0P \ ß ) ( ß \ t R and th e d irect calcu latio n of its isospin p a rt gives zero. T h u s eq. (29) reduces to:

(pqß\U) = ( p q ß \ t R G o P \a' )(a' \ U). (30) In sertin g (30) into (28) one gets:

(pqa \U) = (p q a \t N+cG 0(1 + P ) O \ ^ i)

+ ( p q a\ tN+c Go P \ a ' ) ( a' \ U) + (pqa\tN+cGqP \ß ' ) ( ß ' \ U ) = (p qa \ t N + cGo(1 + P )O\&i) + (pqa\tN+cGqP \ a ' ) ( a ' \ U ) + ( pqa\ t N+c GoP\ ß ' ) ( ß ' \ t R G o P \a' ) ( a ' \ U ). (31) U sing th e com pleteness re la tio n for th e |a) an d |ß) sta te s gives:

(p q a \U) = (p q a \t N +cG 0( 1 + P ) O \&i) + (pqa\tN+cGqP \ a ' ) ( a ' \ U ) + ( p q a\ t N + c G o Pt R G oP \ a ' ) ( a ' \ U )

- ( p q a \ t N + c G o P \ a ' ) ( a ' \ t R G o P \ a ' ' ) ( a ' ' \ U ).

(32) W h en com pared w ith th e set resu ltin g from (27) for a n e u tro n -n e u tro n -p ro to n system th e re are tw o new te rm s in th e kernel: (pqa\tN+cG 0P t R G 0P \ a ' ) ( a ' \ U ) and - ( p q a \ t N + cG 0P \ a ' ) ( a ' \ t R G 0P \ a ' ' ) ( a ' ' \ U ). T h ey are iden­

tical to those in (8) for th e 3N co n tin u u m an d conse­

q u en tly also th e ir evaluation is th e sam e as for p d sc a tte r­

ing. T h e vanishing of \ß)-com ponents of th e O \ ^ ) - s t a t e caused th a t, in stead of th re e leading term s as in (8), only one leading te rm appears, w hich can be calcu lated in a sta n d a rd w ay [16].

S ta rtin g from (23) an d perform ing analogous steps w hen th e 3N F is included gives

(p q a \ U ) = (p q a \t N +cG 0(1 + P ) O \ ^i ) + (pqa

+ (pqa + (pqa - ( p q a + (pqa

1 ( P + 1)V( l ) Go(1 + tN+cGo )(1 + P ) O \ $ i ) RN+c G Q

R

G 0P \ a ' ) ( a ' \ U ) tN+c G o P t R G o P \ a ' ) ( a ' \ U )

t N + c GqP \ a ' ) ( a ' \ t R G o P \ a ' ' ) (a ' ' \ U )

2 ( P + 1)V1 4(1)Gq(1 + t N + c G o ) P\ a ' ) ( a ! \ U ). (33)

Thus, adding a 3N F resu lts in one ad d itio n al lead­

ing term , (pqa\ 1 ( P + 1)V4(1) G o( 1 + t N +cG0 ) ( 1 + P ) O \'^i) : an d one ad d itio n al kernel term , (pqa\ 1 ( P + 1)VR1 G0(1 + (28) t N + c G o ) P \ a ' ) ( a ' \ U ).

T he m a trix elem ents (pqa\ U) provide tra n sitio n am pli­

tu d e s for th e two- an d th re e -b o d y b re a k u p of 3He. Namely, for th e tw o-body b reak u p of 3He th e second te rm in (25) can be calcu lated using (30) a n d th e com pleteness of the

\a) an d \ß) sta te s, re su ltin g in:

($q\P\U) = ( $ q \ P \ a ) (a \ U) + ( $ q \ P \ß)(ß\U) = ( $ q \ P\ a ) ( a \ U) + ( $ q \ P t R G o P \a' )(a' \U) - ( $ q \ P \ a ) ( a \ t R G o P \ a ' ) ( a ' \U). (34)

(6)

Page 6 of 6 T he E u ro p e an Physical Jo u rn al A

T h e first and th ird te rm s can b e o b ta in e d from th e |a) p a rtia l-w a v e-p ro je c te d m a trix elem ents using (B.2) of ref. [9]. T he second te rm m u st be calcu lated using d irectly th e 3-dim ensional screened C oulom b t-m a trix t R accord­

ing to (D.9) of ref. [9].

For th e th re e -b o d y b reak u p of 3He th e second term in (24) can be calcu lated in a sim ilar way an d is given by

( $ o \ ( 1 + tGo )P\ U) = (<Po\P\a)(a\U) + ( $ o \ P \ß)(ß\tRGo P \ a ' ) ( a ' \ U )

+ ( $ o \ a ) (a \ tN + c Go P \ U ) + ($o\ ß ) (ß\tRGo P \ U ) = ( $ o \ P\ a ) ( a \ U) + (<Po\PtRGoP\a)(a\U)

- ( $ o \ P \ a ) ( a \ t R G o P \ a ' ) ( a ' \ U ) + (<Po\a)(a\tN+cG o P \a' ) ( a \ U ) + ( $ o \ a ) ( a \ t N + c G o P t R G o P \ a ' ) ( a \ U )

- ( $ o \ a ) ( a \ t N + c G o P \ a ' ) ( a ' \ t R G o P \ a ' ' ) ( a ' ' \ U )

+ ( $o \ t R Go P \ a ) ( a \ U ) - ( $ o \ a ) ( a \ t R G o P \ a ' ) ( a ' \ U ). (35) Here again, th e second, fifth a n d seventh te rm m ust be calcu lated using d irectly th e 3-dim ensional screened C oulom b t-m a trix t R . For th e second, (<T0\ P t R G 0P \a) X ( a \ U ), a n d seventh, (@0\tR G 0P \ a ) ( a \ U ), te rm th e cal­

cu latio n follows expressions (D .6), (D.7) an d (D .8) of ref. [9]. For th e fifth m a trix elem ent, (@0\a) X

(a\ t N + cG 0P t R G 0P \ a ' ) ( a ' \ U ) , th e corresponding expres­

sions of ref. [9] are (A.19) an d (B.1). T he calcu latio n of th e rem aining, |a) p artia l-w a v e-p ro je c te d m a trix elem ents in (35) follows (B.1) of ref. [9].

4 Summary

We ex ten d ed our ap p ro ach to include th e p p C oulom b force in to th e m o m en tu m space 3N Faddeev calculations, p resen ted in refs. [9, 10] for elastic p d sc a tte rin g and b rea k u p in case w hen only pairw ise forces are acting, to include also a 3N F an d to tr e a t reactions induced by in te r­

action of electrom agnetic probes w ith th e 3He nucleus. It is based on a s ta n d a rd form ulation for sh o rt-ran g e forces an d relies on th e screening of th e long-range C oulom b in­

tera ctio n . In o rd er to avoid all u n c e rta in ties connected w ith th e ap p licatio n of th e partial-w ave expansion, u n ­ su itab le w hen w orking w ith long-range forces, we ap p ly d irectly th e 3-dim ensional p p screened C oulom b t -m atrix .

For each rea ctio n considered in th e p resen t study: elas­

tic p d sc a tte rin g an d b reakup, two- an d th re e -b o d y decay of th e 3He nucleus induced by real or v irtu a l photons, th e resu ltin g coupled set of in teg ral e q u atio n s in th e finite space of |a) channels only, in co rp o rates th e co n trib u tio n s of th e p p C oulom b in tera ctio n from all partial-w ave sta te s u p to infinity. A dding a 3N F resu lts in a set of Faddeev- ty p e e quations w ith th e sam e s tru c tu re as in th e case w hen only 2N in teractio n s an d p p C oulom b force are acting. O n to p of th a t for each rea ctio n one new co n trib u tio n in th e leading te rm an d in th e kernel ap p ears. T hese tw o a d d i­

tio n a l te rm s have th e sam e form in d ep en d e n t if th e pp C oulom b force is actin g or not.

Solutions of th e resu ltin g Faddeev eq u atio n s in th e form of p artia l-w a v e-p ro je c te d m a trix elem ents, to g eth er w ith th e ad d itio n al m a trix elem ents calcu lated d irectly w ith th e 3-dim ensional screened C oulom b t -m atrix , pro ­ vide tra n s ito n am p litu d es from w hich num erous observ­

ables can be calculated.

Since in [9,10] th e p ractical feasibility of our form ula­

tio n has been d o cu m en ted in case of p d elastic sc a tte rin g an d break u p , th e p resen ted extension of sim ilar stru c tu re will also be feasible an d will allow to ap p ly th a t approach w ith th e com plete nuclear H am ilto n ian to analyses of num erous d a ta from 3N h adronic an d electrom agnetic reactions.

T his work was su p p o rted by th e P olish 2008-2011 science funds as a research p ro ject No. N N202 077435. It was also p a r­

tially su p p o rted by th e H elm holtz A ssociation th ro u g h funds provided to th e v irtu a l in stitu te “Spin and strong Q C D ” (VH-VI-231).

Open Access T his article is d istrib u ted u nder th e term s of th e C reative Com m ons A ttrib u tio n N oncom m ercial License which perm its any noncom m ercial use, distrib u tio n , and reproduction in any m edium , provided th e original author(s) and source are credited.

References

1. E.O . A lt, W. Sandhas, H. Ziegelmann, Phys. Rev. C 17, 1981 (1978).

2. E.O . A lt, W . Sandhas, in Coulomb Interactions in Nuclear and A to m ic Few-Body Collisions, edited by F.S. Levin, D. M icha (Plenum , New York, 1996) p. 1.

3. E.O . A lt, M. R auh, Phys. Rev. C 49, R2285 (1994).

4. E.O. A lt, A.M. M ukham edzhanov, M.M. Nishonov, A.I.

S attarov, Phys. Rev. C 65, 064613 (2002).

5. A. Kievsky, M. Viviani, S. R osati, Phys. Rev. C 52, R15 (1995).

6. A. D eltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 72, 054004 (2005).

7. A. D eltuva, A.C. Fonseca, P.U. Sauer, Phys. Rev. C 71, 054005 (2005).

8. R. Skibinski, J. Golak, H. W itala, A cta Phys. Pol. B 41, 875 (2010).

9. H. W itała, R. Skibiński, J. Golak, W. Glöckle, E ur. Phys.

J. A 41, 369 (2009).

10. H. W itala, R. Skibinski, J. Golak, W. Glockle, E ur. Phys.

J. A 41, 385 (2009).

11. W. Glockle, H. W itala, D. H uber, H. K am ada, J. Golak, Phys. Rep. 274, 107 (1996).

12. W. Glockle, The Q uantum M echanical Few-Body Problem, (Springer Verlag, 1983).

13. H. W itała, W. Glockle, H. K am ada, Phys. Rev. C 43, 1619 (1991).

14. A. D eltuva, Phys. Rev. C 80, 064002 (2009).

15. D. H uber, H. K am ada, H. W itala, W. Glockle, A cta Phys.

Pol. B 28, 1677 (1997).

16. J. Golak, R. Skibinski, H. W itała, W . Glockle, A. Nogga, H. K am ada, Phys. Rep. 4 1 5 , 89 (2005).

Cytaty

Powiązane dokumenty

The physical elastic pd scattering amplitude has a w ell defined screening limit and does not require renormalisation.. Well converged elastic pd cross sections are

The contributions from jets, soft jets and topoclusters not associated to the reconstructed objects and muons are shown in Fig. 3 for the di-jet events. The data-MC agreement is

The results for inelastic p + p interactions of the NA61/SHINE Collaboration (blue circles) are shown together with the world data on p + p interactions (light blue circles) as well

This paper presents preliminary results of the data analysis including geometry cross check, energy calibration, particles identification and sample distributions of the

1 Introduction The theoretical treatment of few-nucleon systems and light nuclei using realistic models of interactions between nucleons provides a formalism bridge for

tions of these two states were obtained from an analysis of the three-body correlations in the energy region 0 &lt; E f pp &lt; 1. How- ever, a 5 / 2 + state is unlikely to be fed in

The real part of the screened Coulomb t-matrix (solid line) and the screened Coulomb potential (dotted line) are close to each other, and their ratio does not exceed 4% of V c R for

We demonstrate numerically that proton-proton (pp) scattering observables can be determined di- rectly by standard short range methods using a screened pp Coulomb force