• Nie Znaleziono Wyników

CXD1178Q

N/A
N/A
Protected

Academic year: 2022

Share "CXD1178Q"

Copied!
16
0
0

Pełen tekst

(1)

Absolute Maximum Ratings (Ta=25 °C)

• Supply voltage AVDD, DVDD 7 V

• Input voltage (All pins)

VIN VDD+0.5 to VSS–0.5 V

• Output current (Every each channel)

IOUT 0 to 15 mA

• Storage temperature Tstg –55 to +150 °C

Recommended Operating Conditions

• Supply voltage AVDD, AVSS 4.75 to 5.25 V DVDD, DVSS 4.75 to 5.25 V

• Reference input voltage

VREF 2.0 V

• Clock pulse width

TPW1, TPW0 11.2 ns (min.) to 1.1 µs (max.)

• Operating temperature

Topr –40 to +85 °C Description

The CXD1178Q is an 8-bit high-speed D/A converter for video band use. It has an input/output equivalent to 3 channels of R, G and B. It is suitable for use of digital TV, graphic display, and others.

Features

• Resolution 8-bit

• Maximum conversion speed 40MSPS

• RGB 3-channel input/output

• Differential linearity error ±0.3LSB

• Low power consumption 240 mW (200 Ωload at 2 Vp-p output)

• Single 5 V power supply

• Low glitch noise

• Stand-by function

Structure

Silicon gate CMOS IC

8-bit 40MSPS RGB 3-channel D/A Converter

48 pin QFP (Plastic)

(2)

Block Diagram

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

LATCHES

LATCHES

LATCHES

32 35 34 42 29 41 40 31 30 33 28 39 38 46 45 44 43 27 37 36 48 47 2LSB’S

CURRENT CELLS

6MSB’S CURRENT

CELLS

CLOCK GENERATOR

2LSB’S CURRENT

CELLS

6MSB’S CURRENT

CELLS

CLOCK GENERATOR

2LSB’S CURRENT

CELLS

6MSB’S CURRENT

CELLS

CLOCK GENERATOR

CURRENT CELLS (FOR FULL SCALE)

BIAS VOLTAGE GENERATOR 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

25

26 (LSB) R0

(MSB) R7 (LSB) G0

(MSB) G7 (LSB) B0 B1 B2 B3 B4 B5 B6 (MSB) B7

BLK

CE R1 R2 R3 R4 R5 R6

G1 G2 G3 G4 G5 G6

DVDD

DVDD

RO RO

RCK

AVDD

AVDD

AVDD

AVDD

GO GO

GCK

AVSS

DVSS

DVSS

BO BO

BCK VG VREF IREF

VB

(3)

Pin Configuration

R0 R1 R2 R3 R4 R5 R6 R7 G0 G1 G2 G3

B7 B6 B5 B4 B3 B2 B1 B0 G7 G6 G5 G4

BCK

RO IREF VREF AVSS VB DVSS DVSS GCK RCK CE BLK

RO GO GO BO BO VG AVDD

AVDD

AVDD

AVDD

DVDD

DVDD

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

Pin Description and I/O Pins Equivalent Circuit

Pin No. Symbol I/O Equivalent circuit Description

1 to 8

9 to 16

17 to 24

25

R0 to R7

G0 to G7

B0 to B7

BLK I

I

1

24

DVDD

DVSS

to

DVDD

DVSS

25

DVDD

DVDD

Digital input

R0 (LSB) to R7 (MSB) G0 (LSB) to G7 (MSB) B0 (LSB) to B7 (MSB)

Blanking input.

This is synchronized with the clock input signal for each channel.

No signal at “H” (Output 0 V).

Output condition at “L”.

(4)

Pin No. Symbol I/O Equivalent circuit Description

27

28

29

30, 31 33

26

35

34

42

43 to 46

RCK

GCK

BCK

DVSS

AVSS

CE

IREF

VREF

VG

AVDD

I

I

O

I

O

DVDD

DVSS

28 27

29

DVDD

DVSS

26

AVDD

AVSS

34

35 AVDD

AVSS

AVDD

AVDD

AVSS

42

Clock input.

Note) Even though 1 channel and/ or 2 channel are used, be sure to input the clock signal to RCK.

Digital GND Analog GND

Chip enable input.

This is not synchronized with the clock input signal.

No signal (Output 0 V) at “H” and minimizes power consumption.

Reference current output.

Connect a resistance 16 times

“16ROUT” that of output resistance value “ROUT”.

Reference voltage input.

Set full scale output value.

Connect a capacitor of about 0.1 µF.

Analog VDD

(5)

Pin No. Symbol I/O Equivalent circuit Description

37

39

41

36

38

40

47, 48

RO

GO

BO

RO

GO

BO

DVDD

O

AVDD

AVSS

41 39 37

AVDD

AVSS

36 38 40

Current output pins.

Voltage output can be obtained by connecting a resistance.

Inverted current output.

Normally dropped to analog GND.

Digital VDD

(6)

(fCLK=40 MHz, AVDD=DVDD=5 V, ROUT=200 Ω, VREF=2.0 V, Ta=25 °C) Item

Resolution Conversion speed

Integral non-linearity error Differential non-linearity error Output full-scale voltage Output full-scale ratio ∗1 Output full-scale current Output offset voltage Glitch energy Crosstalk Supply current

Analog input resistance Input capacitance Digital input voltage

Digital input current Setup time

Hold time

Propagation delay time CE enable time ∗2 CE disable time ∗2

Symbol n fCLK

EL

ED

VFS

FSR

IFS

VOS

GE CT IDD

ISTB

RIN

CI

VIH

VIL

IIH

IIL

ts

th

tPD

tE

tD

Measurement conditions

AVDD=DVDD=4.75 to 5.25 V Ta=–40 to 85 °C

Endpoint

When “00000000” data input ROUT=75 Ω

When 1 MHz sine wave input 14.3MHz color bar CE= “L”

data input CE= “H”

VREF

AVDD=DVDD=4.75 to 5.25 V Ta=–20 to 75 °C

AVDD=DVDD=4.75 to 5.25 V Ta=–20 to 75 °C

ROUT=75 Ω ROUT=75 Ω CE= H→L CE= L→H

Min.

0.5 –2.5 –0.3 1.8

0

1

2.4

–5 5 10

Typ.

8

2.0 1.5 10

30 57 42 1

10 1.8 1.8

Max.

40 2.5 0.3 2.2 3.0 15 1

48 2

9

0.8 5

4 4

Unit bit MSPS

LSB LSB V

% mA mV pV•s

dB mA MΩ pF

V

µA ns ns ns ms ms

Full-scale voltage of channel

1 Full-scale output ratio =

Average of the full-scale voltage of the channels –1 ×100 (%)

2 When the external capacitor for the VG pin is 0.1 µF.

(7)

Electrical Characteristics Measurement Circuit Analog Input Resistance

Measurement Circuit Digital Input Current

CXD1178Q +5.25V

AVDD, DVDD

AVSS, DVSS

V A

Maximum Conversion Velocity Measurement Circuit

8bit COUNTER

with LATCH

0.1µ

DVSS

25 26 32

27 28 29 CLK

40MHz SQUARE WAVE

OSCILLOSCOPE 200

AVSS

200 AVSS

200 AVSS

AVDD

0.1µ

3.3k AVSS

BLK CE VB

RCK GCK BCK

RO

GO

BO

VG VREF IREF

39

41

42 34 35 37

1k R0 to R7

1 to 8 G0 to G7 9 to 16 B0 to B7 17 to 24

}

(8)

Crosstalk Measurement Circuit

DIGITAL WAVEFORM GENERATOR

200 AVSS

AVDD

0.1µ

3.3k AVSS

BLK CE VB

RCK GCK BCK

RO

GO

BO

VG VREF IREF 0.1µ

DVSS

25 26 32

27 28 29 CLK

40MHz SQUARE WAVE

1k 200

AVSS

200 AVSS

39

41

42 34 35 37

SPECTRUM ANALIZER ALL “1”

R0 to R7 1 to 8 G0 to G7 9 to 16 B0 to B7 17 to 24

Setup Time

Hold Time Measurement Circuit Glitch Energy

8bit COUNTER

with LATCH

DELAY

CONTROLLER AVDD

0.1µ

1.2k AVSS

75 AVSS

75 AVSS

75 AVSS

0.1µ

DVSS

BLK CE VB

RCK GCK BCK

RO

GO

BO

VG VREF IREF

39

41

42 34 35 37

DELAY CONTROLLER

25 26 32

27 28 29

1k

OSCILLOSCOPE

CLK 1MHz SQUARE WAVE

R0 to R7 1 to 8 G0 to G7 9 to 16 B0 to B7 17 to 24

}

(9)

DC Characteristics Measurement Circuit

200 AVSS

200 AVSS

200 AVSS

AVDD

0.1µ

3.3k AVSS

BLK CE VB

RCK GCK BCK

RO

GO

BO

VG VREF IREF 0.1µ

DVSS

CLK 40MHz SQUARE WAVE CONTROLLER

DVM

1k 25

26 32

27 28 29

39

41

42 34 35 37 R0 to R7

1 to 8 G0 to G7 9 to 16 B0 to B7 17 to 24

Propagation Delay Time Measurement Circuit

200 AVSS

200 AVSS

200 AVSS

CLK 10MHz SQUARE WAVE

BLK CE VB

RCK GCK BCK

RO

GO

BO

VG VREF IREF 0.1µ

DVSS

25 26 32

27 28 29 FREQUENCY

DEMULTIPLIER

AVDD

0.1µ

3.3k AVSS

1k 39

41

42 34 35 37

OSCILLOSCOPE R0 to R7

1 to 8 G0 to G7 9 to 16 B0 to B7 17 to 24

(10)

Description of Operation Timing Chart

I/O Chart (when full scale output voltage at 2.00 V)

Application Circuit

CLK

AA AA AA

AAA AAA AAA

AA AA AA AAA AAA

AAA

DATA

D/A OUT

tPW1 tPW0

2V

ts th ts th ts th

tPD tPD

tPD

100%

50%

0%

DVDD AVDD

0.1µ

2V (LSB)

(MSB) (LSB) 1 2 3 4 5 6 7 8 9 10 11 12 R (Red) IN

G (Green) IN

B (Blue) IN

(MSB) (LSB) (MSB)

200

200

200

B (Blue) OUT

AVSS

G (Green) OUT

AVSS

R (Red) OUT

AVSS

37 38 39 40 41 42 43 44 45 46 47 48

3.3k

AVSS

AVDD

1k AVSS

0.1µF

DVSS

DVSS

CLOCK IN 36

35 34 33 32 31 30 29 28 27 26 25

13 14 15 16 17 18 19 20 21 22 23 24

Input code MSB LSB 1 1 1 1 1 1 1 1

:

1 0 0 0 0 0 0 0 :

0 0 0 0 0 0 0 0

Output voltage

2.0 V

1.0 V

0 V

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Note) Even though 1 channel and/ or 2 channel are used, be sure to input the clock signal to RCK(Pin 27).

(11)

Notes on Operation

• How to select the output resistance

The CXD1178Q is a D/A converter of the current output type. To obtain the output voltage connect the resistance to current output pins (RO, GO and BO). For specifications we have;

Output full scale voltage VFS=1.8 to 2.2 [V]

Output full scale current IFS=less than 15 [mA]

Calculate the output resistance value from the relation of VFS=IFS ×ROUT. Also, 16 times resistance of the output resistance is connected to reference current pin IREF. In some cases, however, this turns out to be a value that does not actually exist. In such a case a value close to it can be used as a substitute.

Here please note that VFSbecomes VFS=VREF×16ROUT/RIR.

VREFis the voltage set at the VREF pin and ROUTis the resistance connected to current output pins (RO, GO and BO) while RIRis connected to IREF.

Increasing the resistance value can curb power consumption. On the other hand glitch energy and data settling time will inversely increase. Set the most suitable value according to the desired application.

• Phase relation between data and clock

To obtain the expected performance as a D/A converter, it is necessary to set properly the phase relation between data and clock applied from the exterior. Be sure to satisfy the provisions of the setup time (tS) and hold time (tH) as stipulated in the Electrical Characteristics.

• Power supply and ground

To reduce noise effects separate analog and digital systems in the device periphery. For power supply pins, both digital and analog, bypass respective grounds by using a ceramic capacitor of about 0.1 µF, as close as possible to the pin.

• Latch up

Analog and digital power supply have to be common at the PCB power supply source. This is to prevent latch up due to voltage difference between AVDDand DVDDpins when power supply is turned ON.

• On inverted current output pins

The RO, GO and BO are the inverted current output terminal as described in the Pin Description.

The sums shown below become the constant value for any input data.

a) The sum of the currents output from the RO and RO pins.

b) The sum of the currents output from the GO and GO pins.

c) The sum of the currents output from the BO and BO pins.

However, the output current from the RO, GO and BO pins is not guaranteed of its performances such as linearity errors, etc.

• On output full-scale voltage

When the output full-scale voltage is used without adjustment in the application that uses the RGB signal, the color balance may be broke.

(12)

Latch Up Prevention

The CXD1178Q is a CMOS IC which required latch up precautions. Latch up is mainly generated by the lag in the voltage rising time of AVDD(Pins 43 to 46) and DVDD(Pins 47 and 48), when power supply is ON.

1. Correct usage

a. When analog and digital supplies are from different sources

b. When analog and digital supplies are from a common source (i)

(ii)

43

CXD1178Q

AVSS

AVDD

44 45 46

33

AVDD DVDD

DVSS

AVSS

C C

31 DVSS

+5V +5V

30 47 48

DIGITAL IC DVDD

43

CXD1178Q

AVSS

44 45 46

33

AVDD DVDD

DVSS

AVSS

C C

31 DVSS

+5V

30 47 48

DIGITAL IC DVDD

43

CXD1178Q

AVSS

44 45 46

33

AVDD DVDD

DVSS

AVSS

C C

31 DVSS

+5V

30 47 48

DIGITAL IC DVDD

(13)

2. Example when latch up easily occurs

a. When analog and digital supplies are from different sources

b. When analog and digital supplies are from common source (i)

(ii)

43

CXD1178Q

AVSS

AVDD

44 45 46

33

AVDD DVDD

DVSS

AVSS

C C

31 DVSS

+5V +5V

30 47 48

DIGITAL IC DVDD

43

CXD1178Q

AVSS

44 45 46

33

AVDD DVDD

DVSS

AVSS

C C

31 DVSS

+5V

30 47 48

DIGITAL IC DVDD

AVDD

43

CXD1178Q 44 45 46

33

AVDD DVDD

DVSS

AVSS

C

31 +5V

30 47 48

DIGITAL IC DVDD

AVDD

(14)

Example of Representative Characteristics

Output full scale voltage vs. Reference voltage Reference voltage VREF [V]

Output full scale voltage VFS [V]

100

Glitch energy vs. Output resistance Output resistance ROUT [Ω]

200

Crosstalk CT [dB]

Crosstalk vs. Output frequency Output frequency FOUT [Hz]

2.0

1.0

0

1.0 2.0

200

100

AVDD=DVDD=5V VREF=2.0V RIR16ROUT

Ta=25°C

60

50

40

100k 1M 10M

AVDD=DVDD=5V VREF=2.0V ROUT=200Ω RIR=3.3k Ta=25°C AVDD=DVDD=5V

ROUT=200 RIR=3.3kΩ Ta=25°C

2.0

1.9

0

–25 0 25 50 75

AVDD=DVDD=5V VREF=2.0V ROUT=200 RIR=3.3k

–40 85

Output full scale VFS [V]

Output full scale voltage vs. Ambient temperature Ambient temperature Ta [°C]

Glitch energy GE [pV•s]

(15)

SONY CODE EIAJ CODE JEDEC CODE

M

PACKAGE STRUCTURE

PACKAGE MATERIAL LEAD TREATMENT LEAD MATERIAL PACKAGE MASS

EPOXY RESIN SOLDER PLATING 42/COPPER ALLOY

48PIN QFP (PLASTIC)

15.3 ± 0.4 12.0 – 0.1+ 0.4

0.8 0.3 – 0.1 + 0.15

0.24 13 24 25

36

37

48

1 12

2.2 – 0.15+ 0.35

0.9 ± 0.2

0.1 – 0.1+ 0.2

13.5

0.15 – 0.05 + 0.1

QFP-48P-L04 QFP048-P-1212

0.7g

0.15

Package Outline Unit : mm

(16)

—16—

SONY CODE EIAJ CODE JEDEC CODE

M

PACKAGE STRUCTURE

PACKAGE MATERIAL LEAD TREATMENT LEAD MATERIAL PACKAGE MASS

EPOXY RESIN PALLADIUM PLATING COPPER ALLOY

48PIN QFP (PLASTIC)

15.3 ± 0.4 12.0 – 0.1+ 0.4

0.8 0.3 – 0.1 + 0.15

0.24 13 24 25

36

37

48

1 12

2.2 – 0.15+ 0.35

0.9 ± 0.2

0.1 – 0.1+ 0.2

13.5

0.15 – 0.05 + 0.1

QFP-48P-L04 QFP048-P-1212

0.7g

0.15

Package Outline Unit : mm

Cytaty

Powiązane dokumenty

Installation option - 2: power supply intended for operation in safe area, equipped with intrinsically safe circuits which may be placed in hazardous area...

1) two-way power scheme, 2) nodal, 3) parallel Th e theory of calculation the instant schemes of electric power supply specifi es the usage of functions for power

The wind power distribution is obtained by the propagation of this wind speed distribution through the wind speed/wind power characteristic of the energy converter (wind

De beschrijving in de eerste stap van het schema laat zien dat V-Power Diesel bestaat uit drie componenten: een 'basis brandstof' van een speciale kwaliteit, een component

• It receives the 400V(460) three-phase mains supply (terminal block B2) and provides the dc voltage power output (550 V internal bus) to the DIGIVEX servoamplifiers.. • It

Powerful and Accurate control Power Electronics’ success is measured by our customer’s satisfaction so the motor control systems developed by Power Electronics have been designed

In present work it is proposed to consider the problem of providing regular mode of organization’s functioning as a complex of two interrelated tasks – control of

The new tool here is an improved version of a result about enumerating certain lattice points due to E.. A result about enumerating certain