• Nie Znaleziono Wyników

Approximation to continuous functions

N/A
N/A
Protected

Academic year: 2021

Share "Approximation to continuous functions"

Copied!
6
0
0

Pełen tekst

(1)

A N N A LES SO C IETA T IS M ATHEM ATTCAE PO LO N AE Series I : COM M ENTATIONES M A TH EM ATICAE X V I I I (1974) RO C ZN IK I PO LS K IE G O T O W A R Z Y S T W A M ATEM ATYCZNEGO

Séria I : P R A C E M A TEM ATYCZN E X V I I I (1974)

L. B

e m p u l s k a

(Poznan)

Approximation to continuous functions

1. Let Л = ||Aj£ II (Тс = 0, 1, ii; п = 1, 2, ...) be a tringular matrix of real numbers, in which A” = 1 for any positive integer n.

Consider the Fourier series

Since 2 AX(k ] = 1 , the quantity B n(œ-, /, A) — \Ln(x-,f, A )—f(œ)\,

00

( 1 )

of 2jr-periodic function /e _L <( — tz , tz ), and the linear operators П

B y the Abel transformation, П

L n(x) = У M">S*(æ) ,

п

к —О

considered below, can be rewritten in the form П

Й „ (*;/ ,Л ) = | У М ’,) { « * ( * ) -Л ® )}| (» = 1 , 2 , ...) .

Let us introduce, for any positive p, the related expression П

Н Ц Х )

= H * ( x - ,f,A ) = { у |М “)П « * И - / М Г } 1'3’ (» = 1, 2 , . . . ) .

(2)

Evidently, B n(x-, /, Л) < /, A) (n = 1 , 2 , . . . ) .

Given an arbitrary positive

(3 <

1, we shall signify by

A p

the set of all these matrices A for which

(2) n f £ ( M n,)! = 0 (1 )-

k—0

Putting (px(t) = f(æ-\-t) — 2f(æ) + f ( x — t), we shall denote by Z a (0 < a < 2) the Zygmund class of all functions f e C 2n such that

max \<px(t)\ < 2 Г for te <0, тс).

Write

An(a, /8) = sup sup т а х В п(ж; /, Л), ЛеЛ^ fe^a x

B%(a, /?, r) = sup sup тахЛ ^ (ж ; /, Л ),

ЛеЛ^ /M<=Za ж

where/(г)(я) is the r-th derivative of f(x ).

In the present paper the suitable estimates for A n(a, (3) and ^ ( a , ,8, r) will be given.

2 . Beasoning as in [1], p. 21-23, or applying our Theorem 2 (with p = 1, r = 0),' we obtain

T heorem 1. Under the basic restrictions 0 < a < 2, 0 < /3 < 1,

(3)

0 {n ~ a+{1- m ) i f 0 < a < 1/2 0{n ~ pl2(\ogn)112) i f a = 1 / 2 , 0 {n ~ m ) i f a > 1/2.

We shall prove that estimates (3) cannot be improved.

1° In case a > 1/2, consider the matrix ylj = ||A(fcw)|| in which

>p-T cp

4 ”1 = i , 4 " (& = 1, 2, . . . yn ; n = 1, 2, ...), A simple calculation shows that condition (2) holds. Further, if f*(t) = 5-1 cost, then

f * ( x ) — L n( x ;f * j Af) == (1 — Я(1и))/*(ж) = (5^ /2)-1 cosæ

for all real x (cf. [1], p. 23).

Since /*<r Za (0 < a < 2), the desired result.follows.

2° If 0 < a < 1/2 we introduce the Fejér means of series (1):

= — У Ski®',!) n

k= о

«о

2 У i Jfc

n ( cos Tex + bk sin t o ) .

(3)

Approximation to continuous functions

73

Denote by Л2 the matrix with

= 1 --- n(l~P)l* ft for ft = 0, 1, m , n

n — m

where m = [n/2] + l* Then, / & —- m \ -

( 1 ---1 f o r 1c = m + 1 , m + 2, . . . , w,

\ n — m J

1 v -1 A(w) ^

АЛ#;/, Л2) = П(1+Р)Ц 7 , ^ ) / ) + ^ ^ fc

= 0

= ~ (T+ff)/T g m ( ^ ; / ) + K ( ^ ; / ) - W <rw ( a ? ; / ) }

n — m whenever fe L < ( — 7z, 7t>, see ( — oo, oo).

Taking the 27u-periodic function

/а(<) =

\*\а

fOr

t e

< — 7U, 7Г)

and using the asymptotic formula of Nikolsky ([3], p. 205), we obtain 4 , ( 0 ; /«, Л ) = в*1- » ' 2 {<rm( 0 ; / J - o , ( 0 ; / J + O | - b - j j

( 2(2a —l ) JT(a) arr 1 ±n

= { --- ~---7~^ sin — + 0(1)1 n~aHl m .

{ 7C(1 —a) 2 J

The matrix Л2 satisfies (2) and/ae Z a. Hence

A n i« ,P )> №п(0;/«,Л2) - / в(0)| = №„(0;/a, Л2)|.

3° In case a = 1 /2 we choose the matrix Л3 with the modified Baska­

kov terms ([1], p. 23, (B))

1 for 1c = 0,

1

V

к

1

1

;(«■) _ I 1 / g - / . ^or ^ == 2, . . . , m,

Ak — Vn^logn V r

1c —m i . . 1 --- ) &

n — m for 1 c = m + 1 , m + 2 , . . . , w ,

where m = [w/2]-f 1. Then condition (2) is fulfilled.

From estimates of [1], p. 24-25 follows that i M(0 ;/1/2, Л3) is of the

order 0{n~ pl2 (lo g n )112), precisely.

(4)

T heorem 2. Assuming that p > 0 emd r = 0 , 1, 2, ... (0 < a + 2, 0 < /? + 1), we have

0 {n ~ r- a+(l- m p ) i f r + a < 1 2 p (4) в р (а, P ,r ) = ■0 {n~r~a+(1~p)l2p\ogll2p n) i f r + a 1 2 p

0 (n ~ m p) if r + a < 1

2 P P ro o f. By Holder’s inequality and [2],

n П

fc=0 л=о

1 1 v~4 1

= O inV-W *) {— — > .

Now, the assertion follows at once from Theorem 6 of [2], p. 150, slightly modified.

3. Besides of (2), we shall further suppose that > 0 (к = 0, 1, ...

. . . , n j n — 1 , 2 , . . . ) .

In this case the first estimate of (4), with r = 0, can be improved correspondingly. Namely,

T heorem 3. I f p > 1, 0 < a < 1-I2p, then

B p (a, /?, 0) = 0 (n ~ a/}) as n oo.

P ro o f. In view of the Minkowski inequality,

< Р х У ) sin(A; + l/2)#

2 sin#/2 dt

p\i i p

I +

sin (Je + 1/2)#

2sin#/2 V + W.

The assumption f e Za implies

V = 0 ( 1 ) { ^ ^ 4 W)( J dt)P] llP = 0 {n ~ ats).

k=0 0

(5)

Approximation to continuous finctions

7

Applying the Holder and the Minkowski inequalities, we obtain

»c Я 7T

W < { 2 < M - > ) f P £ /*,<«) sin(fc + 1/2)2 2sin£/2 dt

k= 0 ' k= 0 1 n

iiSife—rr LSI J>—«П

2pi i/2p

n ТГ

2 p l 1 jip

к— 0 n

Jp 2 tan </2

k — 0 n

= 0 ( ^ - /î/2î,)(TF1AWr2).

By the Hausdorff-Young theorem

~~ 2p ^ 2prc

J l 9)x (0 t2p~1^ } 1 = 0 (1 ) I J I 1 — l/2p

=

0

(

1

) ,

?*(*) 2 tan t /2

2p A. ) ll^l/2p

2/>-i dn 0 ( г а^+ № ).

The thesis is now evident.

I t is easy to see that if 0 < p x < p 2 (zU(fcw) > 0), then

Indeed, by Holder’s inequality, П

= { у M ’W (*)-/ < * ) I*1}1" 1

A = 0

& = o

= H *H x-J, Л).

This fact and Theorems 2, 3 yield

T heorem 4. Under the restriction 0 < p < 1, we have О (n~aP) i f 0 < a < \, Б £(а, 0, 0) = 0(w-/3/2(logw)1/2) i f a = |,

0(n~P/2) i f a > \ . Finally, let us consider the Euler means

П

E n( v ;f) = ^ r ] ? ( l ) s k(x-,f) (я = 1 , 2 , . . . )

k

=0

(6)

of series (1). They may be treated as the linear operators L n{x\f, Л) with factors

П

4 n| = y « ^ ( “) (* = 0 , 1 , . . . , » ; » = 1 , 2 , . . . )

v = k

satisfying the conditions

([4], p. 356).

Hence, for example, Theorems 2 and 3 lead to

C orollary . Suppose that p > 1 and f e Z a (0 < a < 2). Then п

т а х Ц - ! ** <* ; Л -

Х 1 к=0

-f{x)\p ^1 р

0 (п ~ а12) i f 0 < а < - L 2p

= ' 0 (п~а/2 (logn)V2p) Y 1

J 2 p

0 (n ~ ilip) i f a > —— 1 2p

I am very much indebted to Dr. E . Taberski for his kind criticism and valuable suggestions.

References

[1] В. А. Б а с к а к о в , О порядке приближ ения непрерывных функций некоторыми линейными методами суммирования рядов Фурье, Известия Высших Учебных

Заведенийи 7 (1969), р. 20-27.

[2] L. L e in d le r, On summability of Fourier series, Acta Sci. Math. Szeged 29 (1968), p. 147-162.

[3] И. П. Н а та н со н , Конструктивная теория функций, Москва 1949.

[4] О. А. З и за , О суммировании ортогональных рядов методами Эйлера, Мат.

Сборник 66 (108) № 3 (1965), р. 355-376.

Cytaty

Powiązane dokumenty

Next, we show that even imposing restrictive geometric constraints on the outer functions may not suffice to assure that their Taylor approximants will inherit their

At this point, the problem of supports of homomorphisms of G(X, 01) have been completely solved. It turns out that theorems of the above type hold true for

The author would like to thank the referee for his valuable

(See for example [5], where it is shown, by different methods, that the structure space of each ring is isomorphic to βX, the Stone– ˇ Cech compactification of X.) We show that for

In the present paper we give some theorems on approximation of 2n-periodic continuous functions by general linear means of their Fourier series in metrics

I am very much indebted to Professor Roman Taberski for his valuable suggestions and

Тиман, Точная оценка остатка при приближении периодических дифференцируемых функций интегралами

Generalization of a theorem of Hardy and Littlewood... Generalization of Ziziashvili’s