• Nie Znaleziono Wyników

| Approximation of functions in L- and O-metrics

N/A
N/A
Protected

Academic year: 2021

Share "| Approximation of functions in L- and O-metrics"

Copied!
16
0
0

Pełen tekst

(1)

ANNALES SOCIETATIS MATHEMATICAE POLONAE Series I: COMMENTATIONES MATHEMATICAE X I (1967)

P. P ych (Poznań)

Approximation of functions in L- and O-metrics

1. Preliminaries. Let L[G] be the class of all 27r-periodic functions / Lebesgue-integrable (continuous) in every finite interval. Write

= sup max \f{x+t)—f{x)\,

(o2(6jf) = sup max \f{x+t)—2 f(x )+ f(x —t)\

О — rc<a;<Tt

for any feC, and

TT

= sup f \f( x+ t) —f{x)\dx, T U

<A l)(S,f) = sup f \f ( x+ t) —2f{x )+f (x —t)\dx 0 <(<<5

for any f e L . These quantities are called the moduU of continuity and the moduli of smoothness of / in G and L, respectively.

A 1, Z 1, Z 2 will denote the classes of all functions feG with moduli satisfying the inequalities

» , № / ) < « , юг(<5,/) < 2 й , ( « , / ) < <5*, respectively. The classes of functions /«X for which

«А'Ча.Л <-«, f> < 23,.

will be denoted by /1^, Z['K Z^K It is easy to see that Л 2 >= Z ,, Л*)* cz r/J'' and that these inclusions cannot be reversed.

By Wp and W$\ with an integer p > 1 , we denote the classes of 2 Tr-periodic functions f having the derivative f (p~l) absolutely continuous in any finite interval, such that

П

ess sup |/(р)(ж)| < 1 and J | f p){%) \dx < 1 ,

л:<ж<гс _ —

respectively.

(2)

It is well known ([5], p. 216) that if f e Wp or f e W$, then vo cos{1c(t— х) + ^р-к} oo

/ W = T + T ... у

tu k = 1

where a0 is the initial Fourier coefficient of / , xe( — oo, oo). Also, the function / conjugate to a function / of class Wv or (p ^ 2 ), defined by the formula

x 71

/ 0 ») = — ■ — lim f { f ( x + t ) - f ( x —t)}coątdt, A7Z e ->0 j

can be represented in the form 1

71

* t u u

?о») = - -X f f (p)(t) ^

—n fe= 1

sin{ft(/—ж )+ |р 7 т:}

for xe( — oo, oo). Moreover, J / (p)(/)d/ = 0.

In this paper we consider the linear operators

TC

f{x-, i) = — f f ( t ) 0 ( t —x, £)dt

TC

J

— TC

and

Я

f i x ; £) = —-X- j f ( t ) 0 ( t - x , S)dt,

— 7Z

with the kernels

O O O O

( 1 ) 0{t, £) = ł + ^ Qk(£)cosM, 0(t, i) = £ e&(l)sinfc«;

fc=i fc=i

we assume that the factors g*(£) are defined in a set E of real numbers having an accumulation point £0, and that series ( 1 ) are uniformly con­

vergent in t for any fixed £.

In Section 2 we find the connections between the quantities

TV

sup /I/O»; £)—f{oo)\dx, sup max \f(x-, £)—/(a?)|

f _n 1 — 7и<Ж <ТГ and

sup £)—/ 0 »)|<й», sup max I/O»; £)—/ 0 »)l,

/ „тх f --n^X^TC

where the supremum is taken over all functions of the corresponding

classes mentioned above. In Section 3 the exact and asymptotic formulae

for some concrete operators are given.

(3)

The following remarks will be needed below.

1° If / is of class L, geE, then T C

( 2 ) f ( x ; |) - /( ж ) = — f{f (x -\ -t )- 2 f { x )+ f{ x -t )} 0 ( t, £)dt n J 0

for every x , and

7C

(3) /(ж ; 1 )-/(ж ) = — f { f { x + t ) - f ( x ~ t ) } { l c o t ^ t - 0 ( t , £)}dt 7C

J

0

for almost every x.

2° Under the restriction / e Wp or /e Wp\ £еЯ, we have

(4) /(ж )-/(ж ; I) and

(5) /(»; Ś)-f(oc)

T / / (P) (*) ^ 1 jp * ^ c°s (< -a?) ^

— n fc= 1

1

7ТГ

T t 0 0

J / (p) (0 ^ 1 ■ J p -— sin {A: (< -ж ) + |ртс}dt for an arbitrary x.

3° Let Tp be the class of all trigonometric polynomials g snch that j \g^(x)\dx < 1. Obviously T x с Л^, T 2 a Z (2 \ Tv c= Wp* (see [11],

— Tt

p. 180, ex. 9). Applying Theorem 3 given in [ 6 ], we easily obtain the fun­

damental inequality

(

6

)

TT T t

sup ГI f g(p)(t)K (t—x)dt\ dx o^Tp

_ n _ n

^ j \K(x)—K ( x Jr ii)\dx о

for any 27r-periodic function K(t) Lebesgue-integrable over < —тс, 7 i>.

2. General theorems. Let us start with L em m a . Given an integer p ^ 1, we have

(i! sup

feTp J f I№ ;

oo fc =0

1 ) 1 £ 2 fc+l(£) (2&+l)p+1 ’

(ii)

T T

|/(ж; £)-/(ж )| 4

^ж > -—

тс

00

2 V 1)

fc = 0

kp 1 @ 2 fc+l(£)

( 2 & + l f +1

for every fixed £eE.

(4)

Proof. Denote the left-hand side of (i) and (ii) by Sp(ś) and Sp{łj), respectively. Representation (4) and inequality ( 6 ) imply

7C TC

&p(|) = sup-*- J| J сов {к (t—x)+$piz}dt

— TT — TC k = 1

utv 2

dx

— TT — T t

T t o o

I 1 @ 2 fc+l(£)

tvj

0 fc =0

( 2 Л + 1 Г

v '

cos{(2ft+l)a? + |p 7 i} dx.

Therefore, in the case of p oddJ

TC o o

0 k = 0 v '

1

k = 0

1 Q 2 k + l ( £ )

(2Tc+l)p+1 ’ and in the case of p even,

TC o o

c . 2 Г I V-! l — Q2k+i{£) /07 ,

$«(£) > — > --- ,, cos( 2 fe-fl)a?

pV ' 7Г J \ ^ J ( 2 fe+l)p

0

&=o ' ' n/2 oo

> — f cos( 2 fe + l)xdx dx

к f 2 (21c + l f

= ± V ( - D

0 fc=0

4 y ^ ^ y f c 1 —&*+i(£)

TV

k = 0

(2fc+l) p +P'*

Analogously, by (5) and ( 6 ),

71 TC OO

,V,,(s) = s u p -1 f f > W У L .

s i n { k ( t — x ) + $ p i r } d t

>’ tp 71 A A H 1

dx

/ 1 2

1 (? 2 fc+l(£) (2Й + 1У

0 k = 0 ' 7

sin {(2 A: +1) x + \p tv } dx.

If p is even, Spd) > 2

TV ' II

0 fc= 0

1 £? 2 fc+l(£)

( 2 k + l ) p sin( 2 &+l)#da? 4 TV

OO

1 @ 2 fc+l (£) (2Jc+l)v+1 ’

if p is odd,

Sp(S)

1 £ * 2 f c + l ( £ )

(2fc+l)p cos ( 2 ^ + 1 ) a? I dx > 4 TV

k = о

1 @ 2 f c + l ( £ )

T 2 fe+T f+r *

Thus, estimates (i) and (ii) are proved.

(5)

T heorem 1. I f Ф(/, £) > 0 for t e ( 0, тг>, £eS, then

oo

sup Г|/(ж; £ ) - / И 1 ^ = V 1 f 2fc+-1^ = Slip max |/(a?; £ ) - / И 1 *

/eZ(i) _■£ 7Г ^ ( 2 A;+ 1)2 /eZl

P roof. In view of (2),

тс я

sup Г |/(ж; I ) —/(ж)|йя? < — Гt<J>{t, £)dt = Л ( 0 ; I)—Л ( 0 )

И Р Л " o'

= sup max |/(я?; f ) —/(a?)|, /eZj — тт<а:<7г

where / х(ж) = \x\ for a?e< — тс, тс>. Since тс 4 cos(

OO

2 &+l)a>

Л И - Y “ 7 Ż ( 2 /c + l )2

Л И £) = @2k+l(£) cos( 2 & +l)#

2 ( 2 * + 1)a

for же<-тс, тс>, л\ге have

oo

Л(0; ^)-Л(О) = — У -1-~ g2fc+l(^-.

J J У ’ iz (2 & + 1 )2

On the other hand,- by Lemma,

n

TC oo

sup Г I f ( x ; £ ) —f ( x ) \ d x > sup f| f ( x - , l ) —f ( x ) \ d x У 1

/.zW J , Ti Z j (2 * + l)>

and the required formula follows now immediately.

Also, a related result holds. Namely:

T heorem 2. I f W ( t , £) = ± c o t% t — 0 { t , £) > 0 f o r t e ( 0, тг>, f e S , th e n

OO

sup Г |/(ж; £) — /(a>)|<&& = — V (— 1)*-—g2fc+1^

M ?)- k тс A J k= 0 (21 c +1)2

= sup max \f(x-,£)-f(oo)\.

fеЛj — тг<х<тс

Proof. Identity (3) can be rewritten in the form

tt/2

i)-f(oo) =— f {/(a?+t)— TC J /0»— £)d$ —

о

-- Г {/(®+*+"-<)-Л*+я-я+«)} TC J тт 9 ,((, {)й«

тт /2

5 — Prace Matematyczne XI (1967)

(6)

for almost every x. Therefore,

тс тт/2 тс

sup Г |/(ж; £) — /(ж)|йя?< — I Г |)й < + Г(тг— £)й/1

К ) Л 71 У- тс% j

= /

2

(

0

; l ) - / 2(0) = sup max |/(ж; £)-/(ж)1, /еЛ^ —

where / 2(ж) is 27u-periodic, odd, such that

/ 2 ( ж ) =

ж if 0 < x < 7 г /2, ти—ж if 7 u /2 ^ a? ^ 7u.

Since

4 v i / 2 (ж) = — > ( - 1 )

7U fc =0

& sin(2&-f l)a?

( 2 &+ 1)2

~ 4

f 2(x) = ---> ( - 1 ) fc =0

vA. cos(2&+l)&

(2fc +l)2~ ’ and

^ fc

= 0

cos(2&+l)a?

(2 & + l)2_

for each x e ( — ж, тс}, £ e 3 , we have

/ г ( 0 ; ! ) —/ 2 ( 0 ) = — Y ( - l ) 4

7U k=o

к

4 £ 2 f c + l ( £ )

( 2 &+ 1 )2 Applying Lemma, we obtain

sup Г|/(ж; £ ) - f ( x ) \ d x ^sup Г|/(ж; £)-/(ж)| V ( - 1 ) к—О

&4 @ 2 fc+l(£) ( 2 &+ 1 )2~’

and the conclusion is evident.

T heorem 3. I f <P(t, £) > 0 /or U<0,7u>, £еЯ, i f

fc=i

&+i 4fc(&+l) —(2&+1 _ _ _ _ _ )2 {>i(£) + £ 2 fc+i(£)

0 { 3 —4ei(^ )+ e,(f)}

as £ -> £0, Йе?г

sup / |/(*; = l - ffl(f) + 0 { 3 - 4 ffl(f) + ffs(f)}.

*44 - i

(7)

Proof. In view of ( 2 ),

TC * TC

sup f I/(ж; I ) —f(oc)\dx < — Г^ 2 Ф( 1 , £)dt

uz\f) Л 71 ^

T U

= — Г ( 2 в т ^ ) 2 Ф(«, £)d<+— f {«2 (2 sini«)a} Ф(«, £)dt

TC

J Tt J

о 0

TC TC

= — J*(l—cost)<P(t, £)dt-\-0 j J ( s i n i)dt j

1 — gi(£) + ^{3 — 4^ i (^) + ^2(^)}- By Lemma,

snp f \f(x-, £)- f(x )\d x / 4 1}-

sup f I/(ж; ^)—/(а?)|йя? V ( - l ) ;

*T 2 _i те «

1 g 2 fc+l(£) ( 2 fc + l )3 4

7T

00

I ’ f - u fc = 0

l - g l ( g )

( 2 &+ 1)3 4

oo

fc= 0

g l(£ ) — g2fc+l(£)

( 2 &+ 1)3

4

oo

к— о

l - g i ( D

2&+1

~\---- 4 7C fc

= 0

1 ) fc-f-l 4ft(fe+l)-(2fc+l)2gi(g) + g2ft+i(g)

( 2 &+ 1)3

= l - e i( f ) + 0 { 3 - 4 e i(f) + gs(f)}.

Thus, the proof is completed.

B e mark. Under the assumption <f>(t, |) > 0 , the asymptotic rela­

tion

sup max |/(ж ; |)- /(ж ) | = l - M ! ) + 0 { 3 —4e1(£) + M £)}

ftZ^ — tt <£C< t c

can easily be deduced, too (cf. [ 1 ]).

How, writting

Ap(£) = snp max |/(ж; £)—/(a?)|

(8)

and

= S lip Г|/(ж; £)—f(x)\dx, feW§)-n

we shall demonstrate the following T heorem 4. Suppose that

00

Qi(t} i) = —

vanishes only at the points t = hn (Tc = 0, ± 1 , ± 2 , ...) for any £eE.

Then, given an integer p ^ 1 ,

4 4 (f) = ± y (__ i )'''(>'+

fe=o

1 {?2fc+l ( I)

(2*4-1 f +1 P roof. By identity (4),

with

4 4 (f) = sup uwm *

7Z П

J | j f v){x+t)Qp{t,

— TC — TC

dx

0 0

Qp{t, i) = ^ COS (Jct + $pn).

k= l

The function Qp (t, £) is continuous in t it p ^ 2 , and Q'p{t, £) = —Qp^ x(t, £);

hence it can easily be shown that Qp(t, £) possesses at most two roots in every half-open interval of length 2n.

In the case of p odd (p = 2 r + l, r — 0,1, 2, ...) the function

Qp(t, £) = ( - l )r+1 ^ sin Jet k= l

vanishes only at the points t = Jen (Jc = 0, ± 1 , ± 2 ,...) . Then

TC

4 l,(f) < — TV f I Qp(t, 01 dt J

2

TV 0 fc= 1

sin Mdt

oo

d ~ g 2 fc+i(l)

( 2 f c + l f +1

(9)

If p is even (p — 2r, r = 1, 2, ...), then

OO

Q„(t, £ ) = ( - ! ) ' £ с о Ш,

and the difference Qp{t, £)—Qp{n/2, f) vanishes only at the points t — ^ic-f-hic (J c = 0 , ± 1 , ± 2 , ...). Consequently,

71 TC

4 4 (f) = sup — f f f v){x+t){Qp{^ £)—QMiz, £)}dt uw$ n J J

dx

n/2 n

~ j I Qp(t, f ) - e » ( K f)|d« = -=-| (J - fj{Qp(t, D - Q p O tz , l)}dt

n/2 oo

0 A =0

1 £? 2 fc+l(£)

( 2 k + l f " ( Я + 1 ) , Й

0 n/2

4 TC TC fc

= 0

fc 1 g 2 fc+l(f) (2Jc+l)P+1 '

On the other hand, by Lemma, 4 4 ( f ) > sup

utv

TC

*/ TU

— тс

oo

Jfc=

1 @ 2 fc+l(£) (2A;+l )J,+1 Thus the first part of Theorem is established.

Analogously,

1 "

4 (f) = SUP 1 / ( 0 ) —/ ( 0 ; f)| = sup — f f p){t)Qp(t, £)dt

uwp uwp 1 тс

sint)Qp(t, £)dtI for p odd,

7T

71

sign (cos t){Qp(t, £)—Q p {\ tc , $)}dt\ for p even, i.e.,

4(f)

k-= 0

1 ^ 2 fe+l(f) T 2 fc + l ) pTr ? and the second part is proved.

Applying identity (5) instead of (4) and arguing as previously, we get T h eorem 5. I f the function

O O

- V l l — Qk(£)

Qiih i) = 2 , — с о Ш

fc= 1

(10)

has at most one root in the interval ( 0 , тс), then

тс 00

4 V"! . ' . .ftp 1 g 2 fc+l(£) sup f |/(ж; i ) - f ( x ) \ d x = — V ( - 1 )A

(2&+l): г >+1 sup max |/(®; £)—/(®)|, /еИ7», — r:<a:<7T

where p is a positive integer, p > 2 , £eS.

S. Examples. 1 . It is well known that for Abel-Poisson integrals

7C OO

f(x-, r) = — J /(<) fa + J ^ r fccos&(ź-a?)jdż (0

^ -n ' fc= 1 *

< Г < 1 )

the assumptions of Theorems 1 and 4 are satisfied. Hence

sup I \j(ar,r)-f{x)\dx = — V

71 ^

1 — r2k+1 2 1

--- 2 = — (1— r )ln --- [-0(1—r) тс ( 2 &+ 1 ) Ti 1 —r

as r -> 1 —. This is an analogue of a formula given in [9]. Further,

r 4 ^ l _ r2fc+1

sup I \ f ( x - , r ) - f ( x ) \ d x = — у ( - 1 ) (i>+1) = 0 ( 1 —r)

/.irWjl 71 t i <M+1)

if p > 1 . The asymptotic formula for the last series is known (see [9]).

Similar results for biharmonic operators can be obtained as in [3].

2. Theorems 2 and 5 apply to the conjugate Abel-Poisson integrals

OO

f(oc-,r) = --- j f ( t ) ^ r ksinic( t - x ) d t (0 < r < 1 ).

-ТГ f t = l

Therefore,

Л OO n J ,

i X

r ~ ~ 4 v i Д — r + 4 rarctgo;

sup I \f (x -,r )- f(x )\d x = — У ( _ 1 ) /ox. 7 i \ a = ~ — “— dx

, ,(n J 7 Г ^ (2 a ;+ 1 )2 7 z J x

/ел9)Л (cf. [4]), and

it oo

sup Г \ f{x-, r)—f(x)\dx = — 'S1 ( —l ) kp 1 — r 2 *+l

(23fc+l> , 21 + 1 = 0(1 —r).

In this case the asymptotic formula can be deduced, too.

(11)

3. Now, we shall verify the second condition of Theorem 3 for the Jackson integrals (see [ 6 ])

f { X )

n) = ---3--- [• ( Sini,,;, 2 тг%( 2 % 2 + 1 ) J j \ sm |(2 — x) I

— TC

T U oo

ł i 4 ł + 2 Qk (n ) cos Jc {t — a?) j dt, where

Qk{n)

i ( 2 n — i ( 2 % —

—fc+l)! (n-Tc+1) 2 %( 2 % 2 + l ) [ {In—1c— 2 )!

{In—&+ 1 ) !

- 4 i!

2 %( 2 % 2 + l ) { 2n -T i-2 )\

0

' { n - J c - 2 )

when 0 < 1c < %— 2 , when n —2 < 1c < 2 n —2, when A: > 2 %— 2 .

Clearly, 3 —4g 1 (w) + £ 2 (w) = 0 { l / n 3), and

2 i ^

fc+i 4fe(fe+l) — (2fc4-l) 2 gi(^)4-g2fc+i(^)

( 2 & + 1 )3

\n-2j

2 %( 2 % 2 + l ) V ( - i ) * +il i --- -— 1 + f - i l (2 J t+ l)« |T

f t = l П— 1

+ 2n{2n

3

1 fc+i | 4 %(%2 — 1) 2(6%2+% — 1) 12% j

»a+ l ) (_ 1 ) \ ( 2 ft+ 1)5 ( 2 ft+ij* h 2 f t + l _ 1 ) +

* - F i V

+ 3 V ( - p ^ - J - - V ( - p * + - - j— = о Ш

2 » 2+ l Z j 2 f t + l Z j (2 ft+ l)» \ я 3/

Hence

n

sup I |/(#; w) —/(a?) I da?

j */

3 / 1

---

(-0

2%2 \%3 = sup max |/(a?; %)—/(a?)|

^2 п^Ж^я

(12)

4. Consider, next, the Cesar о means

п П

Г (я i п) = - i j ^ A yn_kcoslc(t-x)^dt (у > 0 ),

’k = l

where

A l ( T ) (y+ l)(y+ 2 ) ...

( y + v )

V

I

Write е*(тг) = An_kjAn for Те < тг, р£(тг) = 0 for Tc > n, and

00

0 y ( t ,

w) = £ + ^ e f c ( w) co s f c < . fc=l

If у ^ 1 , the kernel Фу {t , w) is non-negative ([11], pp. 78, 88 , 94).

Then, our Theorem 1 and Theorem 1 of [2] yield

r 2 1 п п I 1 \

sup \\f(x-j n ) - f ( x ) \ d x = — у ---\-0\ — )

fczwJn 7z n \ n j as n -> oo.

Now, we shall show that the last formula remains true when 0 < у < 1.

Clearly, 1 0 y{t, n)\ < n-\- 1 for у > 0, źe < 0, л:>. We also have 0 y(t, n) — + sm{Nt — ъу-к) 2 y { l —y )0 { t,n ,y )

n -\-1 ( 2 sin ^)2 А уп{ 2 &тЩ\V +1 [n + 1 ) (n + 2 ) ( 2 sin -|£)£

for 0 < у < 1, te(Tz/n, 7u>, where iV = w+-J + |y , \0(t, n, y)\ < 1 (see [11], pp. 94-95); hence, by (2),

f l f ( ^ ; n ) —f(x)\dx

7V

TT TC

= ~ / I / { /( ^ + ^ ) - 2 /(ж )+/(ж -«)}Ф у(«, n)dt f ( x + t ) —2 f( x )+ f( x —t)

- n 2Tcjn

Y

dx-\-0 ( i )

- П — Г 7C I I W+l J W+l

— tc 2 n / n

( 2 sin ^ )2

+

7T

■Jy j { f { x + t ) - 2 f ( x ) + f { x - t ) }

n 2njn

dt +

sin(jW—%уп)

( 2 sin \t) UW+1 dt dx-\-0 ( i )

TC

1 f n -\-1 n , f ) + — 12(x, n , f )

-An. dx-\-0

Ш-

(13)

uniformly in f e Z ^ . Obviously, we can write 412( ж , n , f ) = J 2 { f{ x +t )—2 f{ x )+ f( x- t)}

2 ir/łl

s i n ( B -

( 2 sin -^)y+1 dt —

■n—n/n

- f \ f [ x + t + — \ — 2 f { x ) + f ( x — t — —

J [ \ n I \ n

njn

Я + Я / П

— J |/(ж+г- — ) - 2 f { x ) + f [ x - t + —

sin JV< + ^ (l+ y )- ---± y

tv

n

Znjn П

h*K)]

sin

НН)Г dt

STZjn

я

= 2 i f + / ) t f ( » + « ) - 2 / W + /(» -» )} dt-

2я/п я— njn'

Зя/ft.

- - " Г / \ / u sin ^ + l ( l + y ) ---|77T

/ {/ e + * + T - 2/(e)+/(e _ ,_ ^ f— 2 s i n | l * + — n r — * -

TC + n/n

я— я/m /I/

я - я In

+ I 3 jt // i

sin(jV<— | ( l + y ) — - | y + ж + ^ - ^ - ) - 2 /( ж ) + / |ж - / + ^ -)[--- —--- j--- -d« +

M-C

2 № + / ) — 2 /(a>) +/(o?—<)] sin(JVi —^y 7 r)

/ ( Ж+ Н — I —2f(x) -\-f\x—t ---

n j \ n

( 2 sin ±*)y+1

8 ш | ж £+-| 2 ( 1 + 7 )— — 1 у ъ n

f 2 sin 4 +^)r

Bi n m - * (i + 7 ) - - i y7c

- |/ |® + * - - ) - 2 / ( » ) + / |® - « + - ] j -

П TC \ y +1

t — WJ

dt

= 2( + iK *b/) + Y a(a?, n , f ) ) - Y 3{x, w , / ) - Y 4 (a?, w,/) + Y 5 (£t?, n ,f) .

(14)

It is easily seen that

7X

Л f I Yi{x, n, / ) Idx = o l —

ny J \ n

for i = 1 , 2 , 3, 4, uniformly in feZ^K Further, TZ—TCjn

n, f) = J 2 /(^ + ^ )—/ |^ + ^ + f | Ж-Н — I \ l sin {Nt — \y, /J ( 2 sin |/ ) y+1

+ 1 2 / ( ^ 0 / ( * - * - " ) ] 7 a S r ,łt) +

/ | а ? + < + - ^ - | — 2 / ( ж ) + / | ж — < — X

7Г)

• / лт-ł 1 ч s i n m + i ( l + y ) — - | y :

sm(NY—£y7r) \ n

( 2 s in i( r [ 2 gi n l ( « + ^ ) ]

+ [/ (ж+(_^ )_2/<а:)+/(ж_(+^ )]x

+

X s in ( ^ —■JyTC) ( 2 sin ^)y+1

s in J ft—$ (l+ y) — ---iv ТГ 71 i V

n f

[2sini(*-^)] +

>dt.

Next, an argument similar to that of [10], p. 422, leads to 7t

"T f \Y ^ X’ ny J rc О l—), \ n j uniformly in feZ^K

Consequently,

П T U

sup Г [ f (ж; п ) - / ( ж )| а Ь = - . - - sup \ { I ^ x , n , f ) \ d x + 0

2 / 71

/

* (w + 1 >J»<2sinW , dtf + O Ш

2 Inn

= — у---\-0

71 П

1

П J

(15)

Now let деТг. Then,

7t

gv(x’,n ) - g ( x ) = — fg' (t ) K ( t- x )d t,

TC J

with

к м = — + 2 j - j ~ ~ i 0 { t >n)dt-

k=l

О

It can easily be observed ([11], p. I l l ) that

тг, x У 1 , i . 2 0 !(a>, n, y) B ( x , n , y ) К (x) --- cot \ x +

n -\-1 2 n Avn(2sm %x)y+l n2x2

and

K {x - \ -tz) =

У 1 ,! 2 в г{у,п,у) B { y ,n , y )

п -\-1 2 соЦу n A yn{2$m%y) 14ЛУ +1 п 2у 2

for ж е < 7 г /п, тс—n /пу, where у = л —ж, |0 х(ж, п, у )| < 1, |В(х, п, у )| < С, С being an absolute constant. Thus, by ( 6 ), we get

sup I 1/У(ж5 n )—f{x)\dx ^ sup j Igv(x\ n ) —g{x)\

An geTi

dx

— TC

Ti—nln

- f \K{x)-K{x+ic) TU J

тс jn

dx

1 у ТС—П/П

tu т г - | - 1

J c o t ^ ^ + o | —

n/n ' ^

2 hm / 1

— y — ---- bO — i, 7U П n

and the desired formula is estabhshed.

5. Finally, let / у(ж; n) be the conjugate Cesaro means, that is,

TC 0 0

f v(x\n) = ----— ff(t) ^ g l ( n ) s i n k ( t —x)dt.

-n k=l

(16)

If у > 3, the difference

П n) = |c o t \ t —

is non-negative for <e(0, 7 r>, n = 1, 2 , .. .([ 8 ], [11], p. 78). Then, Theo­

rem 3.1 of [7] leads to

(cf. [ 8 ]). In view of Theorem 2, the left-hand side of the last formula can be replaced by

[1] Л. И. Б а у с о в , О приближении функций класса Za положительными методами суммирования рядов Фурье, Успехи Мат. Наук 16, 3 (99), (1961), рр. 143-149.

[2] Guo Z h u -ru i, Approximation of a continuous function by Cesaro means of its Fourier series, Scientia Sinica 11 (1962), pp. 1625-1634.

[3] G. К ан и ев , Об уклонении бигармонических в круге функций от их гра­

ничных значений, Доклады Акад. Наук СССР 153 (1963), рр. 995-998.

[4] В. Sz. N a g y , 8ur Vordre de Vapproximation Tune fonction par son integrate de Poisson, Acta Math. Acad. Sci. Hung. 1 (1950), pp. 183-188.

[5] С. M. Н и к о л ь ск и й , Приближение функций тригонометрическими поли­

номами в среднем, Известия Акад. Наук СССР, сер. матем., 10 (1946), рр. 207-256.

[6] Г. П. С аф р он ов а, О методе суммирования расходящихся рядов, связанном с сингулярным интегралом Джексона, Доклады Акад. Наук СССР 73 (1950), рр. 277-278.

[7] R. T a b e r sk i, Approximation to conjugate function, Bull. Acad. Polon.

Sci., Ser. sci. math. astr. et phys., 10 (1962), pp. 255-260.

[8] — Asymptotic formulae for Cesaro singular integrals, ibid., 10 (1962), pp. 637-640.

[9] А. Ф. Тиман, Точная оценка остатка при приближении периодических дифференцируемых функций интегралами Пуассона, Доклады Акад. Наук СССР 74 (1950), рр. 17-20.

[10] П. Л. У л ь я н о в , О приближении функций, Сибирский Матем. Журнал 5 (1964), рр. 418-437.

[11] A. Z y g m u n d , Trigonometric series, I, Cambridge 1959.

TU

sup f |/ y(^; n )— f(x)\dx.

M ( / ) - 7 Г

R eferences

KATEDRA MATEMATYKI II, UNIWERSYTET A. MICKIEWICZA

Cytaty

Powiązane dokumenty

In the present paper we give some theorems on approximation of 2n-periodic continuous functions by general linear means of their Fourier series in metrics

Taberski for his kind criticism and valuable

Sokô 1-Sokolow ski, On trigonometric series conjugate to Fourier serie of two variables, Fund.. Чльянов, О приближении функций,

The purpose of this note is to investigate a constructive characterization of generalized almost periodic functions;.. the set of these functions will be denoted

Next, we show that even imposing restrictive geometric constraints on the outer functions may not suffice to assure that their Taylor approximants will inherit their

Analogously as in the definition of the adjoint systems, the boundary of the set is called an adjoint type hypersurface of the order q. X ^(nn); rffj* being the extremal system

and can be traced back to statements on marginal functionals (cf. By using Proposition 2.1 the proofs are straightforward. We give only one example where the compactness can be

In this paper the assumptions on a(t, r) are chosen in such a manner that they imply continuity of the transforms and are satisfied for a number of