• Nie Znaleziono Wyników

Wy-y\k)W*<eki if

N/A
N/A
Protected

Academic year: 2021

Share "Wy-y\k)W*<eki if"

Copied!
3
0
0

Pełen tekst

(1)

A N N A L E S SO C IE T A T IS M A TH EM A TIC A E PO LO N A E Series I : C OM M EN TATIO N E S M A TH EM A TIC A E X I X (1977) R O C Z N IK I P O L SK IE G O TO W A RZY STW A M ATEM ATYCZNEGO

Séria I : P R A C E M A TEM A TY CZ N E X I X (1977).

K. Zima (Bzeszôw)

On the Schauder’s fixed point theorem with respect to para-normed space

1. Introduction. Let E be a linear space over the real or complex number field. The function || ||* (E->[0, oo)) will be called para-norm if:

1. ||a?||* = 0 if and only if x = в, 2. Ц— x\\* — ||a?||* for each xeE,

3. ||a? + 2/||*< IN|* + |!y||* for each x ,y eE ,

4. if I K - ® 0||*->-0 and Лп->Л0, then ||Ana?n- A 0®0||*-»-0.

The function q ( ExE -> [0, + oo)) defined by g(x,y) = \\œ — y\\* is the distance function on E. If the system (E, q) is the complete metric space, then it will be called Fréchet space and will be denoted by F.

2. Schauder’s type lemma. Let К be a bounded subset of F and let 'ïtf(K-^-F) be a completely continuous operator. I f there exists a positive number С {C = such that:

(1) ||Аж||* < CÀ ||a?||* for 0 < A < 1 , xej<f(K) — s/(K ) (1),

then there exists a sequence {s#n} of continuous on К operators with the range lying in a finite dimensional space and \\s#n(x) — s#{x)\\*->0 uniformly on K.

P ro o f (see [1], Lemma 2). Let a (fc) = {y[k)yik), . . . , у™) be

“ e^-net” of s / ( K ) . We put:

nk ' nk

(y))

( 2 ) P k(y) = 2 , <4*) ( ÿ ) - # ,

i=l and

where a ffy ) = v{f ](y): ( ^ vf]

i = l

Л * if Wy-y\k)W*<eki

if \\y~y(i )\\*> 4- (x) Algebraic difference of sets.

(2)

422 K . Z i m a

Functions v[k) and a{k) are continuous on Thus finite dimen­

sional operators P k are continuous on j/(K ) too.

Because of 0 < ctfHy) < 1 and condition (1), for each y es/(K ) we obtain

(3) ii» -p * ( ÿ )r = ! | ^ ’ « f)(ÿ )-(ÿ -ÿ ? ))||*nk

г = 1

nk

< C - Y a t\y )-\\y - y f> V * iC - ek.

i = l

Denoting by ^ k{x) = P k(s/(x)) for x eK we obtain the mentioned above sequence {

3. Schauder’s fixed point theorem. Let К be a bounded(2), closed and convex subset of F . Let s# (K -+F) be a completely continuous on К ope­

rator. If:

(4 ) stf{K ) <= К ,

(5) there exists a number C > 0 such that:

\\Щ\* < <7*A||a>||* for 0 < Л < 1 and XeK, then there exists an element p e K with jaf(p) — p.

The proof of the above Schauder’s theorem is quite similar to this one contained in [1].

4. Example. Let functions fi(t,x 1, x 2, хщ), i — 1 , 2 , 3 , . . . , are defined for $<•[(), а], х ^ ( — oo, + oo), j = 1 , 2, ..., %, where sup{%} = +oo.

г

Suppose that:

(6) functions f {, i = 1 , 2 , 3 , . . . , are continuous with respect to xjr j = 1 , 2 , . . . , % and measurable in t for every ( a q , a?2 , ..., хщ) ‘, (7) there exist Lebesgue integrable on [0, a] functions mt such that:

\fi(t,x 1, x 2, . . . , х щ) \ ^ т {^), t €[0, a], i = 1 , 2 , 3 , . . . ,

(8) i = 1, 2, 3, . . . , j = 1, 2, ..., % are continuous transform­

ations defined in space O(0>a) into C(0>a).

We consider the infinite system of integral equations t

(9) x{ = J f {(s, Ап (хг), A i2(x2), ..., Ain.{xn%))ds, г = 1 , 2 , 3 , . . . 0

(2) The boundedness of i f c J means: if xne M and An~>0, then ||Алагг*,||:*с—>0.

(3)

Schauder's fixed point theorem 423

Let E denote the set of all sequences y (ylf y 2, y3,...) with coor­

dinates yk continuous in interval [0, a]. We introduce a paranorm in E by defining

(10)

oo Ml* = J T l

¥

Ы \ M{ + no­

where Mi = j mi(t)dt and ||^|| = max \q>i{t)\.

0 [0,a]

The space (E , || ||*) we will denote by 8*. It is complete metric space (see, for example, [2]).

Putting K 0 — {y: < Mt} and defining the operator T as follows:

t

(11) Ту = j J /i(sf ^-xi(9?i), • • • ? -^•1и1(97п1)) ds,

о t

/ л (s, A 21(ç’1), A 22( y 2), . . . , A 2n2( y n2)) d s, . . . j

о we see that

(12) the set K 0 is convex, closed and bounded in 8 * and T (K 0) c K Q.

Since

H t

---<3A- — --- for 0 < K 1 , ^ [ 0 ,2 i f ,] ,

Mi + M Mf + t

then for paranorm (10) we obtain:

(13) I M * < 3 - A | H * for 0 < Л < 1 and y e E 0- K 0 => T {E 0) - T { E 0).

It is easy to see that a subset X 8* is relatively compact in 8*

iff for each natural Tc the set P k(X) defined by Pk(y) — yk is equi-bounded and equi-continuous on [0, a]. Taking into consideration above and suppositions (6), (7), (8) we conclude, by virtue of Schauder’s theorem, that there exists a point y e E 0 such that Т(ф) = у. This proves the exist­

ence in 8* of the solution of system (9).

References

[1] L. L u ste rn ik and W. Sobolew , Elementy analizy funîccjonalnej, PWN, War­

szawa 1959.

[2] K. Y o sid a , Functional analysis, Springer Yerlag, 1965.

Cytaty

Powiązane dokumenty

The prin- cipal object of study in topological fixed point theory, denoted M F [f ], is the minimum number of fixed points among all maps homotopic to f.. Fixed point theory makes

Lin [4] constructed an asymptotically regular mapping acting on a weakly compact subset of the Hilbert space l 2 with no fixed point.. So the following question is natural: when does

We describe the results of ap- proximate controllability for nonlinear impulsive neutral fuzzy stochastic differential equations with nonlocal conditions, impulsive neutral

V arsted, E ntropy estim ate in three-dim ensional sim plicial quantum gravity, Phys.. V arsted, The vacuum in three-dim ensional sim plicial quantum gravity,

Główne dane techniczne ekspresów BCC01 – BCC02.

Można także zaopatrzyć się w okolicznościowe kartki pocztowe, przygotowane przez Stowarzyszenie Pamięć Jana Pawła II, przywie­.. zione aż z Lublina przez

„Współczesne pokusy herodowe”, 28.XII w Warszawie. Problem ten znajduje się też w Memoriale do Rządu z roku 1970 gdzie czytamy: „Pożądane jest przedłużenie

Prócz wielkich szans wygrania.. flnrmii dadafkowe ciągnienie gw