• Nie Znaleziono Wyników

Introduction to TEM

N/A
N/A
Protected

Academic year: 2022

Share "Introduction to TEM"

Copied!
26
0
0

Pełen tekst

(1)

Introduction to TEM

IMIM PAN – KRAKÓW – 2019 Jerzy Morgiel

j.morgiel@imim.pl

TEM LAB

I

(2)

Why do we need microscopy?

resolution of human eye 0.2~ 0.1 mm

(3)

Chronolgy: Part I. Finding out about „mini-world”

Ruska & Knoll, Berlin 1930

= 0.61/µmm?

- wavelength 100kV e- (~0.004 nm) µ - refractive index of vaccum (~1)

 semiangle of collection of lens (1o)

resolution for light microscope is defined by Rayleigh criterion:

= 0.61/µsin m -

wavelength of light (~0.5 m) µ- refractive index of glass (~1.5)

 lens collection semiangle (70o)

(4)

mini-world 1960 -world 2000

nano-world Chronolgy: Part II. Finding out about „micro-world”

res. ~1 nm /lamps/

res. ~0.3 nm /transistors/

res. ~0.2 nm /int. circuits/

JEOL 5, 6 (70~100 kV)

res. ~0.1 nm /int. circuts/

Philips EM 300 (100~120 kV)

Philips CM 20, 30 (200~300 kV)

Tecnai (200~300 kV)

(5)

Magnification: ratio of image size to object size

Powiększenie: stosunek wielkości obiektu do obrazu Resolution: ability to resolve objects

Rozdzielczość: zdolność do rozróżnienia obiektów

Rrelation magnification - resolution

max „sensible” magnifications:

light/optical microscope (r= 200 nm) => mag. 1 000x

Transmission microscope (r= 0.2 nm) => mag. 1 000 000x Magnification

max.sens.

= res. of human eye (0.2 mm)

res. of microscope (r)

(6)

depth of field / depth of focus

depth of field is used in reference to investigated object depth of focus is used in reference to the image

„depth of focus” is defined as a distance along optical axis of the microscope through which one may shift object without

a significant losso of image quality

Examplary values of depth of focus [m]

magnification light microscope electron microscope

100 x 8 -

1 000 x 0.2 20

10 000 x - 2

(7)

Scheme of transmission microscope

M

1

= d

image

/d

object

M

final

= M

1

*M

2

*....

Newton’s lens equation:

1/ d

object

+ 1/ d

image

= 1/f

M 1 M

(8)

electron gun/condensor

(9)

Type of Cathods/ Electron Guns

W LaB6 FEG (Schotky) Brightness ~105 ~106 ~109

Energy Spread 2 eV 1 eV ~0,7 eV Temperature 2 700oC 2 000oC 1 800oC

Life Time 100 h 1 000 h 2 000 h Vacuum 10 –4 Torr 10 –6 Torr 10 –9 Torr !

W LaB6 FEG

high current?

(10)

Section of magnetic lenses /pole pieces

(11)

Standard TEM vs. Analytical TEM (AEM)

1/2 1/2

Riecke &Ruska 1966 1/3

1/3 1/3

Minicondenser lens

allowed retaining large field of view

&

formation of small probe

(12)

Analitycal TEM (AEM):

micro vs. nanoprobe

50 nm 1-5 nm!

Probe size definition

~10nm

~20nm

FWHM FWTM

LaB6

FWHM -Full Width at Half Maximum FWTM -Full Width at Tenth Maximum

(13)

Lens defects: spherical abberation, chromatic abberation and astigmatizm

stigmators

(14)

Aaction of magnetic lenses

strenghtened - fshorter weakened - flonger

“in focus” = Gaussian focus

(15)

apertures

(16)

Interaction of e

-

beam with a thin foil

basic TEM analitycal TEM

(17)

(hkl) Planes

Incident Beam

Singly Diffracted beam

´

(h´k´l´) Planes

´

Doubly Diffracted beam

Intensities of diffracted beams depend on each other (they are COUPLED)

Single (KINEMATIC) scattering take place only on very thin specimens

Diffraction contrast

(18)

Usual d

Usual d-- spacings (10 spacings (10 Å -Å -1 Å1 Å)) >>> >>>  Radius of Ewald sphere (R

Radius of Ewald sphere (R E E= 1/ = 1/  )>>> g spacings)>>> g spacings

ZOLZZOLZ FOLZFOLZ SOLZSOLZ

R REE OO

gg hk0hk0hk0hk0 000000

Warunki zajścia dyfrakcji/ sfera Ewalda

(19)

TEM IMAGE SAED PATTERN

Specimen OL

Proj.

Lens

Remove OLA Specimen

OL Apert.

Intermediate Lens

Proj.

Lens

1st Image

OL

Back Focal Plane Remove SAA

2nd image

Intermediate Lens

Setting TEM for imaging or diffraction

change lens strength!

(20)

Bright/Dark Field Imaging

specimen e

-

beam

obj. lens

obj. apert.

to imaging system (BF) to imaging system (DF)

(21)

„mass-thickness” contrast

latex ball + carbon foil

SEM

TEM TEM

(22)

Diffraction + „mass-thickness” contrast

5 m

100 nm

MoC

MoC

SiC

„30% Mo5Si3

(23)

Extinction contours/ bend contours

amorph

TiNiCu melt spun ribbon

(24)

thickness fringes

transmitted

„incoming” e

-

beam

diffracted

steel

(25)

Significance of large „depth of field” in TEM

The depth of field of a microscope is a measure of how much of the object we are looking at remains “in focus” at the same time

In TEM, all of the electron transparent specimen parts are usually in focus at the same time, independent of the specimen topography

Furthermore, we can record the final image at different positions below the final lens of the instrument and it will still be in focus

thin

thick

GaAs. A band of dislocations threads through the thin

specimen from the top to the bottom but

remains in focus through the foil thickness

(26)

Presentation

Cytaty

Powiązane dokumenty

To obtain ∆p you can use the momentum representation of the momentum operator and apply it to the state

This diffusional growth of pearlite has been subject of research for steels with relatively low Mn-contents (less than 1.8 wt%) [86, 87], studying the role of manganese

stroom (D), en daarmee dus ook,via de voeding van de destillatiètoren,de massastroom. De r e boilerverhoudin g wordt op dezelfde wijze be pna ld uit de tweede

Based on the values of the upper k-records listed in Table 2, we obtained the realizations of confidence intervals for the quantiles of rank p of the logarithmic rates of return

Druga (międzynarodowa) konferencja, zorganizowana w 2012 roku wspólnie z Uniwersy- tetem w Durham, Katedrę Socjologii Kultury oraz Research Network 03 Biographical

Антоній Казнов- ський ініціює, а його учень Михаїл Косило здійснює збір підписів для реєстрації греко-католицької громади у селі Дорі та звертається

On the other hand if M G is very low (for a value of d equal to 0), the distance from which the gravity represented by the mass M G has no longer an effect will be very low