• Nie Znaleziono Wyników

Application of an ESDU method for calculating the aerodynamic centre of aircraft with cranked wings and comparison with vortex lattice method (VLM)

N/A
N/A
Protected

Academic year: 2022

Share "Application of an ESDU method for calculating the aerodynamic centre of aircraft with cranked wings and comparison with vortex lattice method (VLM)"

Copied!
6
0
0

Pełen tekst

(1)

Z E S Z Y T Y N A U K O W E P O L IT E C H N IK I ŚLĄSK IEJ___________________________ 1994

Seria: M E C H A N IK A z. 115 Nr kol. 1239

M izanur R A H M A N

Instytut L otnictw a w W arszaw ie

W Y Z N A C Z A N IE P O Ł O Ż E N IA Ś R O D K A A E R O D Y N A M IC Z N E G O D LA S A M O L O T U Z E S K R Z Y D Ł E M M A JĄ C Y M Z A Ł A M A N IE M E T O D A E SD L

O R A Z P O R Ó W N A N IE Z W Y N IK A M I VLM

Streszczenie: W pracy przedstaw iono pew ną teoretyczno-em piryczną m etodę w yznaczania środka aerodynam icznego p łata oraz płata z k adłubem i gondolam i w opływ ie poddźw iękow ym . W ykonano przykładow e obliczenia dla testow ego sam olotu i p o ró w n an o z wynikami otrzym anym i m eto d ą (V LM ).

A P P L IC A T IO N O F AN E S D U M E T H O D F O R C A L C U L A T IN G T H E .A E R O D Y N A M IC C E N T R E O F A IR C R A F T W IT H C R A N K E D W IN G S A ND

C O M P A R IS O N W IT H V O R T E X L A T T IC E M E T H O D (V LM )

Sum m ary: A sem i-em pirical m ethod for calculating the aerodynam ic centre (A C ) o f a wing with cranks and a w ing-fuselage-nacelle com bination in subsonic flow is p re se n te d . N um erical calculations are carried out for a test aircraft and the results a re c o m p ared with th e results o btained by a different b u t well-known VLM .

ĆĄZJETH nOJICDKEHHH AGPOZMHAMHTECKOrO LIEHTPA CAMOJIEIA C KPbUIOM.

lMEQUpHM H3JEMH KPAEB'C EEHMEHEHHEM MEIDZIA ESDUH CPAEHEHHE C MElUZHvl VLM

P e 3K)M(?. B p a 6 o rre npeztcTaBJieHO TeopeTHHecKo-3MiiHpHuecicHii m otozi p a s c ią e T a nononceHHH aopoztHHaMHtiecxoro peHTpa c h c t g m h r.pbiuo- ą>jo3e]m x-roH Z to3iH oÓTeKaeMofł HeBH3KHM ra30M c zto3ByxoBUMH cKopocTHMH. 3 t o t MeTozt n o 3 B a j i H e T onpezteiH T B a 3 poztHHaMHuecKHH u ,e H T p ztnst Kpatia c H3ti0MaMH Ha x p a a x . P e3yibT aT H nonytieHHHe h m ai m

r tp H M ep H o ro caM osoTa cpaBHHeHH c HToraMH nonytieHHHMH r

noMom,io a p y r o r o M eT oaa (VLM).

1. IN T R O D U C T IO N

C alculation o f the A C o r n eu tral point of aircraft should be done w ith good accuracy even a t th e prilim inary design stage. T h e A C is a n jm p o rta n t p a ra m e te r for trim , stability and co n tro l analysis. A designer has a n um ber o f options to regulate its position to attain a d esired pitching m o m en t derivative value. E xact determ in atio n of tn e A C is difficult w ithout wind tunnel test, which is obviously a costly and tim e consum ing approach.

N evertheless, the sem i-em pirical m ethod p resen ted in this p a p e r, prim arily E ased upon ref. 3, gives accep tab le results. T he rem arlcably small differences betw een the results of the p ro p o sed m eth o d and V LM advocate its acceptibility.

T h e p re se n te d algorithm in this p a p e r may be of g reat interest for wings with cranks in th eir leading an d trailing edges. In such case the real wing will be replaced by an

(2)

340 M. R ahm an

equ iv alen t or referen ce wing. T h e fuselage effect, and th en th e nacelle effect, are calculated separately. T h e nacelles m ay be eith er wing-pylon m o u n ted o r re a r fuselage - pylon m o u n ted . A tten tio n should be paid to the application range o f the pro p o sed m ethod, which is lim ited to steady, potential and inviscid subsonic flow only; T h e subsonic region is again lim ited by excluding the application of this m eth o d for su p e r critical profiles. T h ese lim itations am ong others result from, the theoretical basis th e m ethod is b ased on an d also th e statistical d a ta used in em pirical equations. This m eth o d is built for untw isted wing with flaps and u n dercarriage undeployed. T h e pow er and ground effects a re also not taken in to account. T o consider th ese effects ref.. 1 can be recom ended.

2. M A T H E M A T IC A L M O D E L A N D G O V E R N IN G E Q U A T IO N S . 2.1. AC for equ iv alen t wing (EQW ) geom etry

F o r constructional, aerodynam ical and stability reasons a designer m ay decide to allow for a wing sw eep. O n the o th e r hand it should be noted th a t wing sw eep to g eth er with low asp ect ratio may have a strong effect on the induced th ree dim ensional drag due to lift a n a in som e cases on th e wing alone undesirable "pitch up" characterstics. F o r this reason, am ong o th ers som etim es wings with cranks (two o r m o re sw eeps) a re also used.

A wing w ith such a geom etry can b e replaced by a straight ta p e re d wing nam ed as an E Q W o r a re fe re n c e wing (F ig .l). T h e geom etric p aram etrs n ee d e d to define an d position an E Q W p lanform a re calculated from real wing-fuselage p lanform geom etry [ref. 6].

O nce an E Q W is d e fin e d (e q .l to eq.7), th e lifting force g rad ien t (a = dc /d a ) and relative A C w ith resp ect to th e m ean aerodynam ic chord (M A C ) leading e d g e fx /c ) are found from E S D U 70011 using E Q W values of "A *tanA i A ', "B* A", an d "X" w here, A- asp ect ratio, A*y?- half-chord sw eep b ack angle o f EQ"w planform , B- com pressibility factor, ( 1 - M z ) X- ta p e r ratio of E Q W planform , (c{ / C n ) , M - free-stream M ach n u m b er, ct- tip chord of equivalent planform , cn- centre-line chord o f equivalent planform .

C anA 1/2 = ]T ( t a n A j . j - t a n A J J t l )

s c r

’ 1,0

’ 1.0

+ t a n A JW il +

s - s S.

1,0 - C, s - S 1.0 . „ (1 + 2.)

2 ( s - S J 0 ) (1) (2)

( 3)

( 4)

= 2 c. (1 + X + X2) 0 3 (1 n S = b . c g A = b 2/ S

X) ( 5)

(6)

( 7) w here, N- n u m b e r o f cranks in th e leading edge, c , c„- geom etric and aerodynam ic chord o f E Q W p lanform respectively, S- a re a o f E Q W planform , Se - a re a o f planform o f tru e wing outside p ro jected fuselage planform .

(3)

A p p lic a tio n o f a n E S D U m e th o d fo r c alcu la tin g th e a e ro d y n a m ic c e n tre

Fig-1- O riginal an d equivalent wing platform R y s.l. R zeczyw ista i zastępcza pow ierzchnia p ła ta

2.2. F u s e la g e effect

T h e fuselage effect (A xh/c a ) on wing A C (x/ca ) can be o btained from E SD U 76015 by the following equation,

A x h c r a 2 F G

c , a S j l + 0 . 1 5 - 1 ) j - ( f q + X k 2) t 8 ) w here F (m /c r, n/cr), G (B d/cr), k ^ d /b , X, A t a n A ^ ) , k2(BA, A ta n A y 2) are o btained from

(4)

342 M. R ah m an

E S D U 76015,- "d" an d "h" a re fuselage w idth and height respectively at the leading edge of ro o t ch o rd (cr ) o f E Q W planform and "m" , n" are found from the following equations:

m

= + E ( t a n A j . i - t a n A j i41)

--Sl-+

— f E i i ( 9 )

i - l s l.o>

n = 1 - m - c z ( 1 0 )

As a result the A C for w ing-fuselage com bination (x^/ca ) is o b tain ed by th e e q u atio n 11.

^ = J L - ^ ( I D

C a C a

2.3. N acelle effect

T h e effect o f nacelles on th e A C is considered fo r th e two cases: 1) effect o f wing- pylon m o u n ted nacelles, 2) effect o f rear-fuselage pylon m o u n ted nacelles.

F o r th e first case, th e forw ard shift in AC, A x ^ is calculated from E S D U 77012 by the following eq.

A^0in _ £ IT W -Z j. 1 + -T Cg ^ ( 1 2 )

c a S c a 'a 4 it R 2

WheRr5 - z * +

a - lift curve slope o f nacelle b ased on a re a "w.l" and o b ta in e d from E S D U 77012 as a function o f "w/1"

r - chordw ise distance o f nacelle lip forw ard o f A C o f w ing-fuselage com bination E - re p re se n ts th e sum m ation o f contributions from each nacelle.

F o r th e second case th e rearw ard shift o f th e A C caused

- A x to _ JC [E (a „ w 1) + 6 y p ] ( 1 - 2 H a / n A) r

c j - S a c a

by th e nacelles a re estim ated from E S D U 78013 by eq. 13.

de _ 2 h a

da n A

( 1 3 )

( 1 4 )

w here, H (ta n A i m, r’/s) is a downwash p a ra m e te r for calculating ra te o f change of dow nw ash angle w ith incidence a t nacelle inlet plane an d ce n tre o f trailing vortex sh eet as expressed in eq.14, a n d can b e o b tain ed from E S D U 78013,

y - w idth o f pylon-leading edge betw een nacelle an d fuselage side, K- is the ratio of lift cm nacelle-pylon-fuselage com bination to lift on nacelle an d pylon on isolation. A cording to E S D U 78013 th e value o f K = 2.4 has b een found to give satisfactory result for classical airplanes.

N ow th e A C o f w ing-feselage-nacelle com bination is o b tain ed from the following eq.

*hn _ *h _ (15)

3. A C C A L C U L A T IO N F O R A T E S T A IR C R A F T

A num erical p ro g ram "N E U T R A L " is w orked out for calculating th e A C on the basis of th e p re s e n te d algorithm . As an exam ple, calculations w ere carried o u t for a test aircraft

(5)

A pplication o f an E S D U m ethod for calculating the aerodynam ic cen tre 343

p re se n te d in [ref.4]. T h e results ob tain ed by this m ethod is p re se n te d in ta b .l. A lso in this tab le a re placed th e results o btained by a different but well know n V ortex lattice m ethod fo r com parison. T o have a b e tte r understanding of this m eth o d ref.4 and ref.5 is reco m en d ed . T h e A C by V LM was o btained using the p rogram "V O R T R " [ref.4]. T he AC by this m eth o d was o b tain ed by the following eq.

w here, x- indicates cen tre o f pressure, cz- lift coefficient and prefixes 1,2 indicate two different incidence angles.

By applying V LM it was possible to calculate the A C for the real wing and also for the real w ing-fuselage com bination. This was especially interesting to see th e penalty received by replacing th e real wing w ith an E Q W th at was p roposed in this p a p e r for the cranked wings.

T a b .l. R esults fo r th e te st aircraft o b tain ed by th e p ro p o sed and V ortex lattice m ethod.

T a b .l. W yniki obliczeń dla testow ego sam olotu p roponow aną m eto d ą o raz VLM .

M eth o d and result

x/e

a

xh/c a Axh/ca xhn/ca Axhn/Ca "a"

wing

"a"

wing- fuselag e P ro p o sed

m eth o d

.243 .116 .127 .096 .020 .085 .085

V LM real wing

.221 .117 .104 - - .079 .083

D ifference .022 .001 .023 - - .006 .002

4. D IS C U S S IO N A N D F IN A L R E M A R K S

T h e A C o f aircraft plays an im p o rtan t role in trim ing, stability an d control analysis.

T h e p ro p o se d sem i-em pirical m ethod in this p a p e r for calculating the A C o f wing- t'uselage-nacelle com bination is very sim ple, cost a n a tim e effective in com parison to o th e r (eg. wind tu n n el o r co m putational aerodynam ics) m ethods. T h e p ro p o se d algorithm allows to see the change o f th e A C, in a very short tim e, o f any geom etric change o r different com binations in conceptual design. It also m ay be com bined w ith ex p erim en tal results, for exam ple, th e calculation o f fuselage effect on experim entally o b tain ed d a ta fo r th e A C of th e wing alone. T o verify th e accuracy o f th e p ro p o sed m ethod, results o f an arbitrarily choosen test aircraft o b tain ed by this m eth o d are c o m p ared w ith results from V LM ( T a b .l) , w h ere it is seen th a t the difference betw een the two m eth o d s a re rem arkably small. B ut it can n o t b e concluded a t this stage o f w ork which on e o f th ese m ethods gives m ore ac c u ra te results, b ecau se bo th have shortcom ings o f different types. T he pro p o sed m eth o d , w hich uses som e statistical d ata, for exam ple can be used for sim ple p lanform s but it does n o t ta k e into consideration th e thickness, cam bering o r tw isting ot the wing.

O n the o th e r hand, p ro g ram "V O R T R " at this stage does not consider th e fuselage as a

(6)

344 M . R a h m a n

closed solid body. R a th e r it was m odelled as a f la tp la te like it ap p e a rs on the planform , thus n o t considering wing-fuselage interference. T his is o n e of the reasons th e nacelle effect is not calculated by th e V LM (T a b .l). N evertheless, the sm all differences betw een the results o b tain ed by th e two m ethods may advocate their acceptibility. T h e m ethod p ro p o sed in this p a p e r can well be p referred fo r its simplicity, low cost an d time consum ption w hich is very im portant at the prim ary design stage. O f course the results should b e revised in the later stage by m ore convincing m ethods such as wind tu n n el tests.

R E F E R E N C E S

1. R oskam , J. "Airplane design." p a rt 6, Prelim inary calculation o f aerdynam ic, th ru st and pow er characterstics, K ansas 1990.

2. E S D U 70011, E S D U 76015, E S D U 77012 and E S D U 78013.(E ngineering sciences data units.), A erodynam ic sub series, R oyal aeronautical society, L ondon, England.

3. G oraj, Z. "VO RTR 9302"- P akiet program u do obliczeń rozkładu ciśnień na pow ierzchnych nośnych m eto d ą "V ortex lattice" lub "D oublet lattice" do M a< 0.8, Politechnika W arszaw ska, ITLiM S, 1993, p raca niepublikow ana.

4. G o raj, Z. "W yznaczanie p unktów neutralnych stateczności sam olotu m etodą VLM."

Zeszyty naukow e politechniki śląskiej, M echanika, z.113, Gliwice 1993.

5. K atz, J. and Plotkin, A. "Low-speed aerodynamics fro m wing theory to p a n el methods."

M cG raw Hill, Inc 1991.

6. R ah m an , M . "Obliczenie gradientu siły nośnej oraz m om entu pochylającego układu skrzydlo-kadłub." S praw ozdanie Instytutu

Lotnictw a, W arszaw a 1993, p ra c a niepublikow ana.

R ecenzent: D r h ab inż. A ndrzej B uchacz W płynęło do redakcji w grudniu 1993r.

Strszczenie

W pracy z a p ro p o n o w an o pew ną teoretyczno-em piryczną m eto d ę obliczania położenia środka aerodynam icznego układu skrzydło-kadłub-gondola dla opływu nielepkiego i poddźw iękow ego. M e to d a ta pozw ala określić środek aerodynam iczny dla konstrukcji skrzydła z zała m an iem kraw ędzi n atarcia lub/i spływu (rys. 1). W yniki otrzym ane dla sam olotu sportow o-turystycznego [4] były p o rów nane z wynikam i otrzym anym i m ną znaną m e to d ą (V L M ). R óżnice w wynikach były znikom o m ałe (ta b .l), ale na obecnym etapie nie m ożna stw ierdzić k tó ra z tych m etod daje dokładniejsze wyniki dla om aw ianego celu, bo każda z tych m eto d m a różne uproszczenia. N atom iast na e tap ie projektow ania w stępnego stosow anie p roponow anej m etody je st uzasadnione ze w zględu n a jej prostotę, mały koszt o raz stybkość. W yniki oczywiście należy weryfikować w późniejszym etapie analizy Stateczności dynam icznej przy użyciu bardziej zaaw ansow anych m odeli obliczeniow ych lub w tunelu aerodynam icznym .

A cknoledgem ent: Funding for this project was su p p o rted in p a rt by T h e C o m m ittee for scientific R esearch , no. KBN. 00/S6/93/04.

Cytaty

Powiązane dokumenty

К свободным сословиям была зачислена шляхта, на которую распространялись права российского дворянства; население коронных городов, разделенное на

Keywords: Cooperative Multi-Vessel Systems, Autonomous Vessels, Vessel Train Forma- tion, Cooperative Object Transport, Distributed Model Predictive Control.. Copyright © 2019

Podobnie jak w całym badaniu EUFEST, również w grupie polskich pacjentów nie stwierdzono różnic w nasileniu objawów psychopatologicznych po roku leczenia pomiędzy chorymi

Znaczna czêœæ rozbie¿noœci wynika te¿ z jakoœci pracy bieg³ych psychologów, przy czym w powy¿szych rozwa¿a- niach nie zajmowa³yœmy siê zwyk³ymi brakami fachowej wiedzy

Questa aff ermazione, più volte ri- badita dai padri sinodali, rappresenta, infatti, una grande sfi da non solo per la regione Pan-Amazzonica – ha concluso il padre gesuita – ma

Jeszcze nie rozległ się jubileuszowy gwar, a już usłyszała Polska Aka­ demia Umiejętności słowa złowieszcze. Przed jubileuszowymi obradami 75-lecia Akademii

Especially in plant vacuoles, the role of the tonoplast ATPase in cytosolic pH homeostasis has been demonstrated (Marin and Blasco 1982). In view of the results presented

Wizerunek, jako zasób polityczny, stanowi treść tego czym dysponują grupy lub sam lider polityczny i może przekształcić się w kapitał, gdy na rynku istnieje