• Nie Znaleziono Wyników

Measurements on a refrigeration system under the ICMOS-CRP program. Faulty Behaviour Part II

N/A
N/A
Protected

Academic year: 2021

Share "Measurements on a refrigeration system under the ICMOS-CRP program. Faulty Behaviour Part II"

Copied!
128
0
0

Pełen tekst

(1)

Report OEMO 96/ OL

D. Pace

Delft/Zoetermeer

January 1996

:4#4,

T U Delft

Delft 'University of Technology'

Faculty of Mechanical Engineering and Marine Technology Department of Marine Technology

van Buuren -van Swaay

_

Van Buuren - Van Swaay Zoetermeer

Measurements on

a refrigeration

system

Faulty Behaviour PART II

(2)

TU Delft

measurements on a refrigeration system

am=

INTRODUCTION 3

REFRIGERATION PROCESS 4

2.1. GENERAL WORKING OF A REFRIGERATION SYSTEM 4

2.2. A SHORT DESCRIPTION OF THE USED REFRIGERATION SYSTEM 5

PLACEMENT OF SENSORS AND SENSOR INFORMATION 8

3.1. SENSOR LOCATIONS 8

3.2. SENSOR PARAMETERS, SPECIFICATIONS AND DATATRANSFORMATION 8

MEASUREMENT PROGRAM 15

4.1. CHOICE OF CONDITIONS AND FAULTS 15

4.2. LOCATION OF THE DIFFERENT BYPASS PIPING AND VALVES 16

ACTUAL MEASUREMENTS 18

5.1. POST PROCESSING OF THE MEASURED DATA 18

5.1.1. Pressure measurements 18

5.1.2. Temperature measurements 18

5.1.3. Calculation of the freon flow 19

5.1.4. Measurement faults 5.2. MEASUREMENTS ON 07 - 09 - 1995 21 5.3. MEASUREMENTS ON 14 - 09 - 1995 5.4. MEASUREMENTS ON 18 - 09 - 1995 5.5. MEASUREMENTS ON 21 -09-1995 54 5.6. MEASUREMENTS ON 22 - 09 - 1995 65 5.7. MEASUREMENTS ON 25 - 09 - 1995 75

DATA ANALISYS ANDCONCLUSION

AppendixA: measurements log-book 98

Appendix B: derived graphs 114

paa. 1

20

32 42

(3)

TU Delft

Subscripts

discharge (in combination with compressor variables) env environmental variable

inlet, interior dimension mass

outlet

suction (in combination with compressor variables sub sub-cooling

sup superheat compressor

chw chilled water (cold water) cond condenser

crk crank

crkc crankcase icy/ cooling water

cyl cylinder cylw cylinder wall

fd filter/dryer element oil oil pi piping pist piston refrigerant tu tube ev evaporator exp expansion valve

Indices

(i) flow m3/h, kg/s p pressure N/m2 P power W T temperature (abs) K t temperature (rel) oc

measurements on a refrigeration system van Buuren -van &nay

(4)

TU Delft

1.

Introduction

This measurement report is the second result of a measurement program, done under the

ICMOS-CRP research program'

of the faculty of Mechanical Engineering and Maritime Technology,

Technical University of Delft.

The measurements were done on a refrigeration system located at Van Buuren - Van Swaay b.v. Zoetermeer. The goal of the measurement program is twofold. The first goal is to provide data for

tuning and validating the mathematical model of a refrigeration system developed by Grimmelius. The second goal is to provide training and testing data for a diagnosis system build by van Kuilenburg and

Grimmelius. To capture the whole working range of the refrigeration system, all the faults are

introduced at four different working points of the refrigeration system. These four points span the

entire working range of the refrigeration system.

This report contains the second set of measurements, following those performed by van Kuilemburg and Grimmelius in June '95. The data is presented graphically and then analysed.

In the second chapter, a short description of the refrigeration process and real refrigeration system is

given. The third chapter describes the measurement equipment such as sensors and processing

equipment. Chapter four depicts the measurement program. Chapter five contains the recorded data

per measurement day for each introduced fault individually. The last chapter analyses and discusses the symptoms and system behaviour.

The different partners in this project are Van Buuren - Van Swaay and theTU-Delft2 The measurements were completed by D. Pace and H.T. Grimmelius.

I wish to thank the following people for their assistance and help during the measurements : H.T. Grimmelius TU-Delft

R. F. van Kuilemburg, TU-Delft

G. Been, Van Buuren - Van Swaay

M. van Will igen, Van I3uuren - Van Swaay R. Houtenbos, Van Buuren - Van Swaay

Dandolo Pace 08-01-1996

measurements on a refrigeration system van Buuren -van Swaay

ICMOS - CRP = Intelligent Control and Monitoring Systems - Compressor Refrigeration System

2 TU-Delft = Technical University of Delft

pag. 3

(5)

TU Delft

2.

Refrigeration process

In this chapter the theoretical basis is treated of the refrigeration process. Also the real refrigeration system layout is given together with the data of the different parts of the refrigeration system

2.1.

General working of a refrigeration system

A refrigeration plant has the following basic system scheme and basic components :

fw

Q2

figure 2-1, basic scheme of a refrigeration system

The whole purpose of a refrigeration system is to transport energy(Q2) from a relative low

temperature level to a relative high temperature level (Q1). The compressor (1) compresses the freon which comes from the evaporator (4). To compress the freon an amount of energy is needed (W), this energy causes an increase of the enthalpy of the freon. At this high pressure the (still) gaseous freon is

condensed in the condenser, releasing energy (Q1) to a cooling medium at a relatively high

temperature level. Now the pressure of the freon is adiabatically decreased in the choking device (3). At this low pressure the freon is evaporated in the evaporator (4) at a relatively low temperature level. The transportation of this energy costs energy due to mechanical losses in the various components and thermodynamic losses.

measurements on a refrigeration system

1 1. Compressor

Condenser Choking device

Evaporator

van Buuren -van Swaay

pag. 4

(6)

TU Delft

It is custom to plot the process in a log(p) - h diagram of the refrigerant fluid measurements on a refrigeration system

enthalpy h 1.1/kg'

)

overheating

figure 2-2, refrigeration process plottedMaschematic log(p) - h diagram of freon-22

In this diagram the coexistent area of the cooling medium is drawn. After compression (1) the gas is

superheated. In the condenser (2) the gas is first cooled to a saturated gas and then condensed to

liquid. Often the temperature (energy) of the gas is lowered beyond the point where just all thegas

has become liquid. This is done to prevent the liquefied gas to evaporate before it reaches the

evaporator due to pressure losses in the pipes or height differences. This is called "under-cooling" of

the gas. After the choking-valve the gas is evaporated (4). The temperature of the gas is more

increased then absolutely necessary, to ensure that only gas reaches the compressor. If liquid reaches

the compressor, the compressor can brake down (liquid is hard to compress). The extra temperature

increase of the gas is called "super-heating".

A log(p) - h diagram of R22 (freon) is given in appendix A

2.2.

A short description of the used refrigeration system3

The installation is a cold water maker, used for cooling the research rooms at Van Buuren - Van Swaay. For this investigation the system is coupled to a re-heater, in order to simulate the desired

workloads for the refrigeration system. The installation

is filled with freon R22, with a lowest

temperature of -1 °C. This implies that the pressure in the installation is at least 4.5 bar (abs). The

condenser is cooled with normal water, of which the flow can be controlled by a valve.

3 See for a detailed description of the refrigerationsystem' van der Heiden. OEMO 94/12

van Buuren -van Swaay

pai4. 5

Installation specifications

Electrical power : 14 kW

Cooling capacity : 80 kW Coldwater temp : 3.5 - 9 °C Cooling water temp 20 - 35 °C Amount of freon : 12.4 kg

:

(7)

TU Delft

measurements on a refrigeration system van Buuren -van Swaay coldwater filter (empty) water cooling Pi. compressor Control measurements Spy-glass filter/dryer L_J expansion valve

figure 2.3 real refrigeration system, used for generating the data

condensor

pag. 6

ievaporator

(8)

21-"U

Delft

measurements on a refrigeration system van Buuren -van Swaay

(9)

TI! Delft

3.

Placement of sensors and

sensor information

In this chapter the location and

specifications of the sensors is given. Information about data

processing equipment and the transformation of the data is given.

3.1.

Sensor locations

The sensors are placed according to figure 3.1. These locations are similar with the actual placement of the sensors on the system.

measurements on a refrigeration system

T1 1 k,a9) P6 rrio-s\ 72

->v<-figure 3-1, placement of the sensors on the refrigeration system

3.2.

Sensor parameters, specifications and data transformation

In the following tables, the specifications and parameters of the used sensors are given. The

transformation of the signal in the data-loggers (if used) can also be found in this tables. The signals

are collected in two different data-loggers (due to some practical problems,

two are used). The

NETDAQ 2645A and the HYDRA 2625A, both manufactured by Fluke. For more details about the

data-loggers see appendix B. In figure 3.2 the path is visualised, the signals follow before they are

saved on disk.

07(

van Buuren -van Swaay

P4

><1

(10)

TU Delft

synchronisation puts

measurements on a refrigeration system

netdaa

hydra

sensors

figure 3-2, signal path from sensor to disk

The two data-loggers are coupled by means of a synchronisation pulse generated in the Hydra. The sample interval is 9 sec. A external synchronisation pulse is used for creating a common signal on

both loggers. This synchronisation signal is used in two ways. It is used in combining the two separate data-files into one and it marks the beginning and end of a fault simulation.

The software of the NETDAQ is running under the standard Windows interface. For the control of the

Hydra a custom program is used developed at Van Buuren van Swaay. This program runs under

CONCURRENT DOS.

saving computer 1

dalatranstormation visualisation

van Buuren -van &pay

pag. 9

Sensor RI'

Parameter NI , Oil pressure

Description Compressor oil pressure, T-pipe and schrader

in + pipe oil pressure safety

Sensor type E&H Cerabar PMC 133 0/16 bar ; 24V DC

Signal 4-20 mA

Data-logger Netdaq 2645A (Fluke)

Channel number 101

Data transformation

-Remarks

-Sensor 13.2

Parameter PC,, Suction pressure

Description Suction pressure compressor, 1/2" flare schrader

on surface suction pipe closing valve

Sensor type B&H 10 bar

Signal 0-10 V

Data-logger Netdaq 2645A (Fluke)

Channel number 106 Data transformation Remarks -sensors datalransformation visualisation inggerPuis saving computer 2

(11)

TU Delft

measurements on a refrigeration system van Buuren -van Swaay

pag. 10

Sensor P3

Parameter ped , discharge pressure compressor

Description Compressor discharge pressure, 1/4" flare schrader on surface outlet pipe closing valve

Sensor type E&H Cerabar PMC 133

0/20 bar ; 24V DC

Signal 4-20 mA

Data-logger Netdaq 2645A (Fluke)

Channel number 103

Data transformation

-Remarks

Sensor P4

Parameter peon& . pressure after condenser

Description Condenser liquid out T-piece and schrader on connection for the water control valve

Sensor type B&H 20 bar

Signal 0 - 10 V

Datalogger Netdaq 2645A (Fluke)

Channel number 107

Data transformation

Remarks

-Sensor PS

Parameter pew, , pressure before expansion valve

Description Liquid before expansion valve, additional 1/4" flare schrader on liquid pipe

Sensor type B&H 20 bar

Signal 0 - 1 0 V

Datalogger Netdaq 2645A (Fluke)

Channel number 105

Data transformation

Remarks

Sensor P6

Parameter

p; ,

pressure before evaporator

Description Inlet pressure evaporator, additional 1/4" flare schrader on pipe

Sensor type B&H 10 bar

Signal 0 - 10 V

Data-logger Netdaq 2645A (Fluke)

Channel number 104 Data transformation Remarks -1

(12)

TU Delft

measurements on a refrigeration system

CI=

pag. II

Sensor P7

Parameter peric , carter pressure

Description Cater pressure, 1-pipe and schraderon connection of oil pressure safety

Sensor type E&H Cerabar PMC 133

0- 16 bar ; 24V DC

Signal 4 - 20 mA

Data-logger Netdaq 2645A (Fluke)

Channel number 102

Data transformation .Remarks

Sensor TO

Parameter t, room temperature

Description Room temperature

Sensor type Cu - Const insertion sensor (1.5 mm)

Signal TK

Data-logger Hydra 2625A (Fluke)

Channel number 5

Data transformation function = Type T thermocouple

Sensor TI

Parameter toil , oil temperature

Description Oil temperature Carter, tight coupling on relief valve

Sensor type Cu - Const insertion sensor (1.5 mm)

Signal TK

Data-logger Hydra 2625A (Fluke)

Channel number 6

1 Data transformation function = Type T thermocouple

Remarks

-Sensor T`")

Parameter tc suction temperature (freon) compressor Description Suction temperature freon gas, tight coupling

on plate burn out filter

Sensor type Cu - Const insertion sensor (1.5mm)

Signal TIC

Data-logger Hydra 2625A (Fluke)

Channel number 7

Data transformation function = Type T thermocouple

Remarks _ Remarks -1

(13)

TU Delft

measurements on a refrigeration system van Buuren-van Sway

pag. 12

Sensor T3

Parameter t,d, outlet temperature (freon) compressor

Description Outlet temperature, surface sensor on pipe

Sensor type NiCr - Ni surface sensor

Signal TK

Data-logger Hydra 2625A (Fluke)

Channel number 8

Data transformation function = Type K thermocouple

Remarks.

-Sensor T4

Parameter teondo , temperature freon after condenser Description Liquid temperature after condenser, surface

sensor on pipe

Sensor type NiCr - Ni surface sensor

Signal TK

Data-logger Hydra 2625A (Fluke)

Channel number 9

Data transformation function Type K Thermocouple

Remarks

Sensor 15

Parameter tap, , temperature freon before expansion valve Description Liquid temperature before expansion valve,

surface sensor on pipe

Sensor type NiCr - Ni surface sensor

Signal TK

Data-logger Hydra 2625A (Fluke)

Channel number 10

Data transformation function = Type K thermocouple Remarks

Sensor T6

Parameter tts, , temperature freon before evaporator

Description Liquid - Gas temperature at the entrance of

evaporator

Sensor type NiCr - Ni surface sensor

Signal TK

Data-logger Hydra 2625A (Fluke)

Channel number 15

Data transformation function = Type K thermocouple

Remarks

-I

=

(14)

pag.

'Sensor _ 17

Parameter temperature inside Carter

Description Cartertemperature,tight coupling on blind nut

Carter

Sensortype Cu- Constinsertionsensor(1.5 mm

-Signal TK

Data-logger Hydra2625A (Fluke)

Channelnumber 16

Data transformation function=Type T thermocouple

Remarks

Sensor T8

Parameter , inlettemperaturecooling water

Description Inlet temperaturecooling water .Sensor type PT - 100 insertionsensor

Signal PT 100

Data-logger Hydra2625A (Fluke)

Channel number 1 ,

Data transformation function=4 terminalRTD , RID RO =100

Remarks

-Sensor 19

Parameter tcwo , outlettemperaturecooling water

Description Cooling water outlettemperature

Sensor type PT - 100 insertion sensor

Signal PT 100

Data-logger Hydra2625A (Fluke)

"Channel number 2

Data transformation function=4 terminal RID, RTD RO = 100

Remarks

-Sensor TIO ,

Parameter tch,,,i , inlettemperaturecold water

-Description Cold water inlettemperature

Sensor type PT - 100 insertionsensor+ F25

Signal RS232

Data-logger Hydra2625A (Fluke)

Channel number 3

Data transformation, function =4 terminal RTD, RID RD = i100

Remarks.

Sensor Till

Parameter thw, , outlettemperature coldwater

Description Cold water inlet temperature

Sensor type PT - 100insertion sensor+ F25

Signal RS 232

Data-logger Hydra2625A (Fluke)

Channel number 4

Data transformation function =4 terminalRID, RID RO = 100

Remarks

TU Delft

measurements Joni a refrigeration system vanBuuren -vanSway.

13

(15)

-TU Delft

measurements on a refrigeration system van Buuren -van Swam(

pag. 14

Sensor Fl

Parameter flow freon

Description Flow freon (R22), Venturi in elongated pipe. Valve after Venturi !

Sensor type Tekflo Venturi VN20 + AP transmitter

range 0-3 mwk

Signal 0 -20 mA

Data-logger Netdaq 2645A (Fluke)

Channel number 108

Data transformation

-,Remarks

-Sensor F2

Parameter w, flow cooling water

Description Flow cooling water, E&H Discomag in pipe

Sensor type E&H Discomag

range 0 - 6 ml/h

Signal 4-20 mA

Data-logger Hydra 2625A (Fluke)

Channel number 17

Data transformation function = VDC 300 mV Range Scale Factor = 0.0375

Offset Remarks

Sensor F3

Parameter lid,,,,, flow cold water

Description Flow cold water, F&P in workload simulator

Sensor type F&P

range 0 - 30 in3/h 4 -20 mA

Signal

Data-logger Hydra 2625A (Fluke)

Channel number 18

Data transformation function = VDC 300 mV Range Scale Factor = 0.0001875

Offset = -0.0075, data signal * 1000 in comp Remarks

Sensor El

Parameter compressor electrical power

Description Electrical power compressor engine Electrical wiring on power net

Sensor type power sensor

0 - 100 kW

Signal 0 - 100 mA

Data-logger Netdaq 2645A (Fluke)

Channel number 109 Data transformation Remarks , I I I'-I

(16)

TU Delft

measurements on a refrigeration system

4.

Measurement program

In this chapter the measurement program is explained

4.1.

Choice of conditions and faults

The aim of the measurement program is to cover as much as possible the whole working ranged of the

refrigeration system while introducing the different faults. Therefore the choice has been made to introduce the faults at four different working points of the system. These working points are chosen

such that most of the working range of the compressor is covered. The following conditions have been chosen :

C=I=

In table 4.2 the different simulated faults are given. These faults could easily introduced, with only

simple modifications on the refrigeration system.

'for detailed measurements over the whole working range, see van der Heiden OEMO 94/12

A,B,C,D = working point of system, 1..40 is a unique measurement number

pag. 15

Code tend Pond Omcw Ochw Tcondicw Tevichw

A

3°C

40°C

15.32 bar 2.02 m3ih 11.1 ml/h 13.1°C I 1.8 °C

B

9°C

40°C

15.32 bar 2.60 m3/h 11.2 mi/h 13.2°C

20.5°C

C 9 °C 45 °C 17.30 bar 2.02 m3/h 11.2 m3fh 13.3 °C 19.2 °C

D

3°C

45°C

17.20bar 1.62 m3/h 11.2 m3/h 13.5°C 11.0°C

fault number Place Fault Action Codes

Compressor 1 suction side increased resistance suction line valve Al, BI8

C28, D12

/

discharge side increased resistance discharge line valve

A2, BI9

C29, D13

1 power main one phase

disconnected

removal of one phase

B44

Condenser 4 water side too much cooling

water

water supply A3, B20 C33, D14

5 water side too little cooling

water

water supply A40, B21 C34, D15 Liquid line

Expansion valve

6 liquid line increased resistance liquid line valve A5, B22 C32, D37

7 valve no pressure

correction

close press. corr. line

A4 I, B26 C36. D10

8 valve stuck open bypass

valve

A8, B25 C35, D39

Evaporator refrigerant side leakage over

evaporator

by-pass A7, B24

C31, D11

10 water side increased resistance water control valve A6, B23 C30, D38 ' I I I -9

(17)

TU Delft

measurements on a refrigeration system 4.2.

Location of the different bypass piping and valves

In figure 4.1 the location of the different valves which are used to simulate the different faults is

given. The dotted lines give the extra valves and piping which are installed to simulate several faults. These are not part of the original refrigeration system, but are specially installed for this measurement program. The code of each location corresponds with the numbers given in table 4.2. The automatic flow control of the cooling water has been shut off during the measurements.

F3

F 8

figure 4-1 locations where the different faults are introduced

;

F6

van Buuren -van Swaay

(18)

TO Delft

measurements on a refrigeration system van Buuren -van Swaay

(19)

TU Delft

5.

Actual measurements

In this chapter (which is the main body of the report) the actual results of the measurements are given.

First general data is given such as initial values, correction factors and the formulas used in the

calculations. After this the measurements are given in a graphical way (looking at 10,000 numbers can be very boring).

5.1.

Post processing of the measured data

5.1.1. Pressure measurements

When a refrigeration system has been opened, the system must be tested afterwards for leaks. This

system has been tested at a pressure of 10 bar for about 24 hours. It is clear that all pressure sensors must give a reading of 10 bar when the system is tested. This procedure of testing gives a handy tool

for checking the pressure sensors. In table 5.1 the actual readings are given of the sensors and the

correction factors derived from it. These correction factors ensure that all the sensors give the same relative reading.

5.1.2. Temperature measurements

For this experiment these are not extra calibrated.

measurements on a refrigeration system van Buuren -van Swaay

pag. 18

Channel Parameter Value at testing Correction

factor

Value at testing 0 bar

101 Oil pressure compressor 9.96 bar +0.04 bar 0.04

102 Carter pressure 9.89 bar +0.11 bar -0.03

103 Outlet pressure compressor 9.99 bar +0.01 bar -0.03

104 Pressure before evaporator 9.95 bar +0.05 bar -3 10-3

105 Pressure before expansion valve 9.95 bar +0.05 bar 2 10-3

106 Suction pressure compressor 9.89 bar +0.11 bar 3 10-1 1

(20)

TU Delft

5.1.3. Calculation of the freon flow

The freon flow through the system is measured by a Venturi in the connection between the condenser

and the expansion valve. The Venturi transforms the velocity of the water to a pressure difference.

This pressure difference can be measured and transformed in a velocity of the freon. The Venturi has been calibrated with water and must be re-calculated for the use of freon.

According to Bernoulli6 the following relation is valid

Amin

41:1freon = .\I V2. pfreco (PI

10

Amm2

1 2

measurements on a refrigeration system

PI PI

figure 5-1, Venturi Finally the following formula emerges for calculating the freon flow :

42.75

(I)freo P P2 VPireon kgis

n 3600

For the calculation of the specific mass of freon the following formula is used

for more information see : Stroming en Warmteoverdracht I, Jr. FL Leidens, TU-Delfl

van Buuren -van Swaay

The pressure signal has a bias, this bias is calculated by looking at the signal while the installation is not running.

Warning : In many cases the flow measurement is very inaccurate because of the occurrence of

bubbles in the fluid. These bubbles ruin the flow measurement. The occurrence of bubbles is given in the measurements.

pag. 19

Channel Parameter Value at testing Correction factor

108 mass flow freon -0.73188 0.71388

log(1 / p)= pc, + 13 log(P) +132p +133P' 13.0 = 3.11554

131 = 4.1444 10_2

132= 3.1469 10

133 = 2.4704 10 -7

=

6

(21)

TU Delft

measurements on a refrigeration system For the calculation of the constant in the formula the following method is used.

The enthalpy of the freon at the outlet of the condenser and the enthalpy at the outlet of the evaporator

are compared with each

other. This gives a increase of enthalpy of the freon per kg over the

evaporator. Also the decrease of the enthalpy of the cold water is calculated over the evaporator.

Since the flow of the cold water is known, the flow of the freon can be easily calculated from a energy balance over the evaporator.

This is done for four differentpoints.

corr factor = ,(1) f"" 3600

Ap

5.1.4. Measurement faults

A wrong measured signal will be given the value of -1

pag. 20 Measurement number day 23-06-1995 A tow,

.c

4)chw m3711 Pwater kg/m3

Specific heat water kJ/kg Cooling power UR 100 3.6 11.1 998 4.18 46.3052 200 4 11.2 998 4.18 51.9137 700 4.8 11.2 998 4.18 62.2964 850 3.2 11.2 998 4.18 41.5309 Measurement number Pcondo bar tcondo °C Pei bar tcl °C licondo kJ/kg HQ kJ/kg Flow freon kg/s corr factor 100 15.50 38.90 5.46 11.20 248.58 411.57 0.284 42.539 200 15.83 39.50 5.75 14.50 250.12 414.72 0.315 44.944 700 17.28 43.30 6.71 19.20 254.69 416.63 0.384 46.176 850 17.41 42.40 5.66 11.90 254.48 413.05 0.261 38.779 I I I I

(22)

TU Delft

5.2.

Measurements on 07 - 09 - 1995

measurements on a refrigeration system

CS=

For detailed information about the measurements on day 07-09-1995 see appendix A row numbers are the row number in the excel sheet, not the row numbers of the Ascii files !

nag. 21

Filenames ic07tin.xls Excel 5.0 worksheet

ic07fin.txt ASCII (spaces as delimiters)

Begin time 11:42:32

End time 16:33:05

Number of measurements

1596

Measured condition A (12:05 until 12:19) 135- 225 healthy condition A B (13:37 until 14:56) 750 - 935 healthy condition B C (15:47: until 16:03:) 1270- 1382 healthy condition C D (16:16 until 16:36) 1460- 1600 healthy condition D I

(23)

cr) 15 a) '5 a)

o 30

Co a) 16 50 40

F20

time Hydra

temperature cooling water in

temperature Cooling water out

ii

i-I i I

--I I .1 il -: L -a. a . -I -... -II .'I }

- .-_,----I -I I 1

1

I - T -.=, I I i I I I I I i I 1 i 1 a a a a

nratmcesr_ .

-1 ,,\rsr.a-a---. . -I,

--r

S i a t a 1 I -12 .c Clai 10 8 18 CA 0 7.7 17 16 200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800 07-09-95 200 40Q 600 800 1000 1_200 1400 16.00 1800

r

I I I -I L I I L I I I I I I I I I I I I I I r I r I r I TI I I I I I

(24)

-6

0

25 25 20 10 a) 1.12 a) 20

DO

temperature chilled water in

temperature chilled water out

temperature environment 200

400

600 800 1000 1200

measurement number daa 07-09-95

-I I -1 I 1 1

,

= ) " -2 -I r - ---I )

_

)v. )v. -- -- -- -- --, ! ! - f--a -. 1 i- --- --- --- ra) . -1 = 1

r

-1 I 11 I ro-a L ! I 1 J I 1 ; --.1 "ut,-4-0-v-n,..nrius\ : J r , _ _ . 1._ , = i 4,1194,0104tIltr -..Alinvirk-r

- "

--1 1 I I I

_I_

200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1'800 24 cf) 23 To 22 a) 21 1400 1600 1800 0-) T r I I I I L I I I I I I I I I I I I I I r I I I

(25)

a

441--60 55 7

a

50 vi 45 a) 30 20 to 7 LI 10 a) 92

a)0

-'100

90 tn .5 80 Tuo 70 a) cn a) 60 temperature oil temperature compresSonin

temperature compressor out

-o 0 200 400 600 800 1000 1200

measurement number daa 07-09-95

I -"1 7 i t - In i I I I i 1 II--: t-J r I

-LkimchArsaa*Pxceid

i t c

1 r I I I i

;

1 _ 1 1. -I-J

-r- z

.t

t

li I- - . e .,- ,- = _ _1 _ I I I i I 1

r

1 t 1 I -I/ I I 1 ri .-1 i I 200 400 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800 1400 1600 1800 a) I I I I I I I I I I

-I I I I I I I I I I I I I _I I I I I 1 I II I I I 1 r 600

(26)

50 50 40 (f) cu

o 30

(I) (a) 20 -1:3 0 10 5 0 0 200 400 600 800 200 200 4 400 600

temperature expansion

valve in

4 -800 800

temperature evaporator in

1000 1200 1400 1600 1800 400 600

measurement number daa

07-09-95 1 1600 1 1 1 1000 1200 1400 1600 1800 1800 CI CL. 1000 1200 1400 3 40 a) 30 a) a) I

(27)

TD

0

52 50 7 TD 48

0

cu 46 6 4 temperature crankcase

flow cooling water

II

1 i

1I

I I I I I I LI . i ., I I I I 1 1 1 1 1 i i 1

Lii

: 1 I 1 I I 1 I I I I .L I I I-I I I -I lo I I I I ...m..-...--. L.' I I-I I I ...I I I I I I I I l. I I I

tr-rr'''...ta.---.--.--....4-I I Il'.."-1.--"-..L... -1 . . -I I I I 1 I I I I 12, 0 200 400 600 800 1000 1200 1400 1600 1800

flow cold water

11.5 T, 11011 .111111111MinnirIMINTIL. 11 I I L

°

105

E 10 0 200 400 600 800 1000 1200 1400 1600 1800

measurement number ciao 07-09-95

200 400 600 800 1000 1200 1400 1600 1800 0 ;40 a) .-I I

-1 in '

(28)

20 15 10 16 10 0 200 _ _ 400

synchronisation signal Hydra

_-J 1

600

800 time netdaq pressure crankCase 1000 1200 200 400 600 800 1000 1200

measurement number daa 07-09-95

_ 1400 1600 1800 f` I ta.) CL

.

-

.

-1 e

i

_ J .. I -e

7

_

L

____I

i j6

L. f i

-1

TM

L

4

Zre-_ 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 8 -5 1800

(29)

20

15

10

8

pressure discharge compressor

pressure evaporator in pressure oil W.)

11

1 1 1 1 I i 1 1 1 I 1 1 1 1 rviVr...,-,...r-I 1 1 1 I i . r L 1 i i i .

-t!

---I

_

11 I -I' I I I I I. 1 I i r I I 1 I

r

I -1 I I

,

r r I 4 I I I 1 I 1 I I I r 1 I I ri I I I F I 4 1 i-i

,

I I I I I I i I I i I I i i 1 1 L I J I I I 1 i I I 1 I i 1 1 1 i TI i 1

r

I 0 200 400 600 800 1000 1200 1400 1600 1800

measurement number daa 07-09-95

200 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800 12 10 8 6 00 0-I I I I

(30)

0 tt .r. 22 co 0 w 44-7

a

D

20 15 10 Bi 20 15 200 200 400 400 600 600 800 800

Epressure expansion valve in

pressure compressor in

pressure contlensor out

1000 1200 1000 1200 200 400 600 800 1000 1200'

measurement number daa 07-09-95

1400 1400 1400 1600 1600 1600 1800 1800 1800 -, I-_ _ ... i

\_,Lr.7,.,

1

r

I 1 I' i _ .1 -I i J II_ I I m _.---,_ -I er w - t,r. -I i

, ,

=r, , , r -.. I I_ _. 1

7

_ _ i I l i I I 1 L -J

t

I 4 I I I. -I 1 I I I I I I I

(31)

0 rn 0 0 £

iS

10 20 15 10 -200 400 600

pressure difference flow freon

power

synchronisation signal netdaq

800 1000 0 200 400 600 800 1000 1200 1400

measurement number dao 07-09-95

1200 1400 1 L 1600 _

-1600 1800 1800 1 . I -/ -i entti/4401444 I I 40"r4i. F = I / i I iincc,....--,,-,---; --: i?, I I

T.

. _

-t

ii. _ . _ r.,=_ 4 r

ii

' L _ 4

,

, , 1 0.5 ?;', 1 -11 Cr: D. =0.5 200 400 600 800 1000 1200 1400 1600 1800

0

5 .4

(32)

-cv I I .1. F. -15 0 5 0

-0 0.5 0.4 0.3 co 0.2 200 200 400 400 600 600

pressure difference correcteu

800

specific mass freoni

800 flow freon 1000 1000 1200 1200 1400 1400 1600 1600 1800' 1800

MASNY \ 0644

, I -1--I

Me

I

I

r thitt1060A. 1 -,., ---1 I I--_ -e. z t____ t - --, 1 . . 1 I

i

T _ -r -__ I

-1

i I I I I 1 i I

Aipottriwittilin

1 , ;1

IT

J i IL 1 7:-1

r

--. r 1 1 4 I 200 400 600 800 1000 1200 1400 1600 1800

measurement number daa 07-09-95

1100 1050 cn 1000o 0 r C.-I I I I-I I I I

(33)

4/ .f

TU Delft

Measurements on 14 - 09 - 1995

measurements on a refrigeration system van Buuren -van S),vaay

For detailed information about the measurements on day 14-09-1995 see appendix A

row numbers are the row number in the excel sheet, not the row numbers of the ASCII files !

pag. 32

Filenames ic14fin. x Is Excel 5.0 worksheet

ic I 4 tin.tort ASCII (spaces as delimiters)

Begin time 13:03:05

End time 16:17:20

Number of measurements 1301

Measured faults C 11(13:50 until 14:35) Too little refrigerant (condenser):

319-619 extraction of 3.05 kg freon

C 10(14:49 until 15:45) Too much refrigerant (condenser): 718 - 973 injection of 2.00 kg freon

A 10(15:45 until 16:17) Too much refrigerant (condenser): 1086-1301 extraction of 2.00 kg freon

(34)

715 16 14 7 17

165

(-5 16 (/) 15 5 Z:-y) a) 15 0 40 a) 30 1 500 500 alea". I or._i.

temperature cooling water in

temperature cooling water out

:

1000

1000

500

1000

measurement number daa 14-09-95

1500 1500 1500

t--- t--- r li it

I Thl A ____ _ _ 0 .

J

r

a

(35)

o>" 4-,C(1) 20 a) 8 6 0 25 24

i23

0 If) a) 22 ci) 21 73 0

temperature chilled water in

temperature chilled water out

temperature environment r4-1 t.or) Ca_ I , , , , , i , , , : 1

-i , : - :-. ,

,

1 i

,

L 1 1 r i I, l'-. I i I I, 1 I I I I I, . -,._1,..nes° 1 i i I 0 (3)4" If) 7 C12 0 500 1000 1500

measurement number daa I-1-09-95

500 1000 1500 16 14 12 10 500 1000 1500 10 a)

(36)

50 u) 49 75 48 0 En Cl) 47 a) 20 90 crr 500

temperature oil

MW-inkyvyts_r?"

temperature compressor in

temperature compressor out

1000

500

1000

measurement number daa 14

-09-95 1500 1500 I

-I I I I I -I I I I 1 a ii-i 1 1 i 1 I L I I 1 I i 1 I i I i 0 500 1000 1500 Cl)

(37)

45

45

10

temperature condensor out

temperature expansion valve in

temperature evaporator in

500

1000

measurement number daa 14 -09-95

1500 It 1 " 1 i \.... I e IL i il-! . -I

7

, . , , , : --, , 1 _,---^

..._____F"

, , L , , , , i , , , , , , I 500 1000 1500 500 1000 1500 35

00

U) a) I

(38)

20

15 10 5 0 16 14 0 (13 ID 4 5 0

Syllent Of lisation Signal nyth

time netdaq

pressure crankcase

500

1000

measurement number daa 1-1 -09-95

1500 :- II-1 1 : i I 1 1 I 1 i_ r I--, L 500 1000 1500 0 500 1000 1500 6.5 6 (7) 5 5 RI 5 a) E 10 0 1

(39)

-19 18 17 7 6.5 6 11 10 9 na3 5 5 Lc6

.05

0 500 pressure oil

pressure evaporator in

1000 500 1000

measurement number daa 14 -09-95

1500 1 500 -1 ,

7-, , _ _

---L_ , ,_

-_

--

---, ,

----I 1 I , : , I 1 110 I L L ' j i I 1 1 ! ' I , i

r

, 1 1 1 i _ : : 500 1000 1500 0

(40)

18 17 8 7 18 17

515

pressure expansion valve in

pressure compressor in

pressure condensor out

(.2 14

0

500

1000

measurement number daa

14 -09-95 1500

Id,

..:

r

-_

_ _ t"CMISS4C.P.

V.A.N.

_ t-_ 1 = w ---.7---S. -_

---_

rat

1 I . A I- -= 7. I

-4-LRAMMANUAIV, -- 1_ i -_ -,_ -..-- t 1_,.tT "" if' _vY \freiL mv L- yi -7, rvyr ,,_ .-- ,, - -. , - , . , . , 500 1000 1500 500 1000 1500

(41)

0.5

0

15

10

5

pressure difference flow freon

power

synchronisation signal netaaq

SY 1

a a ,,

m- .- .. -k-.

-- , --, ,7 = -..- -IN-, . _ r I _

-r

-1 1 I 1

1

7 03 ro E =0.5 -1 0 500 1000 1500

measurement number daa 14 -09-95

-500 1 000 1500' 500 1000 1500 20 15 10

a-vs

0

(42)

2 1.5 1 0 5 1040 1030 1020 1010

-21000

0.5 500

ebbui e UITTel et lee UM leGlCU

specific mass freon

flow freon 14-09-95 1000 1500 ca r 500 1000 1500 500 1000 1500 0 1 -I

(43)

TU Delft

Measurements on 18 -

09 - 1995

measurements on a refrigeration system van Suuren -van Swaay

For detailed information about the measurements on day 18-09-1995 see appendix A row numbers are the row number in the excel sheet, not the rownumbers of theASCII files!

pag. 42

Filenames icl8fin.xls Excel 5.0 worksheet

icl8fin.txt ASCII (spaces as delimiters)

Begin time 11:51:59:

End time 12:53:47

Number of measurements 418

Measured faults C 12(11:51 until 12:09)

019- 127

condenser water side fouling

A 12 (12:30 until 12:53)

280 - 418

(44)

40 r, 50 100 T ; -1 ;_ : . I; , , , , ,

;,

, , , , , 1 -:. IL-.4 I,-_.: I I I I t I I 1 i 1 I Ir rI I 7 I TI 1 I I i I I I I I I time Hydra 1

11

t al si 10o 17 16.5 (7) 16 CT) win 15 5 a) a) 15 D 50 100 0 50 100 i , , , jr -, I 7 : 1: I I I I I 1 I I I I I 250 300 350 400 450 500 150 200

temperature cooling water out

-I I II I 7 7 1 I : 7 i I

II

I II 1 I I I t I I I I I 1 L. I li 1 1 1 i i I I 1 I

I1

i I 1 : I t t T 1 r 1 T I i i 1 I 1 150 200 250 300 350 400 450 500

measurement number daa

1 -9-95 150 200 250 300 350 400

450

500

temperature cooling water in

12

11, 5

I

(45)

,2 151

cn Et2 10 a) a) 1:3 0 16 14

0 12

co a)

6-1:2 0 24 50 100, 100 150

temperature chilled water in

temperature chilled water out

4 , = 200 250

temperature environment

I _ I 180 200 250 300 350 23 (11

J

a)

0 22

a) 22 (3) a) 21 50 100 150 200 250 300 350

measurement number dag 18-09-95

400 450 500 - 11-1 -- -- t w L, I

If

1 400 450 500 300 350 400 450 500 20 10 50 I I I I I L 0

(46)

50

20

90 I I I

w85

1 D I 6 I I a) 1 1 c.) I I . i

'80

a) I 1.1 i.1:12 I I 0) I I a) -c) 0 50 100

11--- 11-

---50 100 I 14--I : 4: \i \r N Ill I I I 1, I I I I-I I I 11 . 1 I I I I I I 1 s I I 1

1_I

I 1. 1 11 1 1 i 1 ,... i *--- 1 __

.--,-,i_

1 1 1 $ --"---,14.,-^-, 1 ______ -: ______ it- _________ I. I

II

1 I I 150 200 250 300 350 400 450 500 -A temperature oil

temperature compressor in

0 50 100 150 200 250 300 350 400 450 500

temperature compressor out

4

measurement number daa

-09-95 150 200 250 300 350 400 450 500 48 I 1 1== -I

(47)

If) a) 45 (D 35 7' 0

45r

1-- 1 10 , 50 100 50 100 50 100

temperature condensor out

, , , ,

,,

I , , ,

I,

, . _,I , 1

,

.._ : :-150 200 250 300 350 400 450 500

temperature expansion valve in

1 . , . . , , , . , . , . , , , , . . . , , . . ; , ,_ , :-.4 , , , , , , , , , , , , , , , , , . 1 I I 1 I 150 200 250 300 350 400 450 500

temperature evaporator in

i 1 . I , 1 , I , I ! : : 41 1-4. I i i I I I I I I I I I I I I I I I I I I I I I I I I I I I I I -r 4 TI I I I : I Ir -I, I

I1

i I I I

II

I I I 1

_L

L I I 1 I i 150 200 250 300 350 400

measurement number ciao ix -09-95

450 500 -35 0

-

(48)

---0 52 (i) 51 50 cu 49 a) 48 773 0 re 1.50 12

115

's 11 E 10 5o 1, 50 100 I 1 T---I I, 1 7

-;Ir-; IT-, I I. 1 L. 1 1 i I I 1 I.,-I: I-i I I i i I

lel I pei cilUI e

I 01 Imt...ciJc

flow cold water

-44\-kemi\pAv-I , ! I ! , , , , :,_ :-1

,ATAilLaik_AAL:_

, . , I I I I i ! I, ! , 4 I : , , . . , . l ;-r i I I 350 400

450

500 Li 50 100 150 200 250 300 350 400 450 500

measurement number daa

I -09-95 50 100 ,t , : r , ,

'1-35

3

25

_c 2 150 200 250 300 350 400 450 500

flow cooling water

J a 150 200 250 300 I

(49)

I

20

15 10 5 oo 12 0 50 1 200 250 300 350 400 450 500 100 50 100

synchronisation signal Hydra

I I I I T i I I I t . -I I - I, 1 -I 1 I I I I I I I

II

1 -: It -- I I-. I I I I I

II

I I I. ii II 11 r. : I I 1 I I I I I , I I 1 I 1 1 I I 150 200 250 300 350 400 450 500 time netdaq 1 i I I I I I I 1 I

TIir

II : - II : TI I I I I I I i I I I I I I, Ai I-. -J 4. l . I I I I 1 i I I i i I I I I I I i Ir I I ir

r

1 --1 7 1 I I I I I I I 1 I 1 1 1 I

pressure crankcase

I 7 1 I j I r 7 I I I I I I I

II

L 4 -L 7 I I I 150 200 250 300 350

measurement number daa 18-09-95

400 450 500 E 10 0 : 1 50 100 150 8 7 -15 -J

;TA-5 (13 I (Y3

sj 4

I

(50)

-0

20 18 n 1 4 0 Cot

n4-00 50 100 150 200 250 300 350 400

450

500 50 100 II 1 i I 1, : 4 i I, TI I I II i I 1-I I i I I I I I I-I I-I r 1 I 1 1 1 I i 150 200 250 300 350 400 450 500

pressure discharge compressor

I I I I I 1... 1 I I I I i I I I I I I I I 1 I -J L Li I I I I I I I 1 1 i i I pressure evaporator in pressure oil 1 1 1 ____1_ 200 250 300 350

measurement number dab 18-09-95

400 450 500 1: I 8 I IT I 7 1 I -II. I +I 6 4 -I (13 5 4 150

(51)

a

20 18 9 18 17 14 0 50 100 -11 -50 1. 100

pressure expansion valve in

I I T , ; , I i I

II

_I, IL L t I 1 I 1 I I I I i 1 1

ff

\

7 \ - \ NI .v-'-'"---T A--.; t 1 I 1 i 1 : T t t f 1 1 1 1 I 1_--____-1 I I I 1 1 150 200

250

300 350 400

450

pressure compressor in

I

r i i T -1 . , e I I i I I I I I I, -I I ir : I 1 T 1 I 4 I I 1 I I I I I i I 1 1 I e 1 -I" .1, 1 1-i I -i I 1 1 , 1 i I -Ti 1 i I 1 1 I 1 I I 1_. 150 200 250 300 350 400

pressure condensor out

, -;, , ; -,, ; , , , , , ;

i

1 , ; . , _ "-., , ; ; 4 I 1 I I I i

50

100

150

200

250

300

measurement number daal -09-95

350 400 450 500

500

-450

500

7 0 14 16

(52)

0 5 151 1 t.--I 1-i al 1. -1 1 i I I I I I I I i I I I 1 t. -t I--i i I I I

II

i I I I i i t t I

r-I

tT.

: t, , , i

_i

1 50 100 150 200 250 300

measurement number daa 18-09-95

pressure difference now lieu

1, 1 1 1 1_ 1 _l_. 250 300 350 400 power I 1

-400

synchronisation signal netdaq

450 500 1 450 500 350 400 450 500 I t ,,--,.-.---.. i I i I i i i b i 10 5 oo 350

50

100 150 200 250 300 20 15 10 5 > 0o -150 -= -I -I 200 I

(53)

1 0.5 1080 1060 1040 :13E 1020

IJICJOUI C UIII CI CI Rae Lull ecaCt..1

1. flow freon

specific mass freon

15p 200 250 300 350 400 450 500 L.--_i

-klmyitiviviiii

i -s. 1 . . -...,

I

I -v..= 1 i t 1 --wooo 0.5 0.4 0.3 cn O.2 50 100

Niervitfi

1 50 100 50 100 150 200 250

300

350 400 450 500 150 200 250 300 350

Measurement number dad 18-09-95

400 450 500 0 -4 tr

1

I I I 1 -I I L

(54)

-TU Delft

measurements on a 'refrigeration system van Butien -van Swaay1!

(55)

TU Delft

Measurements on 21 - 09 - 1995

measurements on a refrigeration system

For detailed information about the measurements on day 21-09-1995 see appendix A

row numbers are the row number in the excel sheet, not the row numbers of the ASCII tiles!

van Suuren -van Swaay

54

Filenames ic211m.xls Excel 5.0 worksheet

ic211m.txt ASCII (spaces as delimiters)

Begin time 08:29:58

End time 16:39:16

Number of measurements 3268

Measured faults A 12(09:50 until 10:01)

546 - 616

condenser water side fouling

C 12(10:01 until 11:02)

617- 780

condenser water side fouling

A I 1 (13:07 until 13:35) 1860 - 2139

Too little refrigerant (condenser): extraction of 3.00 kg freon C 11(15:02 until 16:39)

2622 -2975

Too little refrigerant (condenser): extraction of 3.55 kg freon

pug.

(56)

16 14 12 7

2 o

( ) 30 0 25

o

a) 7 20 a) Fa) L_ 0) sp 15 77 0 40 in 35

7

15 30

0

to a) 25 C7) CD 20 13 0 500 500 1000 1000

time rwara

temperature cooling water in

1500

1500

2000

temperature cooling water out

2000 21-09-95 2500 2500 3000 3000 3500 3500

4000

4000 L

F

T _ Li L I"

II

-I_ IL L. 4 L. _ L I i i s-t_

\

i 1

7

\

i 1 i I i 1 --:-i

l

1 -_ 1 _ , -s I -, = a-:-,-- a-:,--I 500 1000 1500 2000 2500 3000 3500

4000

a) I

(57)

20 20 15 25

7 20

'5 a) a)-10 0 500 500 1000 1000 1500

emperatu e cniiieu water iii

temperature chilled water out

temperature environment

1500 2000 2000

21-09-95

2500 2500 3000 3000 3500

3500

4000

4000

45 In Of) o:t

0-

F-r ..----1

...,,,,,,w_te...

IV 1- e_-_-I s- 71-t I _ si s 1 , 1 ______ 1 I I I I 1 I

-1

1 I 1

ii

I.. _._- _-_ . I I I "'".

IL_

,...,_. - I -_,. 13 0 500 1000 1500 2000 250Q 3000

3500

4000

0

-I I I I I I I-I

(58)

50 K) 45 a) co -(1) 40 173 0 20 a.) (I) 10 90 85 VI

o 80

a) a) 75 1:3 0 500 1000 1500 2000 2500 3000 3500

4000

500 1000 temper atui e

temperature compressor in

11500

temperature compressor out

2000

21-09-95

2500 3000

3500

4000

-. .. . r

r

1 ...

\

\

\ '"fr E

-

--! 1 I I

171601

a 1iti

/45.1 I s I :LI< I i 1 - - .a-.., I-I I-I k i -)

-500 1000 1500 2000 2500 3000

3500

4000

0

I I

/

I L L L

(59)

457

40 ai 30 -0 0 45 40 a)

0 35

0.) 30 20

orirr"

L. 500 1000 1500

temperature condensor out

temperature evaporator in

L.

2500

temperature expansion valve in

3000

3500

4000 00 t.1.1

r

, i L L L t_ I L _ I I I / I 1 I /

...C,".-.-Ar--r"

. t I, t I t , , e r

r

i . t t , , r -...----1... I 1 ./.#-^ Lh . _ _ 1 -, i 500 1000 1500 2000 2500 3000 3500 4000 21-09-95 13 0 500 1000 1500 2000 2500 3000 3500 4000 (i)

3

35 0 2000

(60)

55 50

0 45

a) Lci. a) 40

no

500 1000 1500 2000 2500 3000 3500

4000

_C

-CO 3

25

E2

0 12

115

0 cg 10 5

--0 500 1000 500 1000 temperature crankcase 1500 1500

flow cooling water

2000

flow cold water

2000 21-09-95 2500 2500 3000 3000 i 11 3500

4000

3500 4000 I-I I -I I I-I I

II

ill

I I I I I 1 i I

rq

I I I I I I I I $161"Vtel4it4t0N4111VII i . I I I I I I I I 1 1 I I 1 1 Oi______ , , I , , , 4 4 ' , 1' 1111 .1 irk INI I I 1 1 ' 111- 1111 -: . ,

(61)

20 15 10 5 -5 oo

-16f,-

--I 14 9 8 7 6 _a 5 0 500 1000 1500 2000 2500 3000 3500 4000 1 -r

synchronisation signal Hydra

time netdaq

pressure crankcase

1 500 1000 1500 2000 2500 3000 3500 4000 21-09-95 1,~% I \ 1 1 I I L-I I ; I t _ T I L

A...,

L.

2500 3000 3500 4000 500 2000 1000 1500 r

(62)

cr) 8 7 12 10 500 1000

pressure discharge compressor

pressure evaporator in

pressure oil

2000

2500 2500 3000 3500 3000 3500 4000

4000

1

vI-4"-, , , , , i ,

,---,

I I 1 I I r i I I i i 1 i 1 __-I i I I I 1 Yk.,---,,,---1,----I r I I I i I 1 I I i i 1 1 i I I I 1 1 i 1 I I I I _ i ' ii

"

r WOK/

in**-*INOMPOS

r I I 1 1 i : I :i :1 . i 1 1 1 i 1 , I i 1 : ' I , I t I 1 I , -2000 21-09-95 500 4000 3500 2500 3000 1500 1000 20 15 500 1000 1500

-r

I I 1500

(63)

18 16 14

12

(' 9 8

-o12

0

pressure expansion valve in

pressure compressor in

pressure condensor out

I_ .,e...41..4.40 L I i I 1 I I I f-I L I I 1 I 1 I I I I i I I r. I i I I I _ 1 1 L_ L L I _ 1 1 1 1 Vw.or--\\...., i I I _. I , r 1 1 1 1 '-i 1 i I 1 1 , 1

1

I , , 1 1 i 1 1 1 I I : I

r

1 1 I I I I I I-I _ : 1 I 1 1 I I I I 500 1000 1500 2000 2500 3000 3500 4000) 21-09-95 500 1000 1500 2000 2500 3000 3500 400C 0 500 1000 1500 2000 2500 3000 3500 400C4 18 16 0-r I

-r

(64)

1 0.5 0 20 15 10 0 500 1000

bsuie umeierice now

Iuu

1500 power 2000 21-09-95 2500

synchronisation signal netdaq

2500 3000 3000 3500 4000 3500 4000 at) al C._ C i i

,

I

...WI L

.J.,/

r"..."4" \..ie 1._ L 1 I l I I , L L. 1--I r

r

r I 1 I . --0 500 1000 1500 2000 500 1000 1500 2000 2500 3000 3500 4000 151 10 5 oo pi I -a I I I I >

(65)

It

2 1.5 0.5 0.6 0.4 0

pressure difference corrected

specific

mass

freOn

flow freon

21-09-95 1 -_ 1 , 1 _ r.

--u ; i ---,_____ . !I, I t 1 t r. e.:1":"..,r I-, -1 1

Ire#°4"ri'l-. 1 1 . I

1--I INsLY,2222 12,2

II

I 2, i I r r _ r

IHITI

lil

_ 1.110441 m 1... -0 500 1000 1500 2000

2500

3000

3500

4000

500 1000 1500 2000

2500

3000 3500 4000 3500

4000

500 1000 1500

2000

2500 3000 1100 1050

woo

r I 0

02

1

(66)

LB

TU Delft

5.6.

Measurements on 22 - 09 - 1995

measurements on a refrigeration system

van Buuren -van Swaay,

For detailed information about the measurements on day 22-09-1995 see appendix A row numbers are the row number in the excel sheet, not the row numbers of the ASCII files

Pag

II

Filenames ic221in.xls Excel 5.0 worksheet

ic22fin.txt ASCII (spaces as delimiters)

!Sin time

10:06:54 -.. --_ End time 16:30:00 Number of measurements 2560 'Measured faults , 'C 19 (10:09 until 10:50) 239 - 505

bulb temperature 'forced' down (from 18.7 to 17.0

i. C 19(10:50 until 12:32)

545 - 1182

bulb temperature 'forced' up

(from 18.7 to 24.0 °C)

m

A 19(14:09 until 14:56) 1420 - 2100

bulb temperature 'forced' down

(from 11.6 to 7.0 °C)

A19 (14:57 until 15:39) 2150 - 2420

bulb temperature 'forced' up

(from 11.6 to 13.0 °C)

65

(67)

16 14 12 8 17 16.5 6 16 a) (.) Low 15.5

5

3)

15-o 0 45 40 TD 35 a) a) a) 30 time Hydra

temperature cooling water in

temperature cooling water out

I 1 1 1 r 1 1 1 ' 1 1 1. 1 1 _ r _ I I 1 , L _ 1 1 41 I I --I i r 1 1 r 1 1 1 1 1 I I I 7 1 1 T I 1 ir 1 1 L , :-. I , n rwrurr-i__kirr-a___: I II 1 1 , t I i

flIrTT1--I I I I 1 1 4 1 1 1-I -11111111 1 . i ir 1 1 1 1 i I 1 I I LI_ , , , -ri I 1 I I I i I I I , I I I L 4 e_ . i I I 1 1 1 1 1 I 1 _le _e _.. 1 i e 1 1 i 1 1 0 500 1000 1500 2000 2500 3000 3500

2/-09-95

500 1000 1500 2000

2500

3000

3500

500 1000 1500 2000 2500 3000 3500 0 I 10 a)

(68)

20

15

25

500

1000

temperature chilled water in

temperature chilled water out

temperature environment

1500 2000 22-09-95 2500 3000 3500 rzfi -...-.--..-.1.--...-,,-....,

i

\

I i I I i I I I i 1 i i

HHWT

--- __ Ill ii I.- 1.---I I I I I I 1 ....,...,-,--. I I I-I I . i I I 1 1 1 1 1 I ---\t"--"----..--,,_1

i

r 1 1 1 1 i 1 1 i 1 : 1 i : 1 t s o :i t 1 ____L 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 1

(69)

-0

50 20 u) 15 Cr) 10 rj

a)0

90 temperature oil temperature compressor in

temperature compressor out

I I I I I-I I I I I I - 4 1 I I-I .---'----''''----"-.--s'"'""'-*---'---Th-4f I 1 1 1 I -I L _/ L 1 1 1 1 i 1 i 1 1 1 1 1 1 1 1 1-1 I 1 __ t t 1 r\ r---:"---t r 1 1 t ._, t i i I I --N---"--r----I 1 I t 1 -1 1 1 I t I [ I t 1 ri i pl. 1 t 1 ] 4, o 1 I I I 1 I I I I ,. -4 I I l--I I I I I I I I I I 1 I i I I I I -1 L --4 , I I I I I I I I I I I I I I I I I I II 1 L J L 1 i 1 i / 0 500 1000 1500 2000 2500 3000 3500 Ta-) 0 500 1000 1500 2000 2500 3000 3500

22-09-95

00

500 1000 1500 2000 2500 3000 3500

(70)

-45 45 40 E5 a) 10

temperature condensor out

temperature expansion valve in

temperature evaporator in

1 i i 1 i i i I i 1 : t 1 I I I I i 1 1 1 1 I ir I 1 , 1 -0----,,,A,...----, . 1 1 , 1 1 I _ I i, I IL I L, i : 1 , , i

iN...--,

-1, I i I I I Ir I .1 I I L I I I I I I I I I I I I I I I I I I, r r I I I i i I I I I 500 1000 1500 2000 2500 3000 3500 fl 500 1000 1500 2000 2500 3000 3500

22-09-95

500 1000 1500 2000 2500 3000 3500

(71)

-0

_c 50 in 45 if) 40 a) 35 (1) 30

DO

3 2.5 2 0 12 11 5

2

10 500 1000 500 1000

temperature crankcase

1500

flow cooling water

1500

flow cold water

2000 2000 2500 2500 3000 3500 1 i i 1 -1 L-- I i i

L

al _ -, I ! I I 1 i I i

lifrAifitit

4401140111,4401114#16,041,1101e1PM I I I 1 = == = = r _ I 1 VWWEIIILLAILILLILM I ,L ii 1 I 1 1 I , I 3000 3500 500 1000 1500 2000 2500 3000 3500 22-09-95 0 (1) I I I I 1 L I-I I I I

(72)

16

7

6

synchronisation signal Hydra

time netdaq

pressure crankcase

-- ,---t i I I 1 I -I 1 1 o I _ t I I I I I ' I I I I i i i i I t 1 I I I t i i I : I I L 1 I I r I I I I 1 I II I I I I 1 1 I t I IL 1 ..I, IL i i i I I I 1 1 I I I I I i I I i I i I I i I I i 1 1 1 i 1 I r : i i 1 I r I - I T 1 I i 1 1 i 1 1 . i 1 I . . . . . . . . . 1 i i 0 500 1000 1500 2000 2500 3000 3500 20 15 10 4, 5

0

500 1500 2000 22-09-95 1000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500 --1 1 1 0 0

(73)

19 18 17 nco 16

n15

0 12 10 500

pressure aiscnarge compressor

1500 pressure oil. 2000

pressure evaporator in

2500 3000 3500 -1 11 1

I

I I I -1 4 -I I. -I _ _ _

e_.----,

c : Nwre.4?"'!"."...%-" J L -.,. - - ..,:- - . -,--1 it _ a i y I I 1 -on yl

II

'

, I ,, 40: `ti $41,"F',..a

I '1:1

. , I

"

0040.1.

., ' 'Ai' ' ' . '''''" A 1 14 7 _ I 1 i t---_ r t

---_

I = _ _ 1 I t r -500 1500 2000

22-09-95

3000 3500 1000 2500 7 6 500 1000 1500 2000 2500 3000 3500 en 0 en

a

r

I I I I I I I I I I I I I I I 1000

(74)

18 17 16 m 15

o14

8 7 18 17 s(f)3 14

pressure expansion valve in

pressure compressor in

pressure condensor out

_ -I :-I I -1, I I I I-/ I -li Li as ti-1 i t I 1 -1 I L _1 L t I I 1 1 I I i I I ! I II t [ I I 1 i

---1 1 1 1 t t 1 i 1 -_LI IL. IL i I I t i 1 1r I I I It I, $ :-1 1 7, i jt ''"\AAN1404. I i IL 1 1 ii-1 1 i 1 I 1 1 1.-1 1 t I 1 i 0 500 1000 1500 2000 2500 3000 3500 22-09-95 500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

a

-

-I

(75)

-0 5 0.5 0 15 10 20 15 10 5

pressure difference flow freon

power

synchronisation signal netdaq

C-1 r bf.) Cl. i , , i , . , , , , , i . I I I I I I I I 4 . . IL I I I I I I I I -I L IL I I I I

--I I I / I I I I I I I I I I 4 I.-I 1 L --I I I I I I t I I I I 1 r: : Ir I I I I I I II I I I I I I I I I

Ii_

-I----500 1000 1500 2000 2500 3000 3500 22-09-95 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 5 3 o 1 0 0

(76)

11 C.

10

1

05

E 0 1100 1050 0.1 0 500 1000

pressure difference corrected

1500

specific mass freon

flow freon 2000 250 3000

3500

-. ,--: -r 1 , it 1 1 ,_

r

- .ci,=,-4 yfrgt100044elleby 1 = -J ._ _ r 1 I I I ._ i I , -1

....3..."...d.-s--4,:r....

1 _ Le.'""re;1""Ne.V I ' 1

-

--__ , _ I 1 r

II

___ 500 1000 1500 2000 2500 3000 3500 22-09-95 500 1000 1500 2000 2500 3000 3500 0.5 0.4 0.3 vi 0.2 1 000

r

I I I I

(77)

T U Delft

Measurements on 25 - 09 - 1995

measurements on a refrigeration system

For detailed information about the measurements on day 25-09-1995 see appendix A row numbers are the row number in the excel sheet, not the row numbers of the ASCII files !

van Buuren -van Swaay

pal. 75

Filenames ic25fin.xls Excel 5.0 worksheet

ic25fin.txt ASCII (spaces as delimiters)

Begin time 10:06:54

End time 16:30:00

Number of measurements 2560

Measured faults A 21(10:40 until 12:12) oil injection (evaporator)

230 - 840 +2.50 kg

A 9 (10:01 until 11:02) air injection (nitrogen in condenser)

(78)

16 14 1 0 0 18 50 40 CD time Hydra

temperature cooling water in

temperature cooling water out

! ; -1 . . . 1 . -_

,

i 1

____

t___ I -, i -_ i t -;

i

I..

,---:--1_-..

L. r _ ._-- ._-- r

r

-. _ I

Ii

! L , ii : -1 2000 2500 3000 500 . 1500 25-09-95 1000 2000 2500 3000 500 1000 1500 500 1000 1500 2000 2500 3000 17 a) 3 30 20 0 12 0

(79)

16 0 12 16 14 cy) a) 6

P

0 24 0 22 ci) 20 a) ,(1) 18 a) 500 1000

temperature chilled water in

temperature chilled water out

temperature environment

2000 2500 3000 <7.1 C.. r r

r

1 _.---.-'-'-H--I I I I I i I .77+_...._,...._..,_ :1 I I r I. I I 1 r 11 i . 1 1 1 _

,

1 , 500 1000 1500 2000 2500 3000 25-09-95 500 1000 1500 2000 2500 3000 10 0 12 _ ) 0 1500

(80)

t

'o45

Ills

Tu cn ai a) 40 1:3

Ho

-50 90 80

.4

-(1) tno

0 70

0

o ..

D

um 60 A (i) cna) 50 C)

00

500 1000 temperature oil 1500 temperature compressor in 2000 2500

temperature compressor out

25-09-95 3000 _ 00 p.

Ills

A

.__

:

,

---; = -1 -1 1` eiArtiMhErSer-W166* i I 4'1 _r______ a L _ _ _ _ 1 1 , -I H

Trl'ir

1, !.. i. I 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 12 10

(81)

-4

? 2 0 It

45

40 5 a). 35 Cu a) 30

g 30

D 0

temperature condensor out

temperature evaporator in

25-09,95J -s t -,e,..°'

1---vt

i , I-1 t_ I it -I Li,. - - t* L -1 , I

H

L-i t-I :-I I I I

- -

- ,

--;;__

; -I

-1--e---,

- -,--; r

Lir.""c"--.----"Pr-'

Ef'," 45 Ca'm 40

'5

0 35

Ct a) -590 1909 1500 2000 2500 3000

temperature expansion valve in

20 15

0

10 0 5 cm 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 I I I

(82)

52

a)

0

4 3 12 11.5

2

CO) 10 temperature crankcase

flow cooling water

flow cold water

25-09-95

e

III

,. ,. Na s

...

. _.

r

r = I

a

-. I ,

,

_ _ 1 ! -_ 1111111111111k1 II

li

-r

n ilu ill 1 I I

II AII

ill II f1111111rWIt illWINIV11111 -4_ 1_ -_ n

-1

1 -r _ _ , . .--. - -I 500 1000 1500 2000 2500 3000 i0

D

0 500 1000 1.500 2000 2500 3000 500 1000 1500 2000 2500 3000 50 48 46 0

-1

11 00

-I I I I I I I I I I I I I I I I I I

(83)

16

8

6

...naive notateva I °ay. 1 CA 1

I iyUl 0 time netdaci pressure crankcase 1500

25-09-95

2000 2500 3000 .--= g a

_

_

-I I = ~ -6 3:.1 __ a___ __ h. ,, 4 .. 1 I L. -e i e ; = : f -= =.= =

, , ,

-,-- 2 a- ..r ,, .

-n

i

-i; I

ii:

-I -.--. .,...,_ _ _ i I _ I

j,

.-... 1 L I -= I-=It ... i L I i 20

-10

In

In]

c 5 0 1500 2000 2500 3000 1000 1500 2000 2500

0

14 0 a) 10 1 500 1000 I I I I I I I

--- I-I J 3000 15 >

(84)

20

18

8

7

pressure aiscnarge compressor

pressure evaporator in pressure oil = 1500 2000 25-09-95 2500i 3000 I _ _ _._ _ _ _ -i

,

IC

- --2-, 2 _

-TT

-7'

2_

'

, -1 it 1 I _ .1-,-,---....A... 1

tivr..,,,,s,,...

_ 1

.

1 -a . -I I' -11 I' ti

I-I

,--_ __ 2500 2000 1500 1000 500 3000 2500 2000 1500 1000 500 3000 10 9 8 J 1000 500

(85)

18 16 _o

i14

18 17 16 "E) co 15 0 co

-o14

500 1000 1500

2000

2500 3000 -L. 1000

pressure expansion valve in

pressure compressor in

pressure condensor out

1 500 1000 1500 2000 2500 3000 f'") 00 01) I Li , , ,L

,

L

1111111

iL

-,,--",,,---%,

L

t : i 1 ! 1

r

:

;,

,

,

1 ,

L

-, 1 ; i 1500 2000 2500 3000 25-09-95 I-r 500

(86)

40,1 .40.2 -0:3 E 30.4 0 15 10 5

pressure difference flow freon

power

1500

synchronisation signal netdaq

25-09-95 2000 2500 3000

1111

II

,

- !

-\v-444tootsksta.

ill

ii. es_

r

L_ I -1 1 _ -,...r z . _ _ _

_

i_ I -a I, F -r r. -- ---- s r -a

-_

-_-[

I ___ _ I 500 1000 1500 2000 2500 3000

I.

-a5 20 15 10 5 500 10001 1500 2000 2500 3000 0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

i

500

(87)

$3 0 1 Q,5

woo

0.4

'03

0.2 0.1

pressure difference corrected

flow freon

specific mass freon

25-09-95

=

--, ) ; Lnit'st L. I _L -1--_ . ___ _ _ 1

-t -I

_

-, L s-_ 1150 ft; 1100 al .r. 1050 500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000 500 . 1000 1500 2000 2500 3000 I-0 0

(88)

TU Delft asurements on a refrigeration system

6. Data analysis and conclusion

6.1

Measurements on 14 - 09 - 1995

In the next sections, we will analyze the effects of varying the refrigerant quantity in the cooling

system. The freon is added to (fault it 10) or removed (fault # 11) from the system just after the

condenser, simulating respectively a leakage and a too large refill. The test starts with the system in

an healthy condition (C). The leakage steadily reaches a maximum 3.05 kg of freon after

approximately 45 min. After restoring the healthy condition C, a surplus of refrigerant is simulated:

2.0 kg of freon is added to the system in about 30 min. The system is then brought to condition A,

from which the refrigerant surplus will be removed.

6.1.1

Too little refrigerant (C 11)

observations

The chilled water and the cooling water flow remain constant throughout the experiment. There is a decrease in the in-going evaporator temperature: Te, goes from 9 °C to 4.5 °C andTcd shows a slight tendency to increase first, then to decrease (±0.5 °C). At the end, it will have the same temperature of the start: 86-0 °C. Tn,,falls from 36 down to 33°C, as opposed to the raise inTaw° 15.3 to 16.2 °C. The sub-cooling decreases (4 °C to 2 °C), while the superheating increases from 10 °C to 15 °C. The condensing temperature also decreases (45 to 39 °C).

The compressor power decreases by 10%. We also observe a decline in condenser power 69 to 56

kW, along a loss of evaporator power: 45 kW at the end

of

the test against 55 kW during 'healthy'

operation.

Gaseous freon bubbles appear just after the first 300 g of refrigerant are drawn from the system.

Interpretation

As the freon level decreases, some bubbles appear in the spy-glass: this means that momentarily less liquid freon circulates through the expansion valve ( temporary with constant opening ). However, for

a short period, the compressor maintains its power constant, causing a pressure decrease in the

evaporator. The lower pressure in the evaporator induces the expansion valve to open further. The compressor reduces marginally its production; consequently, the condenser will condense less gas. The condensation pressure also decreases. We have now reached the new equilibrium point: lower condenser and evaporator pressures, lower mass-flow and compressor power. The system also

presents a lower sub-cooling and superheating.

van Buuren -van Swaay

Cytaty

Powiązane dokumenty

skojarzenia sakralne, których źródłem pozostaje w większości religia chrze- ścijańska 5 . Swobodny charakter tego typu nazw warunkuje dość symptoma- tyczny brak

– przyczyny znalezienia się poza granicami Polski (rodzaje emigracji), – czas przebywania poza Polską i zróżnicowanie pokoleniowe Polonii, – stopień znajomości

Przedstawiony przykład inwentaryzacji pomnika Bohaterów Bitwy pod Mokrą dowodzi, że technika skaningu laserowego pozwala w szybki i dokładny sposób zarejestrować

The indications for external access surgery are: poor anatomical conditions preventing visualiza- tion of the larynx in direct laryngoscopy, relapse after radiotherapy

Враховуючи прямо зазначені в КПК України випадки використання відомостей, отриманих під час проведення ОРЗ та НСРД, необхідно виділити

З моменту набрання чинності рішення КСУ від 27.10.2020 одразу почало позначатись на правозас- тосуванні кримінального

áûâøåãî ïðåäñåäàòåëÿ êîìèññèè ïî îòäåëåíèþ Öåðêâè îò ãîñóäàðñòâà À. Â. Êàðàãè÷åâà âûçâàëè íà äîïðîñ â ìîñêîâñêîå ÃÏÓ â êà÷åñòâå

Poza tym jest tam wiełe tytułów, które już dawno przestały się ukazywać, bądź ukazywały się bardzo krótko.. Uerze/cAnts ów może stanowić swego rodzaju instruktywny