• Nie Znaleziono Wyników

SiGe heterojunction bipolar transistors with Schottky collector contacts

N/A
N/A
Protected

Academic year: 2021

Share "SiGe heterojunction bipolar transistors with Schottky collector contacts"

Copied!
154
0
0

Pełen tekst

(1)

transistors w i t h S c h o t t k y

collector contacts

(2)
(3)

P R O E F S C H R I F T

ter verla-ijging v a n de graad v a n doctor aan de Technische U n i v e r s i t e i t D e l f t ,

op gezag v a n de Rector M a g n i f i c u s P r o f . i r . K . C. A . Lnj^ben, v o o r z i t t e r v a n het College voor Promoties,

i n het openbaar t e verdedigen

op dinsdag 9 september 2014 o m 12:30

um-door

G i £ u i p a o l o L o r i t o

D o t t e r e i n Ingegneria E l e t t r o n i c a

v a n U n i v e r s i t a degli S t n d i d i N a p o l i Federico I I , I t a l i ë , geboren t e Salerno, I t a l i ë

(4)

D i t proefschi'ift is goedgekeiu'd door de p r o m o t o r : P r o f . dr. i l ' . R. Deld<:er Samenstelling promotiecommissie: Rector M a g n i f i c u s v o o r z i t t e r P r o f . dr. i r . R. Deld<;er p r o m o t o r P r o f . dr. il-. J. W . S l o t b o o m P r o f . ck. P. Steeneken P r o f . d l ' . M . Z e m a n P r o f . dr. R. Jos D r . i r . W . D . v a n N o o r t D r . K . B u i s m a n

Prof. d r . G . Q. Zhang reserveHd

Technische U n i v e r s i t e i t D e l f t Technische U n i v e r s i t e i t D e l f t Technische U n i v e r s i t e i t D e l f t Technische U n i v e r s i t e i t D e l f t Technische U n i v e r s i t e i t D e l f t C h a l m e r s U n i v e r s i t y N a t i o n a l Semiconductor, U S A Technische U n i v e r s i t e i t D e l f t Technische U n i v e r s i t e i t D e l f t Gianpaolo L o r i t o ,

SiGe h e t e r o j i m c t i o n b i p o l a r t r a n s i s t o r s w i t h Schottkj^ coUector contacts P h . D . Thesis, DeUt U n i v e r s i t y o f T e c l m o l o g y ,

v d t h a s i t m m a i y i n D u t c h .

K e y w o r d s :

SiGe h e t e r o j i m c t i o n b i p o l a r transistors, S c h o t t k y collector contacts, Silicon-On-Glass t e c l m o l o g y , l ü t r a s h a l l o w e m i t t e r s , excimer laser annealing, low-temperatiu'e j u n c t i o n f o r m a t i o n , Si C V D e p i t a x y .

I S B N : 978-94-6203-664-2

C o p y r i g h t © 2014 b y Gianpaolo L o r i t o ,

A U r i g h t s reserved. N o p a r t of t h i s p u b h c a t i o n m a y be r e p r o d u c e d , stored i n a r e t r i e v a l system, or t r a n s m i t t e d i n any f o r m or b y any means w i t h o u t t h e p r i o r w i l t t e n permission of t h e c o p y i l g h t owner.

(5)
(6)
(7)

1. Introduction 1

1.1. SiGe H B T teclmolog}^ f o r h i g h fi-equencj^ applications:

state-o f - a r t perfstate-ormance a n d challenges f state-o r n e x t generatistate-on state-of

speed-improved H B T ' s 1 1.2. D I M E S back-wafer c o n t a c t e d Sihcon-On-Glass t e c h n o l o g y 6

1.3. G o a l and oiitUne o f t h e Thesis 7

2. 1-D numerical simulations 11

2.1. I n t r o d u c t i o n n 2.2. S i m u l a t i o n fi-amework 12

2.3. E l e c t r i c a l characteristics of SiGe N P S transistors i n D C

mode. 14 2.4. C u t - o f f h-equency o f SiGe N P S transistors 18

2.5. T r a n s i t t i m e analysis 22 2.5.1. T r a n s i t t i m e d i s t r i b u t i o n i n SiGe N P S transistors 27

2.6. C o m p a r i s o n between SiGe N P S a n d N P N t r a n s i t s t o r s 30 2.6.1. C o m p a r i s o n between SiGe NPS a n d N P N S transistors 32

2.7. Conclusions 34

3 .

Silicon-On-Glass vertical B J T ' s with Schottky collector

contacts

3 5

3 . 1 . I n t r o d u c t i o n 35 3.2. Base leakage a n d i m p a c t i o n i z a t i o n cm-rent i n S O G v e r t i c a l

B J T ' s 36 3.2.1. E x p e r i m e n t a l m a t e r i a l 36

3.2.2. Results a n d discussion 38 A . Base lealcage cm-rent 39 B . I m p a c t i o n i z a t i o n cm-rent 42 3.3. O f f s e t voltage i n v e r t i c a l P N P ' s 44

(8)

3.4. 3.3.1. E x p e r i m e n t a l m a t e r i a l 3.3.2. Results a n d discussion Conclusions 44 46 53

4. SiGe H B T ' s with implsinted and laser-annealed emitters 55

4 . 1 . I n t r o d u c t i o n 55 4.2. Device f a b r i c a t i o n 55 4.3. E l e c t r i c a l measm-ements a n d discussion 58

4.4. Conclusions 61

5. C V D ultrashïJlow n-type emitters 63

5.1. I n t r o d u c t i o n 63 5.2. D e t e c t i o n of t h e carrier t r a n s p o r t mechanism i n ultrashaUovi^

j i m c t i o n s : test structm'e f a b r i c a t i o n a n d measm-emeut

m e t h o d 64 5.3. U l t r a s h a U o w n - t y p e emitters b y laser-annealed C V D dopants 69

5.3.1. E l e c t r i c a l measm-ements a n d discussion 70 5.3.2. E x p e r i m e n t a l d e m o n s t r a t i o n of t h e bias-induced

t r a n s i t i o n f ï o m p - S c h o t t k y t o n''"p diode 73 5.4. I n - s i t u doped e p i t a x i a l n - t y p e ultrashaUow mono-emitters 74

5.4.1. E l e c t r i c a l measm-ements a n d discussion 74

5.5. Conclusions 75

6. SiUcon-On-GIass Schottky coUector vertical SiGe H B T ' s 77

6.1. I n t r o d u c t i o n 77 6.2. F a b r i c a t i o n process 77 6.3. E l e c t r i c a l measm-ements a n d discussion 82

6.4. Conclusions 84

7. Conclusions and recommandations 85

7.1. Conclusions 85 7.2. Recommendations 87

A . M E D I C I models and material parameters 89

B . Flowchart of the S O G SiGe H B T process 97

(9)

Summary

Samenvatting

List of Publications

Acknowledgements

About the author

(10)
(11)

I n t r o d u c t i o n

1.1. S i G e H B T technology for high

frequency applications; state-of-art

performance and challenges for next

generation of speed-improved H B T ' s

I n recent years, SiGe H B T technology has gained more and more acceptance as suitable a n d lowcost technologjr for integi'ating h i g h -performance bipolar transistors i n advanced C M O S modules. Indeed B i C M O S processes have been ah-eady d e m o n s t r a t e d featming SiGe H B T ' s w i t h values o f t h e device figmes o f m e r i t (i.e. cm'rent g a i n a n d E a r l y voltage p r o d u c t P X V A , t r a n s i t fi-eciuency a n d brealcdown voltage p r o d u c t f^xBVcEo a n d m a x i m u m o s c i l l a t i o n fi'equency f^^^^) comparable t o t h e I I I - V c o m p o i m d semiconductor based transistors [1,2]. Moreover, i t has been p r e d i c t e d t h a t b o t h a n d f„^^ above 1 T H z can be reached at r o o m temperatm-e w i t h t a i l o r e d designs of t h e v e r t i c a l profiles a n d l a t e r a l dimensions of SiGe H B T ' s [3,4].

However, t h e ongoing d e m a n d f o r higher a n d liigher f^ (and f^,^.,) poses serious t e c l m o l o g i c a l challenges since i t imposes such a n aggressive v e r t i c a l device d o w n s i z i n g t h a t t h e t o t a l distance fi'om t h e e m i t t e r t o collector c o n t a c t should be reduced t o o n l y f e w tens o f nanometers i n order t o m i n i m i z e t h e t o t a l t r a n s i t t i m e TEC = l/27ifT o f t h e chcU'ge carriers. I n a d d i t i o n , t h e d o p i n g c o n c e n t r a t i o n i n t h e v e r y t h i n p - t y p e SiGe base layer m u s t be a r o i m d t h e b o r o n ( B ) solid s o l u b i h t y t o reduce t h e base sheet resistance t o f e w k O / a a n d t h u s increase f,,,^.,. A l o w base resistance is also r e q r ü r e d f o r m i n i m i z i n g t h e device noise figm-e [5]. A n example of fe-ont-end-of-Uue ( F E O L ) d o p i n g profiles a n d cross section of

(12)

SiGe heterojimction bipolar transistors w i t h Schottky collector contacts

a state-of-art h i g h speed SiGe:C h e t e r o j u n c t i o n b i p o l a r t r a n s i s t o r is shown i n F i g . 1.1 [6].

B

F i g u r e 1.1 1-D Schematic, F E O L SIMS profiles and SEM pictme of the cross section of the conventional SiGe N P N transistor w i t h ohmic coUector contact from [6].

(13)

T h e i m p r o v e m e n t s i n chemical-vapor-deposition ( C V D ) e p i t a x y teclnnciues over t h e last yeais have made i t possible t o r e l i a b l y gTow t l i i n defect-free B-doped SiGe layers, w i n c h are w e l l c o n t r o l l e d b o t h i n thickness ( d o w n t o less t h a n 10 m i i ) a n d i n d o p i n g level (up t o about 10^° cm"^, depending o n t h e Ge c o n c e n t r a t i o n ) . However, t h e real processing challenge is t o a v o i d any o u t - d i f f u s i o n of t h e B spike-profile i n t h e post-epi process. T h e spread of t h e b o r o n b e y o n d t h e SiGe base layer w o u l d create parasitic barriers i n t h e c o n d u c t i o n b a n d at b o t h E - B and C - B j i m c t i o n s , w l i i c h results i n a severe degi-adation of t h e D C a n d A C device o p e r a t i o n [7,8]. A s any other d o p a n t i m p m i t i e s i n sihcon, b o r o n diffuses b y an i n t e r m i t t e n t process where B atoms reside most of the t i m e i n s u b s t i t u t i o n a l sites a n d occasionally are converted i n a fast-m o v i n g d o p a n t species b y i n t e r a c t i n g w i t h a p o i n t defect. I n t h e case of b o r o n , t h e p o i n t defects t h a t assist t h e d o p a n t d i f f u s i o n are Si self-i n t e r s t self-i t self-i a l s . T h e phenomenon self-is k n o w n as "Idck-out" mechanself-ism [9]. A s e l f - i n t e r s t i t i a l traveUing i n between adjacent stable locations i n t h e c r y s t a l encoimters a n d reacts w i t h a s u b s t i t u t i o n a l B a t o m . T h e result of such i n t e r a c t i o n is a m o b i l e d o p a n t species (either a B a t o m a n d Si i n t e r s t i t i a l p a n or a single i n t e r s t i t i a l B a t o m ) w h i c h can m i g r a t e easily tln-ough i n t e r s t i t i a l spaces f o r some distance before dissolving i n another s u b s t i t u t i o n a l site [10].

T h e c o n c e n t r a t i o n o f Si i n t e r s t i t i a l s increases due t o several processing steps such as Irigh temperatm-e t r e a t m e n t s . Si o x i d a t i o n a n d d o p a n t i m p l a n t a t i o n s . T h e i o n - i m p l a n t - i n d u c e d d i f f u s i o n o f b o r o n is k n o w i i as transient-enhanced d i f f u s i o n ( T E D ) . Therefore, t h e m a i n concern f o r o i i t - d i f f i i s i o n of t h e B s p i k e - p r o f ü e i n t h e SiGe base comes fi-om t h e T E D t h a t m i g h t occm- as a conseciuence of t h e base contact a n d e m i t t e r i m p l a n t a t i o n s a n d t h e subseciiient anneaUng step necessary f o r a c t i v a t i n g t h e dopants [11].

I n t h i s regard, t h e i n c o r p o r a t i o n of a s m a l l a m o u n t of c a r b o n (C) i n t o t h e SiGe base a n d t h e use o f r a p i d t h e r m a l amiealing ( R T A ) steps have p r o v e n t o be beneficial f o r c o u n t e r a c t i n g t h e b o r o n T E D [11,12]. T h e suppression of t h e B d i f f u s i o n i n C-em-iched regions is r el a t ed t o t h e p r o p e r t j ^ o f Si i n t e r s t i t i a l s t o f o r m mobUe pans w i t h C atoms m o r e e f f i c i e n t l y . T l i i s means t h a t i n such regions t h e c o n c e n t r a t i o n of Si i n t e r s t i t i a l s available f o r t h e " I d c k - o i i t " mechanism is s i g n i f i c a n t l y reduced. However, as t h e B d o p i n g i n t h e SiGe base increases, t h i s s o l u t i o n becomes less and less u s e f u l since t h e r e q i m e d higher percentage of C necessary t o guarantee t h e complete suppression o f T E D d m i n g t h e c o m m o n l y used R T A steps wiU increase t h e base leakage due t o t h e a m o i m t o f C i n t e r s t i t i a l s i n t h e E - B d e p l e t i o n region [13,14].

(14)

SiGe tieteroj miction bipolar transistors w i t h Schottky collector contacts

A n o t h e r issue t h a t m-ises i n b i p o l a r transistors t h a t are operated at frequencies i n t h e himdi-eds of gigahertz, is t h a t t h e e m i t t e r series resistance, a s i g n i f i c a n t component of w h i c h is t h e contact resistance, w i l l start t o U m i t t h e speed. I n t h i s regard, t h e r e l a t i v e ^ large series resistance of t h e c o m m o n l y used i n - s i t u doped p o l y - or m o n o - c r y s t a l l i n e emitters becomes l i m i t i n g [15,16,17,18].

C o n c e r n i n g t h e collector region, coUector designs f o r h i g h speed SiGe H B T ' s have been d e m o n s t r a t e d consisting of a f e w tens o f nanometers t h i c k fuUy-depleted n - t y p e coUector r e g i o n w i t h a sharp t r a n s i t i o n t o a r e g i o n w i t h a d o p i n g c o n c e n t r a t i o n above 10"° cm'^ [19]. T h e c o n v e n t i o n a l b m i e d coUector layer design is n o t suitable f o r t h e f a b r i c a t i o n of such a steep a n d h i g h l y doped coUector p r o f i l e , since t h e h i g h d o p i n g c o n c e n t r a t i o n i n t h e coUector c a n be o b t a i n e d oirly i n c o m b i n a t i o n w i t h a v e r y s m o o t h d o p i n g t r a n s i t i o n [2]. T h i s is due t o t h e f a c t t h a t t h e d o p a n t s o f t h e b m i e d coUector layer are i n t r o d u c e d at t h e b e g i n n i n g of t h e f a b r i c a t i o n process, a n d hence are subjected t o a considerable o u t - d i f f u s i o n w h i c h can easily be as m u c h as a f e w hundreds of nanometers d m i n g t h e l i i g l i t e m p e r a t m e steps t h i ' o u g h o u t t h e whole process fiow. T h i s d r a w b a c k is reduced b y i n t r o d u c i n g a selectively i m p l a n t e d coUector ( S I C ) . However, i t is v e r y d i f f i c i ü t w i t h t h i s a p p r o a c h t o f r d f i l t h e r e q u f r e m e n t of h a v i n g a t h i n f u U y depleted sub-coUector a n d at t h e same t i m e a sharp t r a n s i t i o n t o d o p i n g levels i n t h e order of 10^° cm"^. I n recent yeai's, coUector modnles based o n selective e p i t a x y have been developed w h i c h aUow f o r t h e f a b r i c a t i o n of d o p i n g profiles closer t o t h e desfred ones b u t at t h e expense of a n e x t r a e p i t a x i a l step i n t h e process flow [2,17,20].

Consequently, a l t h o u g h S i / S i G e : C h e t e r o j i m c t i o n b i p o l a r processes have been e f f e c t i v e l y used t o f a b r i c a t e devices i n t h e 300/500 G H z fT/fma.x range [1], t h e real cliaUenge f o r fmther steps towaids a C M O S -c o m p a t i b l e SiGe H B T te-chnology f o r appU-cations i n t o t h e t e r a h e r t z fi-equency range is t o develop process m o d r ü e s w i t h m i n i m m n a d d i t i o n a l technological e f f o r t w h i c h aUow t h e f o r m a t i o n of higher-doped, m o r e a b r u p t a n d shaUower d o p i n g profiles.

W i t h respect t o t h e coUector-profUe downscaling, t h e goal is t o f a b r i c a t e an i n t r i n s i c coUector r e g i o n w i t h l o w series resistance, Rc, a short t r a n s i t t i m e , TC, a n d such t h a t t h e onset o f fx degi'adation w i t h coUector c m r e n t a n d t h e avalanche b r e a k d o w n at t h e C - B j u n c t i o n is s h i f t e d t o higher coUector cm-rent densities and C - E voltages, respectively. A n a l t e r n a t i v e coUector architectm-e w h i c h has been p r e d i c t e d t o meet these requirements is reaUzed b y replacing t h e

(15)

c o n v e n t i o n a l n / n + i n t r i n s i c coUector w i t h a Schottkj^ j i m c t i o n [21], as i U u s t r a t e d schematically i n F i g 1.2. Such a S c h o t t k y collector contact has been demonstrated i n I I I - V H B T technology [22].

R

S c h o t t k y c o n t a c t \ n + p

I P+i

p -n + p

I P+i

p -10 \ 10^'

f

1 0

-I

10'^ ro O 10^' O 10"' O) .E 10'^ % 10'^ 10^^ : ! 1 1 1 1 1 1 — • ultra-shallow 1 1 1 1 r 1 T 1 m f — 1—1 — r CVD emitter t - - ' Ge

-: n+

l i '

-P

-

V, 1 Sctioltky -- 1\ collector

-^\ /

• ! 1 1-1 1 _ t •

1

P -• -•- -• 1 • • 0.05 0.10 0.15 0.20 0.15

I

'o 2 0.10

2

n F 0.05 § O 0,20

distance [|Lim]

F i g u r e 1.2 1-D scliematic and dopmg profries of the novel SiGe NPS transistor w i t h Schottky coUector contact. The conventional n/n"^ collector is replaced w i t h a Schottky jrmction on the lowly doped p-type collector region.

I n t i l l s Thesis a f n s t i n s i g h t i n t o t h e i m p a c t o n t h e device performance of the S c h o t t k y coUector design i n Si a n d SiGe b i p o l a r transistors is presented. T h e i n v e s t i g a t e d devices are f a b r i c a t e d b y using t w o - s i d e d c o n t a c t i n g SiUcon-On-Glass technologj^ developed i n D I M E S , w l i i c h is described s l i o r t l j ' i n t h e next Section.

(16)

SiGe lieteroj miction bipolar transistors w i t h Schottk}' collector contacts

1.2. D I M E S back-wafer contacted

Silicon-On-Glass technology

Substrate t r a n s f e r processes are g a i n i n g acceptance as possible l o w -cost technologies enabling high-performance l o w - p o w e r R F integTated circuits w i t h on-chip integi-ation of R F active devices a n d h i g h - q u a l i t y passive components [ 2 3 , 2 4 ] . T h e D I M E S back-wafer c o n t a c t e d Silicon-On-Glass ( S O G ) p r o c e s s e s a Substrate-Transfer-Technology ( S T T ) where a n almost fttUy processed SiUcon-On-Instdator ( S O I ) wafer is t r a n s f e r r e d t o glass b y using a n adhesive process based o n U V - l i g l i t cm-ing. T h e Si substrate is t h e n r e m o v e d b y a n e t c h i n g step selective t o t h e b m i e d oxide ( B O X ) . T h e o r i g i n a l P h i l i p s v e r s i o n of t l i i s t r a n s f e r process was developed i n t h e b e g i n n i n g of t h e 1 9 9 0 ' s t o reduce t h e N P N substrate parasitics a n d t o m i n i m i z e t h e coUector-base capacitance of a n o v e l l a t e r a l S O I N P N t r a n s i s t o r b y using t h e B O X i s o l a t i o n [25]. A t D I M E S t h e S O G process itself was developed fm-ther i n t o a t w o - s i d e d c o n t a c t i n g technology b y a d d i n g o n t h e backside of t h e device layer process modules f o r t h e f a b r i c a t i o n of neai--ideal diodes a n d l o w - o h m i c contacts aligned w i t h t h e f r o n t s i d e l a y o u t . T h e first f a b r i c a t e d Si device was a n N P N B J T featm-ing 25 G H z f^. I n such a t r a n s i s t o r t h e coUector-base capacitance a n d collector series resistance were m i n i m i z e d hy p l a c i n g t h e coUector c o n t a c t dh-ectly o n t h e i n t r i n s i c device r e g i o n m i d e r n e a t h t h e e m i t t e r [26]. T h e double-sided c o n t a c t i n g w i t h aligned emitter-coUector contacts malces t h e D I M E S S O G b i p o l a r technolog}^ v e r y a t t r a c t i v e t o investigate a l t e r n a t i v e device arcbitectm-es a n d designs since t h e device performance approaches t h e ideal 1 - D i n t r i n s i c characteristics.

However, t h e c i r c u i t realizations i n S O G technology were hampered b y t h e e x t r e m e l y l i i g h t h e r m a l resistance o f t h e transistors themselves as a d n e c t consequence of t h e almost perfect electrical a n d t h e r m a l dielectric-isolation o f t h e devices. T h e t h e r m a l resistance R X H of a n S O G device can be as m u c h as 1 0 0 times t h e t h e r m a l resistance o f a compai-able brrUc-Si device. T h e e l e c t r o t h e r m a l i n v e s t i g a t i o n o f these devices has p r o d u c e d new insights i n t h e e l e c t r o t h e r m a l behavior o f b i p o l a r transistors [27]. However, f o r rehable i n t e g i - a t e d - c i r c i ü t reaUzations i t is obviously i m p e r a t i v e t o have an effective t h e r m a l management at device level. Therefore, f o r manj^ S O G devices heatspreading a n d h e a t s i n k i n g s t r u c t m e s become indispensable, even at v e r y l o w power d i s s i p a t i o n levels [28]. Replacing t h e bnUc-Si b y copper ( C u ) can be advantageous f o r reducing t h e t h e r m a l resistance. F o r large area devices, t h i c k C u p l a t i n g and d n e c t smface m o u n t i n g t o a p r i n t e d

(17)

-c i r -c u i t b o a r d -can p r o v i d e t h e ne-cessarj^ heatsiiddng [29]. F o r small d i m e n s i o n devices, such as liigh-frequency bipolar transistors, heat t r a n s p o r t fi-om t h e active area is more effective i f accomphshed b y t h e r m a l l y c o n d u c t i v e dielectric layers deposited d n e c t l y o n t h e device i t s e l f For tlris pm-pose physical-vapor-deposition ( P V D ) A I N t h i n - f i l m s have been developed and integi-ated w i t h success as heatspreaders at device level [30]. T h e residts have d e m o n s t r a t e d t h a t t h e c o m b i n e d use of m i c r o n - t h i c k layers o f A I N o n t h e fi-ont- a n d back-wafer and C u blocks o u backside can s l i i f t t h e onset of t h e t h e r m a l i n s t a b i l i t y o f SOG devices t o acceptable values of dissipated power [31].

1.3. Goal and outline of the Thesis

T h e goal of t h i s Thesis is t o characterize t h e S c h o t t k y collector design as a p o t e n t i a l coUector arcliitectm-e suitable f o r next generation o f SiGe liigh-fi-equency H B T ' s . T h e order o f t h e Chapters foUows t h e sequence of t h e developments a n d technology' i m p r o v e m e n t s w h i c h , s t a r t i n g from t h e 1-D s i m i ü a t i o n s , resulted i n t h e f a b r i c a t i o n of t h e fti-st p - S c h o t t k y coUector SiGe h e t e r o j i m c t i o n b i p o l a r transistors ( N P S ) . T h e D I M E S S O G bipolar technolog-j^ is the n a t m a l c a n d i d a t e f o r t h e f a b r i c a t i o n of such devices due t o i t s large design a n d process f l e x i b U i t y i n c o m b i n a t i o n w i t h t h e s t r o n g r e d u c t i o n of t h e device parasitics as a result o f t h e double-side c o n t a c t i n g .

M o r e specificalty:

• T h e A C a n d D C chai-acteristics o f several N P S devices o b t a i n e d b y v a r y i n g coUector parameters, such as t h e tlnckness a n d d o p i n g o f coUector region a n d t h e S c h o t t k y barrier height at t h e coUector contact, are i n v e s t i g a t e d b y means of 1-D n m n e r i c a l s i m i ü a t i o n s i n C h a p t e r 2. N P S transistors are also compared t o c o n v e n t i o n a l SiGe N P N devices w i t h o h m i c coUector contact w i t h r e g a r d t o t h e device performance i n terms of c u t - o f f frequency a n d open-base brealcdown voltage p r o d u c t .

• C h a p t e r 3 coUects t h e r e s i ü t s of t h e e x p e r i m e n t a l c h a r a c t e r i z a t i o n of t h e effect o f S c h o t t k y coUector contacts o n t h e base lealtage a n d brealcdown voltage o f n - t j ' p e a n d p-tj^pe v e r t i c a l B J T ' s f a b r i c a t e d i n t h e s t a n d a r d D I M E S S O G b i p o l a r process. Also, several S c h o t t k y coUector P N P ' s wdth d i f f e r e n t

(18)

SiGe heterojimction bipolar transistors w i t h Schottky coUector contacts

coUector tlnckness and d o p i n g are i n v e s t i g a t e d w i t h special focus o n t h e offset voltage.

• T h e i m p l a n t e d a n d fmnace-annealed 200 nm-deep A s enritter of t h e s t a n d a r d f u U y i m p l a n t e d D I M E S S O G bipolax technology is n o t suitable f o r SiGe H B T processes. I n f a c t t h e reqithed l i i g h processing t e m p e r a t m e wiU cause t h e o u t -cliffusion o f t h e boron peak i n t h e t l i i n i n - s i t u doped e p i t a x i a l SiGe base layer a n d t h e consequent d e g r a d a t i o n o f t h e device performance. Therefore, another issue t h a t needed t o be t a c k l e d was t h e development of l o w - t e m p e r a t m e n - t y p e e m i t t e r modides. I n C h a p t e r 4 t h e D C a n d A C chai-acteristics of 60 G H z fx SiGe H B T ' s f a b r i c a t e d i n b i ü k - S i technology vidth A s e m i t t e r s made b y i m p l a n t a t i o n a n d laser anneaUng a c t i v a t i o n o f t h e d o p a n t ai-e presented. I t is s h o w n t h a t t h e I ¬ V chai-acteristics of these devices are n o t a f f e c t e d b y t h e d e t r i m e n t a l effects related t o t h e T E D of t h e b o r o n spike i n t h e SiGe base. However, t h e device performance stUl suffers f r o m residual i m p l a n t a t i o n - i n d u c e d damage w h i c h is n o t r e m o v e d b y t h e laser anneaUng. • I n C h a p t e r 5 a s t r a i g h t f o r w a r d test s t r u c t m e is i n t r o d u c e d w h i c h aUows f o r v e r i f i c a t i o n of t h e a c t u a l c o u n t e r - d o p i n g of t h e Si sm-face d m i n g t h e f a b r i c a t i o n of a n ultrashaUow j u n c t i o n . T w o d i f f e r e n t n - t y p e e m i t t e r s , where t h e f o r m a t i o n of t h e n+ r e g i o n is based o n C V D processes at t e m p e r a t m e s n o t higher t h a n 7 0 0 ° C , are characterized b y means o f simple D C measm-ements. A n i n t e r e s t i n g development of t h i s i n v e s t i g a t i o n is t h e e x p e r i m e n t a l s t u d y of t h e electrical behavior of idtrashaUow j u n c t i o n s where t h e d e p t h a n d d o p i n g o f t h e counter-doped r e g i o n at t h e smface ai-e such t h a t t h i s r e g i o n is f t d l y depleted at t h e r m o d y n a m i c e q u i U b r i m i i . T h i s i n t e r m e d i a t e case between t h e c o n v e n t i o n a l S c h o t t k y - a n d p n - j u n c t i o n s has been so f a r o n l y i n v e s t i g a t e d b y a n a l y t i c a l models a n d n u m e r i c a l simulations [32].

• I n C h a p t e r 6 t h e z e r o i m p l a n t a t i o n lowtemperatme t w o -sided c o n t a c t e d Schottky-coUector S O G SiGe H B T t e c h n o l o g y is demonstrated. I n such a process t h e emitter-to-coUector distance is a r o u n d 440 r m i , less t h a n h a l f o f t h e same distance i n t h e o r i g i n a l D I M E S S O G bipolar process. T h e coUector r e g i o n tliickness is 350 n m a n d is m a i n l y d e f i n e d hy t h e thickness of t h e Si t o p layer of t h e i n i t i a l S O I wafer. F o r

(19)

terahertz-fx performance a coUector w i d t h of about 50 n m is reqiih-ed. A c h i e v i n g t i n s tliickness w i t h t h e proposed technology w o i d d o n l y be U m i t e d b y t h e avaUabiUty of S O I wafers w i t h a high-cjuaUty siUcon t o p layer o f t h i s thickness. C h a p t e r 7 coUects aU t h e conclusions a n d recommendations f o r f m t h e r developments.

(20)
(21)

1-D n u m e r i c a l simulations

2.1. Introduction

I n t h i s C h a p t e r t h e electrical p e r f o r m a n c e of SiGe n-tj^pe b i p o l a r transistors w i t h p - S c h o t t k y coUector c o n t a c t ( N P S ) are investigated b y means of 1-D m m i e r i c a l simulations. Several N P S devices ai-e o b t a i n e d b y v a r y i n g coUector parameters, such as t h e thickness a n d t h e d o p i n g o f coUector r e g i o n a n d t h e S c h o t t k y barrier height at t h e contact. I t is s h o w n h o w these technology-related parameters influence t h e D C characteristics and t h e c u t - o f f frequency f j . Moreover, the d i f f e r e n t c o n t r i b u t i o n s t o t h e t o t a l emitter-to-coUector t r a n s i t t i m e are s h o w n t l n o u g h t h e d i s t r i b u t i o n o f t h e i n t e r n a l delay times r e s r ü t i n g f r o m t h e t r a n s i t t i m e analysis. FinaUy, t h e performance i n t e r m s of c u t - o f f frequency a n d open-base brealcdown voltage p r o d u c t , f-rXEVcEO) o f t h e c o n v e n t i o n a l SiGe N P N devices w i t h ohmic coUector contacts a n d t h e S c h o t t k y coUector transistors are compared.

T h e s i m i d a t i o n f r a m e w o r k is i n t r o d u c e d i n Section 2.2. T h e simrdated D C a n d A C characteristics o f d i f f e r e n t N P S devices are discussed i n Sections 2.3 and 2.4, respectively. Section 2.5 shows t h e results o f t h e t r a n s i t t i m e analysis. T h e comparison o f t h e high-fi-equency N P S t r a n s i s t o r t o t h e c o n v e n t i o n a l SiGe N P N device is presented i n Sections 2.6. T h e m a i n conclusions ai-e t h e n coUected i n Section 2.7.

(22)

SiGe lieteroj miction bipolar transistors w i t h Schottky collector contacts

2.2. Simulation framework

A l l t h e s i m i ü a t i o n s are p e r f o r m e d w i t h M E D I C I s i m t ü a t o r (version W - 2 0 0 4 . 0 9 ) . T h e adopted models a n d values of m a t e r i a l parameters axe r e p o r t e d i n a p p e n d i x A . N o t e t h a t t h e non-local m o d e l self-consistently i n c l u d e d i n t h e solutions has been chosen f o r t h e i m p a c t i o n i z a t i o n cm-rent. N o seU-heating a n d b a l l i s t i c t r a n s p o r t models have been considered i n t h e s i m i ü a t i o n s .

Figm-e 2.1 shows t h e d o p i n g c o n c e n t r a t i o n a n d thickness o f t h e device regions f o r t h e N P S transistors. A U t h e s i m t ü a t e d devices have t h e same e m i t t e r tlnckness (dE=30 n m ) a n d d o p i n g ( N E = 5 X 1 0 ^ ° c i n ^ ) . T h e Si a n d SiGe base thickness a n d p - t y p e d o p i n g a p p r o x i m a t e t h e S I M S measm-ements i n F i g m e 2.2, w i n c h refers t o t h e f a b r i c a t e d N P S SiGe t r a n s i s t o r presented i n C h a p t e r 6 ( N g i B ^ l x l O ^ ^ c n i ^ , d s i 3 = 2 5 m n , NsiGe,B=4.3xlO'^ c n i ^ , dsiGe,B=8 n m ) . Also, t h e Ge box-Uke p r o f i l e a n d m o l e fi-action IUSQ^ have been d e f i n e d i n accordance t o t h e same S I M S measm-ements.

Several S c h o t t k y coUector designs are i m p l e m e n t e d b y v a r j d n g t h e p -t y p e d o p i n g of -t h e l o w l y doped coUec-tor ( N L d , c = [ l x l O ' ' , I x l O ' ' , I x l O ' ^ IxlO^**] cm"^) a n d i t s thickness (dLd,c=[350,150,60] n m ) . A l s o t w o values of t h e S c h o t t k y b a r r i e r height at t h e coUector contact have been considered ((I)p=[0.55,l] e V ) . N o t e t h a t these tln-ee technolog-j^-related parameters can be s t r a i g h t f o r w a r d l y t i m e d i n t h e S O G b i p o l a r process developed i n D I M E S .

(23)

O ro 1— c (ij o e O Ü cn Q. O XI

n+

Schottky contact 0,20 | 0 1 5 § O ro 0,10 ^ O E CD 0,05 (T)

distance

F i g u r e 2.1 Doping and Ge profiles of the simulated NPS transistors. The Ge percentage in the p+ base is 20% (mf^,^=0.2). Np;=5xl0''' cm'', d,.=30 nm, Na,u=lxlO'^ cm-', dsi,Q=25 nm, Nsi,„,,=4.3xl0'" cnr', d„a^„=8 imi, N,,,,c=[lxlO''', 1x10'^ 1x10'^ 1x10'°] cnr', dL„c=[350,150,60] nm, cD|=[0.55,l] eV.

F i g u r e 2.2 SIMS measurement of the B doping throughout the epi layer and the Ge profile i n the base region.

(24)

SiGe lieterojunction bipolar transistors with Scliottlcy collector contacts

2.3. Electrical characteristics of S i G e N P S

transistors in D C mode

Several s i m u l a t i o n s have been p e r f o r m e d to evaluate the influence of the collector d o p i n g NL,I,C, the collector thickness dL,i,c and the S c h o t t k y barrier height at the collector contact O,, on the D C electrical characteristics of the NPS transistors.

T h e G u m m e l plots i n f o r w a r d mode at V C B = 0 f o r N P S devices w i t h = l eV and d i f f e r e n t values of NLH.C and dL,,,c are shown i n F i g u r e 2.3. C o m m o n e m i t t e r o u t p u t characteristics i n base-current-controlled mode are shown i n F i g u r e 2.4 ( a ) , ( b ) for N P S devices w i t h d i f f e r e n t O,,, NLd.c and

dLd.c-As can be seen, f o r a 6 0 n m t h i n collector region the electrical characteristics show a, negligible dependence on the collector d o p i n g , irrespectively of the S c h o t t k y barrier height at the contact (see Figure 2 . 4 ( b ) ) . O n the other h a n d , for devices w i t h dLd,c=350 n m , the collector c u r r e n t reduces as NLH.C increases. T h e S c h o t t k y barrier height at the contact influences p r i m a r i l y the c u r r e n t gain, the b r e a k d o w n voltage BVcEo and almost l i n e a r l y the offset voltage, V„ffset, w h i c h is the collector-e m i t t collector-e r voltagcollector-e VcE at w h i c h I ^ is zcollector-ero for a forccollector-ed IQ i n c o m m o n - collector-e m i t t collector-e r c o n f i g u r a t i o n . N,^ =1x10''cm"'' N,^^=1x10 ' c m ^ N,^^=1x10''cm"'^ Ld.C N,,^=1x10'*'cm ' L d , C 1,0

F i g u r e 2.3 Simulated Gummel plots in forward mode at ¥ ^ ^ = 0 for different collector thickness d,,|,cand doping N,,,,cof NFS devices with 0 , = 1 eV,

(25)

2.5x10' 2.0x10" 15x10" " 1.0x10 o 5.0x10"-tOp=1 eV I' -0 ' ' ' ' I I ' ' ' ' I ' ' • d^^^=350 nm N^^^=1x10''cm"' I ' • ' • T • . . I . . . . r J|,=200riA/|.im" J^=100nA/).im'

•••'••''r'^v;'-'-'-

j|.=50n A/|.im /.:.:.ii•-l•.vVA^^"^".'l'!^"-'J•-'!^'vr^vlvv•ï'lVl'rJ^ •••l^:--'-'-- J =10nA/nm'' • • • (a) 0 0.5 1.0 1.5 2.0 2.5 3,0 3.5 4.0 4.5 5.0 2.5x10"' 2.0x10' 1.5x10' ^ l OxlO"' Ü 5,0x10"' -I—I—I—\II—1—I I-d,^^=60 nm ...N,^^=1x10' cm Ld C t---N^^^=1x10"cm"' 0 Ui -I—'—I—'—I—I—r Op= 0.55 eV-cpp=1 eV J^=200nA/um" J„=100nAynm' / I y J|.=50nA/^lm' / / ' / • ' Jg=10nA/nm'

::::::;!?;;'==-- I— ' —IIIIIII — . — I — 1 I I I , I • I (b) 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v . . [ V ]

F i g u r e 2.4 Simulated common-emitter output characteristics for different values of base current density for different collector doping N^,,,,;: and Schottky barrier height at collector contact O,, of NPS devices with (a) d,,,,c =350 nm and (b) d,,|,c =60 nm. Tire vertical lines are used to group the output characteristics of the device w i t h a given Oj,.

(26)

SiGe lieterojunction bipolar transistors w i t l i Scliottky collector contacts

I n view of the f o l l o w i n g i n v e s t i g a t i o n on the speed performance of N P S devices, and considering the w e l l - k n o w n t r a d e - o f f between fx and BVcEo (the Johnson l i m i t ) , i t is useful to plot B V C E O as f u n c t i o n of V B E (see F i g u r e 2 . 5 ( a ) , ( b ) ) . T h e value of B V C E O for a given VQE has been o b t a i n e d f r o m the collector-emitter voltage VCE at w h i c h J B = 0 . F r o m Figures 2 . 5 (a) and 2 . 5 (b) i t is clear t h a t increasing results i n a r e d u c t i o n of BVCEQ- Also, the dependence of B V C E O on the collector d o p i n g reduces as the collector region shrinks and i t becomes negligible for dL,i,c = 6 0 n m .

N o t e t h a t the B V C E O for dL,i,c = 3 5 0 n m shows a r e d u c t i o n a r o u n d V B E = 0 . 7 5 - 0 . 8 V . T h e devices w i t h duLc = 1 5 0 n m e x h i b i t the same behavior, a l t h o u g h less pronounced, at higher values of VQE. T h i s k i n k i n the B V C E O curves is unexpected since B V C E O is supposed to increase for those values of V B E due to the r e d u c t i o n of the current gain.

(27)

>

o 3 ijj ^ o

>

Ld.C d^^ =60 nm N,^^=1x10''cm"' N,, =1x10''cm L d , C • '

O =0.55 eV

p N^^ =1x10''cm"' N ' > 1 x 1 0 " c m - ' Ld,C 0.6 0.7 0.8 0.9 6 O -i LU O

>

I d,^^=350 nm L d . C ' I ' ' ' I I I

0

=^

eV

p V c = 1 5 0 nm d, ,.=60 nm L d . C I T -a - - - N , , ^ = 1 x 1 0 ' cm"' - - - N , , =1x10''cm"' N,^^=1x10"cm''' L d , C o -N,,^=1x10''cm"' 0.6 0.7 0.8 0.9 (b)

F i g u r e 2.5 Simulated emitter-collector breakdown voltage at open base, BVci^o, as function of "V,,,, for different collector thickness d,,|,cand doping N | , | c o f NPS devices with (a) (I),=0.55 eV and (b) cD|,=l eV. For a given V,,,,, BVCE,, is obtained as the value of "Vc;,.; at which Ju=0.

(28)

SiGe lieterojunction bipolar transistors w i t h Scliottky collector contacts

2.4. Cut-off frequency of S i G e N P S

transistors

For a given D C bias c o n d i t i o n , the f u n c t i o n i n g of a bipolar transistor is the result of a corresponding d i s t r i b u t i o n of charges across the device. These charges are f i x e d ions i n the emitter-base and collector-base depletion regions and free carriers, electrons and holes, t r a v e l l i n g t h r o u g h the device.

A time-variable small-signal p e r t u r b a t i o n on the D C base c u r r e n t or voltage w i l l produce an a m p l i f i e d p e r t u r b a t i o n on the o u t p u t D C collector current i f the m o d u l a t i o n t i m e of the charges stored i n the device is small enough t o f o l l o w the applied signal p e r t u r b a t i o n . T h e parameter used to q u a n t i f y this device performance is the c u t - o f f frequency, fx, w h i c h is defined as the frequency at w h i c h the modulus of the small-signal current gain, h j i , is one. For a given D C bias c o n d i t i o n , this parameter is the upper l i m i t of the frequencies of an i n p u t oscillating signal base current ii3(t) t h a t generates an a m p l i f i e d o u t p u t small-signal collector current i c ( t ) .

T h e m o d u l a t i o n t i m e of the i n t e r n a l charges depends on device parameters, such as d o p i n g and Ge profile, thickness of e m i t t e r , base and collector regions, and varies w i t h the biasing p o i n t . T h e fx e x h i b i t s i n f a c t a bell-shaped dependence on Jq. A t the low current regime the mobile charge is relatively low and the speed-limiting factor is expected t o be the charge v a r i a t i o n of the fixed ions due to the m o d u l a t i o n of the boundaries of the space charge regions ( S C R ) . T h i s effect reduces as the collector c u r r e n t increases, when the m o d u l a t i o n of the free carrier d i s t r i b u t i o n s dominates the i n t e r n a l delays. A t the h i g h current regime, the fx performance degrades p r i m a r i l y due to high i n j e c t i o n effects i n the collector region ( K i r k effect and base push-out).

A C small-signal simulations have been performed i n order to evaluate the c u t - o f f frequency of the investigated N P S devices. For each D C s o l u t i o n , the A C s i m u l a t i o n calculates the Y parameters for a sinusoidal p e r t u r b a t i o n w i t h a chosen frequency and a m p l i t u d e applied to the base voltage. T h e fx value is t h e n determined by s t r i c t l y a p p l y i n g the d e f i n i t i o n w i t h o u t any e x t r a p o l a t i o n (see Figure 2 . 6 ) . However, note t h a t the h j i curves show the expected theoretical decay of 2 0 d B / d e c a d e .

T h e results are shown i n Figures 2 . 7 for V C ; B = 0 as f u n c t i o n of the collector current density JQ i n the case of NPS device w i t h (a) O j , = 0 . 5 5 eV and (b) %=1 eV.

(29)

:

NPS

r N, =lxlo'° cm' cl.p=1 eV 10 V_|^=0 ,7 V

10

I

1 10 10' 10' 10' 10' 10' 10' 10° i o ' i o ' ° i o " i o

freq [Hz]

12

F i g u r e 2.6 Simulated modulus of the smaU-signal current gain h^, versus oscillation frequency for different values of Vu,, for NPS device w i t h N , , , ( . = l x l 0 ' " cm-', d|,,,c=60 nm, $,,=1 eV. The cut-off frequency f^ is the frequency at whichjh^i = 1 .

I t is i n s t r u c t i v e t o analyze the fx curves i n c o m b i n a t i o n w i t h the B V C E O plots presented i n the previous Section. F i r s t , the r e d u c t i o n of the collector thickness dL,i,c results i n a higher f^ while the B V C E O is reduced. T h i s is expected since the t h i n n e r the collector region the shorter the distance the electrons i n j e c t e d i n t o the collector need to t r a v e l i n order to reach the contact. O n the other hand the electric field i n the collector depletion region becomes higher as dL.ic shrinks, and hence the r e d u c t i o n

of B V C E O .

I n the low current regime the collector parameters have a negligible effect on fV. T h i s indicates t h a t for the investigated N P S the m a i n c o n t r i b u t i o n to the i n t e r n a l delay i n this current regime comes f r o m the emitter-base capacitance. T h e n , for a given dLd.c, increasing O,, at the collector contact causes a r e d u c t i o n of B V C E O and an increase i n f^.

(30)

SiGe lieterojunction bipolar transistors w i t h Schottky collector contacts N I

10'

10'

IO--10^

O =0.55 eV

p

10"

dLd,c=60 nm - - - N , , ^ = 1 x 1 0 cm L d . C N,^^^=1x10^^ cm"' N , , ^=1x10''cm"' Ld C i i i i i i I I i i i n l I 1 i i l l ! 10"-

10"'

10"'

10

-3

10-'

10"

(b)

10

^ 10' N X

10"

10

I I r I M i l ] r

V =0

08

O =1 eV

p

11 1—I I 11 r r i | I — I I r 1 i i i TIIT| d _ = 6 0 n m ^ dLa,c=150nm d,,^=350 nm L d . C . . . N , , , = 1 x 1 0 " c m ' ' N , , , = 1 x 1 0 ' ' cm"' L d . C Ayl -1 L d . C l e T . - . N , , ^ = 1 x 1 0 ' ' c m - . -N , , ^ = 1 x 1 0 ' ' c m " ' L d . C L d . C l l 1 I I . I I I m i l l l

10"' 10"^ 10"' 10"' 10"'

[A/iirn^]

10"'

10"

F i g u r e 2.7 Simulated cut-off freciuency f j as function of collector current density J,;; at V(;B=0 for different collector thickness and doping of NPS devices with (a) %=0.55 eV and (b) cD^, = 1 eV.

(31)

T h e influence of coUector d o p i n g o n f^- varies w i t h t h e coUector thickness. F o r devices w i t h dLd,c=60 n m i t is negUgible b u t i n devices w i t h a 350 n m t h i c k coUector, r e d u c i n g t h e Nta.c residts i n a n increase o f peak i j , w h i c h is imexpected since at t h e same t i m e also B V C E O increases. T h e e x p l a n a t i o n o f t l i i s effect c o i d d be t h e presence i n these devices o f a n i m d e p l e t e d pai-t o f l o w l y doped p - t y p e coUector at t h e base side, w h i c h gives a n a d d i t i o n a l i n t e r n a l delay due t o t h e chaige stored i n t o i t . W h e n t h e coUector d o p i n g reduces, t h i s p a r t becomes t h i n n e r . O n t h e other h a n d , t l i i s causes a r e d u c t i o n of t h e electric f i e l d peak i n t h e depleted coUector a n d hence t h e increase i n B V C E O - T h i s effect is also present b u t less significant i n devices w i t h d ^ c = 1 5 0 n m , w i n c h malces sense since t h e i m d e p l e t e d collector region w o u l d be smaUer f o r such NPS's.

T o have a n idea h o w t h e f^ can be increased b y increasing V C B i n case of large coUector thickness, t h e f j c m v e at V C B = 3 V f o r a device w i t h NLd,c=1^10'' cm-3, dLd,c=350 n m , %=0.55 eV is shown i n F i g m e 2.8.

F i g u r e 2.8 Simulated cut-off freciuency f^ as fimction of coUector cm-rent density for a NPS device w i t h NL<I,C=1X10^^ cm-3, dL,i,c=350 mn, Op=0.55 eV at VcB=0 and VCB=3 V .

(32)

SiGe heteroj miction bipolar transistors w i t h Scliottkj' coUector contacts

2.5. Transit time analysis

T h e cliargecontrol t h e o r y states t h a t , under t l i e c o n d i t i o n of a l o w -fi-ec(uenc3' cm-rent g a i n m u c h larger t h a n 1, t h e c u t - o f f fi-eciuency fx c a n be expressed i n t e r m s of t h e t o t a l emitter-to-coUector signal-delay t i m e

TEC as [33]:

/ r = : r ^ = (2.1)

where AQx is t h e v a r i a t i o n o f t h e t o t a l chai-ge per u n i t area i n t h e w h o l e b i p o l a r t r a n s i s t o r r e s u l t i n g fi-om t h e p e r t m - b a t i o n AJc of t h e coUector cmrent density f o r constant e m i t t e r c o l l e c t o r voltage ( d V c E = 0 )

-T h e t e r m AQx c a n be expressed as t h e s u m o f t h e c o n t r i b u t i o n s fi-om a l l device quasi-neutral a n d space charge regions:

A a = X ^ e , „ „ + E ^ ö . c « , A . (2-2)

I n a q u a s i - n e u t r a l region:

An(x) = Ap{x)

V x (2.3)

where x is t h e p o s i t i o n c o o r d i n a t e along t h e axis fi-om e m i t t e r t o coUector, An(A-) a n d A p ( x ) ai-e t h e vai-iation of t h e e l e c t r o n a n d hole concentrations i n p o s i t i o n x, respectively, caused b y A J Q .

U s i n g charge conservation, t h e foUo-wing r e l a t i o n c a n be d e r i v e d f o r t h e space chai-ge region:

.Y" .V"

^QscR = 9 j M^)dx = qj Ap(x)dx (2.4)

.Y' .Y'

where x' a n d . Y " are t h e boundaries of t h e space charge r e g i o n a n d q is t h e electron charge.

T h e coordinates x' a n d x" are bias dependent. B y p l o t t i n g f o r each biasing c o n d i t i o n A n ( x ) a n d A p ( x ) , t h e boundaries o f a space charge r e g i o n c a n be i d e n t i f i e d b y considering t h a t t h e var-iation of t h e m a j o r i t y

(33)

carrier concentration is m u c h larger t h a n the v a r i a t i o n of m i n o r i t y carriers i n the v i c i n i t y of the edges, t h a t is:

A / 7 ( x ) » A/7(x) or A / ? ( x ) » A t t ( x ) ( 2 . 5 )

Based on equations ( 2 . 3 ) and ( 2 . 4 ) , the regional p a r t i t i o n of the device can be done for each D C bias b y means of numerical simulations e x p l o i t i n g the f o l l o w i n g a l g o r i t h m [ 3 4 ] :

a p o i n t X belongs to a quasi-neutral region i f b o t h the conditions

.V .V

A r t ( x ) = A/7(x) and ÏAn{z)dz = \Ap(z)dz ( 2 . 6 )

0 0

are verified, where A-=0 is the position of the e m i t t e r contact; otherwise x is a p o i n t of the space charge region. N u m e r i c a l l y the conditions ( 2 . 6 ) are i m p l e m e n t e d by imposing t h a t the absolute value of the difference of the two terms of each equation is smaller t h a n a chosen a r b i t r a r i l y - l o w threshold. T h i s method provides an unambiguous regional p a r t i t i o n of the device by i d e n t i f y i n g for each biasing c o n d i t i o n the 4 parameters XE, '•^'D.E! .-'^'D.C) -YC as exemplified i n F i g u r e 2 . 9 for a SiGe N P N transistor at

peak-fx for V c n = 0 . T h e i n t r i n s i c d o p i n g profile of such device is shown i n F i g u r e 2.10.

(34)

SiGe lieterojunction bipolar transistors with Scliottky collector contacts 3x10 2x10 c o ro 1x10 != a) o c o O -1x10 0 10 0 1§^.^ d i s t a n c e [|,im] 0,20

F i g u r e 2.9 Regional partition of SiGe N P N transistor for V|,|i=0.81 V and VcB=0. Tlie doping profile is shown in Figure 2.10.

10'

f

1 0

-I

10'^ ^ 10'^ § 1 0 " -g 1 0 " 10 - I 1 I I f—

n+

. 1 I I 1_ ohmic contact

n+

0,05 0,10 0,15

distance

[)im]

0.20 0,15

I

O ro 4= 0.10 o E (U 0,05 CD 0 0,20

F i g u r e 2.10 Doping profile of the simulated SiGe N P N referred to in Figure 2.9, The Ge percentage in the p+ base is 20% (nifc„=0.2).

(35)

G i v e n such a device p a r t i t i o n , i t is s t r a i g h t f o r w a r d t o calcidate t h e regional delaj^ times, also called "transit times". T h e d e l a j ' t i m e associated w i t h a quasi-neutral region is caused b y t h e m o d i d a t i o n of t h e n e u t r a l charge stored i n t l i i s region due t o the cm-rent p e r t m b a t i o n A J Q . Instead, w i t l r i n a space charge region we need t o talce i n t o consideration t w o types of charges. Free carriers traveUing across t h e space charge region create a compensated and uncompensated charge. T h e m o d i d a t i o n o f t h e l a t t e r is related t o t h e charging a n d discharging o f t h e j u n c t i o n d e p l e t i o n capacitance.

T h e t r a n s i t t i m e s associated t o t h e d i f f e r e n t types o f charge can be calcidated as foUows:

t r a n s i t t i m e i n c|iiasi-neiitral e m i t t e r region:

•V, £

C

0

(2.7)

t r a n s i t t i m e i n E B SCR due t o compensated charges:

(2.8)

t r a n s i t t i m e i n E B SCR due t o imcompensated charges:

X, B.E

T

EBJ

[Ap{x) - }7i{x)]dx

AJ.

' [An{x)-m(x)]clx (2.9)

t r a n s i t t i m e i n c^uasi n e u t r a l base region:

(2.10)

t r a n s i t t i m e i n C B SCR due t o compensated charges:

(36)

SiGe lieterojmiction bipolar transistors w i t h Schottky coUector contacts

t r a n s i t t i m e i n C B S C R due t o uncompensated charges:

.Vc .Vc

^Bcj

= T V

I

[ A « C A - ) - ' " W ] ^ * ^ A -

= -^ j

[Ap{x)-m{x)\clx

(2.12) , A J c /

where m ( . v ) = m i n { A n ( x ) , A p ( x ) } .

I n p r a c t i c a l cases t h e delay i n t h e quasi n e u t r a l coUector is negligible. T h i s means t h a t i n equations (2.11) a n d (2.12) t h e coordinate of t h e coUector contact L c a n be used instead of Xq. F i g m e 2.11 shows t h e t r a n s i t t i m e s f o r t h e simrdated SiGe N P N device at peak-fx f o r V C B = 0 . T h e figme also gives a n idea o n t h e r e l a t i v e c o n t r i b u t i o n f o r each device r e g i o n t o t h e t o t a l enritter-to-coUector delay t i m e .

N o t e t h a t t h e f^ d e t e r m i n e d fi-om t h e s i m r d a t e d h j i according t o t h e d e f i n i t i o n gives a v a l u e o f 100.6 G H z f o r t h e above SiGe N P N i n t h e considered biasing c o n d i t i o n ( V B E = 0 . 8 1 V a n d V C B = 0 ) , w h i c h translates ttn-ough ec[uation (2.1) i n t o a t o t a l emitter-to-coUector signal-delay t i m e TEC of 1-582 ps. T h e integi-ation o f t h e t r a n s i t t i m e d i s t r i b u t i o n s f o r electrons a n d holes as o b t a i n e d from t h e pei-tm-bation m e t h o d gives T E C , n = l - 5 5 9 ps a n d TEC.P =1-553 ps, respectively. T h e f a c t t h a t t h e values

of TECU a n d TEC.P are practicaUy t h e same a n d have a verj^ good c o r r e l a t i o n

w i t h TEC calcidated fi-om t h e simrdated h j i is an i n d i c a t i o n o f t h e consistency a n d correctness of t h e s i m i d a t i o n fi-amework used f o r t h e t r a n s i t t i m e analysis.

(37)

E 1 . 5 x 1 0 ' ° =1 o OJ c O 1.0x10" 3 § 5.0x10"" "w E 0 tn 2 -5.0x10"

NPN

T '

r-V^^=0.81V

V =0

0.05 0.10 0.15

distance [|am]

0.20

F i g u r e 2.11 Transit time distribution and associated regional delay times for the simulated SiGe NPN at peak-f,. for VcLi=0. The inset zooms on the emitter region.

2 . 5 . 1 . T r a n s i t t i m e d i s t r i b u t i o n i n S i G e N P S t r a n s i s t o r s

T h e above t r a n s i t t i m e analysis is e x p l o i t e d i n this Section t o provide an insight i n t o the mechanism of charge storage for NPS devices. T h e r e s u l t i n g i n f o r m a t i o n on the local c o n t r i b u t i o n to the t o t a l e m i t t e r t o -collector t r a n s i t t i m e allows the i d e n t i f i c a t i o n of the H m i t i n g factors for the s i m u l a t e d devices w i t h S c h o t t k y collector designs.

Figures 2.12 (a) and 2.12 (b) show the t r a n s i t t i m e d i s t r i b u t i o n for electrons (black hne) and holes (red line) at l o w - c u r r e n t regime and at peak-fx, respectively, f o r the N P S device w i t h NLrt,c=lxlO"' c r n ^ dLd,c=60 n m , ( D , = l eV. N o t e t h a t f o r this device the t o t a l t r a n s i t t i m e of the holes is very close t o TEC calculated f r o m the s i m u l a t e d h2i, while the electrons t r a n s i t t i m e has a discrepancy of about 15%. M o r e specifically, at the low c u r r e n t regime TEC,„=9.27 ps and TEC,„=10.86 ps w h i l e TEC=11.05 ps. A t peak fx, TEc,„=h82 ps and TEC,P=1.59 ps against a calculated igc of 1.60 ps.

(38)

SiGe lieterojunction bipolar transistors w i t h Schottl<:y collector contacts -5.0x10 (a) 0.05 0.10 distance [\.im] 0.15 E 1.5x10-''' O ^ 1 0 x 1 0 ' " Ö ; § 5.0X10" h E 0 2 -5.0X10'"

Jp=8.6 xio '' A/'[.inn

(b)

NPS

N|^,i,_=1x10"' c m ' d ,^=60 nm Ld.C <]\=1 eV 0.05 0.10

distance [|.im]

0.15

F i g u r e 2.12 Transit time distribution for electrons (black line) and holes (red line) at low-current regime (a) and peak-f^ (b) for N P S device w i t h NL,,,C-=1-^10"' cm-'', d,,,,,c:=60 nm, (I)„=l eV.

(39)

Figure 2.12 (a) c o n f i r m s t h a t at the low current regime the i n t e r n a l delays are m a i n l y related to charge m o d u l a t i o n i n the base e m i t t e r j u n c t i o n , w h i c h is expected since i n this regime there is no influence of the collector parameters on the f j curves. A t peak-f^ (see F i g u r e 2.12 (b)), the i n t e r n a l delays i n t r o d u c e d by the charge m o d u l a t i o n i n the E - B and C - B space charge regions are comparable and d o m i n a t i n g over the base t r a n s i t t i m e .

T h e t r a n s i t t i m e analysis is also useful to c o n f i r m the e x p l a n a t i o n given i n Section 2.4 of the simultaneous increase of I'T and B V C E O for N P S device w i t h t h i c k collector when the collector d o p i n g decreases. F i g u r e 2.13 shows indeed t h a t i n the case of devices w i t h dL,i,c=350 n m and (I),,= l eV, a larger base t r a n s i t t i m e and an a d d i t i o n a l delay i n the collector region close to the base is observed f o r a comparable Jq and higher NL,,,C- Note t h a t f o r these devices the discrepancy between the T^ECu! TECP and TEC f r o m the h^i is w i t h i n 7%.

1.5x10'' O 1.0x10' 'J •9 'i— ^ 5.0x10 TD E c 0.1 0.2 0.3

distance [jiim]

F i g u r e 2.13 Transit time distribution for electrons (black lines) and holes (red lines) for NPS device w i t h d|,,c=350 nm and Op=l eV. The inset zooms on the emitter-base region.

(40)

SiGe lieterojunction bipolar transistors w i t l i Schottky collector contacts

2.6. Comparison between S i G e N P S and

N P N transistors

T h e f u n c t i o n i n g of the bipolar j u n c t i o n transistor is based on the f u n d a m e n t a l p r i n c i p l e t h a t the m i n o r i t y carriers i n j e c t e d i n t o the base f r o m the e m i t t e r d r i f t to the collector contact b y an electric f i e l d . I n c o n v e n t i o n a l Si(Ge) N P N transistor this is achieved by f o r m i n g a space charge region t h r o u g h the difference i n d o p i n g between the base and collector regions. Instead, i n the investigated N P S device such electric f i e l d is created by the depletion region o f the S c h o t t k y j u n c t i o n at collector contact. T h e question arises t h e n , how this new manner o f i m p l e m e n t i n g the bipolar j u n c t i o n transistor influences the device performance i n terms of f'x and

BVCEO-T o answer t h i s question, the f^ and B V C E O curves o f the N P S devices are compared w i t h t h a t of a c o n v e n t i o n a l SiGe N P N w i t h n - t y p e o h m i c c o n t a c t e d collector w i t h the same e m i t t e r and base regions. T h e collector region o f the N P N device consists of a n - t y p e l o w l y doped layer (NLd,c=1^10'" cin^) a n d a h i g h l y doped layer (NHH,C=1X10'''' cm"') at the contact side. T w o thicknesses for each o f such layers have been considered, specifically dL,i,c= [60,75] n m and dH,i,c= [50,20] n m . T h e d o p i n g p r o f i l e of the SiGe N P N devices is depicted i n F i g u r e 2.14. T h e comparison w i t h the N P S transistor i n terms o f f^ a n d B V C E O is shown i n F i g u r e 2.15.

(41)

0.05 0.10 0.15

d i s t a n c e [).tm]

F i g u r e 2.14 Doping profile of the simulated SiGe N P N devices. Tire thicknesses of the lowly and higWy doped collector regions are d,,,e=[60,75] nm and dH.i,c=[50,20] nm, respectively. The Ge percentage in the p+ base is 20% (mfc„=0.2). N I 10' 10' 10' 10° 10'

—r I iiinij—1 rTTin^—r i imm—i i iim^

/

1 iMimi 1 « '•\ W ' > / / r / / / : / ^ 1-5 \A

/

/

f 1.3 / / i 06 07 oa 03

:

NPS

...-d^,j^=60 nm. il>p=i eV

NPN

d ^ „ ^ = 6 0 n m , d „ ^ , = 5 0 n m .... d. .=60 nm, d.. . =20 nm .... d, ,.=75 nm, d„ .=50 nm J J J J 3'' 10'" 10"' 10"' 10 ' 10"

Jc [A

/|4m1

F i g u r e 2.15 Simulated fj- and (inset) BVCKO curves of NPN devices w i t h di,,i,c=[60,75j nm and dH,,,c=[50,20] nm as compared to those of a NPS transistor w i t h N L<1,C =1x10'" cnr-', d,,,c=60 nm, 0 = 1 eV.

(42)

SiGe lieterojunction bipolar transistors with Scliottky collector contacts

I t can be seen t h a t the use of c o n v e n t i o n a l ohmic contact in the investigate devices does not i m p r o v e the f^ b u t s l i g h t l y reduces the BVcEOi independently of the thickness of the h i g h l y doped collector region. T h e same B V C E O as the N P S device is achieved for the N P N by increasing the thickness of the l o w l y doped collector by 25%, w h i c h results i n a r e d u c t i o n of the peak-f^ of about 10%. Therefore, i t can be concluded that the S c h o t t k y collector design seems t o p e r f o r m s l i g h t l y better t h a n the conventional ohmic contacted collector i n terms of fx and B V C E O p r o d u c t .

2.6.1. C o m p a r i s o n b e t w e e n S i G e N P S a n d N P N S

t r a n s i s t o r s

Previously i t has been shown t h a t for N P S transistors the t h i n n e r the collector region the lower the influence of the collector d o p i n g level on f j and BVcEo- For dL,i,c=60 n m b o t h f^ and B V C E O are i n practice independent of the collector d o p i n g (see Figures 2.5 and 2.7). For the sake of completeness, the influence of the type of collector d o p i n g on f^ and B V C E O has also been investigated for these t h i n collector N P S transistors. A new device ( N P N S ) has been s i m u l a t e d where the 60 n m l o w l y doped collector region is n-type (see Figure 2.16).

T h e results are shown i n F i g u r e 2.17, and indicate t h a t even the type of the collector d o p i n g has a negligible effect on f^ and B V C E O for S c h o t t k y contacted devices w i t h a t h i n collector region.

(43)

10-- 10-- 1 0 ^ f 10^'

I

10" ^ 10'

8

10" cn % 10" 10 • 1 • mf' ' • • i n +

h

1 1

h

1 1 i Schottky p i p-^ 1 contact ! 1 1 I . I " 1 1 . i . 1 1 0 0.05 0.10 0.15 0.20 0,15 § 0.10 ^ O E 0.05 d i s t a n c e [(.im]

F i g u r e 2.16 Doping profüe of the simulated SiGe NPNS device. The collector parameters are Nj.ic—lxlO'" cm-'' (n-type), d,

percentage in the p+ base is 20% (mfc,,=0.2).

=60 nm, (D,=l eV. The Ge 10' 10 N I 10 10" 10° ^ 10' r 1 r i i m j — r n r m q — j i m i i ^ i i i i i n ^ -r

V =0

: CB 1 i i i i i i ^ 1,8 \ 1 7 / / / / / / \ 1 0 / r / i S • s / / / 1,4 / / / 1.3 / : / / / / [Vj

; NPS

NPNS

! . . . d , =60 nm. <|) =1 eV L d C •* d,^ =60 n m, t l J =1 eV L d . C r 10-' 10"' IQ-' 10'' 10'' 10'' [ A/ | i m 1

F i g u r e 2.17 Simulated fp and (inset) BV^po curves of the NPNS device as compared to those of the NPS transistor with the same collector parameters (N,,„f,=lxl0"' cm-', du_(.=60 nm, ( ^ = \ eV).

(44)

SiGe lieterojunction bipolar transistors w i t h Scliottlty collector contacts

2.7. Conclusions

T h e D C and A C performance of n-type bipolar transistors w i t h S c h o t t k y collector contacts has been investigated w i t h a special focus on the influence of the collector design on the f - p X E V c E o p r o d u c t . I n such devices the electric field w h i c h collects the m i n o r i t y carriers i n j e c t e d i n t o the base f r o m the e m i t t e r is created by the depletion region induced by the S c h o t t k y barrier at the collector contact instead of the conventional base-collector p n j u n c t i o n . A s expected, the t h i n n e r the collector region the higher the f^. T h e thinnest collector for the s i m u l a t e d devices is 60 n m . Such devices e x h i b i t fx and B V C E O independent of the t y p e and value of the collector d o p i n g . O n the other hand, f j increases w i t h the S c h o t t k y barrier height at the contact O^. T h e l a t t e r has a strong i m p a c t on the offset voltage V„ff„,t as well. T h e lower the O,, the larger the V.ffe^. F o r the s i m u l a t e d devices, the t r a n s i t t i m e analysis shows t h a t the base t r a n s i t t i m e is negligible at peak-f^ as compared t o the delay times associated t o the emitter-base and collector space charge regions. A t the low c u r r e n t regime, the transit t i m e is d o m i n a t e d by the i n t e r n a l delay due to the charge stored i n the emitter-base j u n c t i o n .

S c h o t t k y collector devices w i t h t h i n collectors have been compared w i t h c o n v e n t i o n a l SiGe N P N transistors where the collector is contacted t h r o u g h a h i g h l y doped layer. T h e base and e m i t t e r regions are the same i n a l l devices. T h e s i m u l a t i o n results show t h a t the use of the S c h o t t k y collector does not reduce the device performance i n terms of fx and

B V C E O

-I n conclusion, the S c h o t t k y collector design simplifies the whole collector module to j u s t a m e t a l deposition on a l o w l y doped siUcon region and does not degrade the device speed. Technologically this means t h a t due t o the low processing temperature required the collector module could be executed d u r i n g the back-end-of-line ( B E O L ) process. T h i s makes i t a n a t u r a l candidate for the collector module i n the D I M E S SOG b i p o l a r technology when a i m i n g t o the f a b r i c a t i o n of high frequency transistors w i t h reduced v e r t i c a l dimensions.

(45)

Silicon=On=Glass v e r t i c a l

B J T ' s w i t h S c h o t t k y

collector contacts

3.1. Introduction

I n t h e D I M E S SiUcon-On-Glciss ( S O G ) bipolar process l o w - o h m i c coUector contacts are f a b r i c a t e d d n e c t l y u n d e r n e a t h t h e enritter regions a f t e r t h e on-giass transfer o f t h e S O I wafer a n d t h e Si substrate r e m o v a l . Such back-wafer contacts are f o r m e d hy liigh-dose l o w - e n e r g j ' i m p l a n t a t i o n s i n t h e contact w i n d o w s opened i n t o t h e exposed b m i e d oxide ( B O X ) f o l l o w e d b y high-energj^ excimer laser anneaUng ( E L A ) t o a c t i v a t e t h e dopants [35]. I n t h i s i n n o v a t i v e low-parasitic collector design, t h e mechanical stabiUty of t h e adhesive b o n d i n g layer malces i t impossible t o use a high-temperatm-e t h e r m a l process t o anneal t h e i m p l a n t a t i o n - i n d u c e d damage resrdting fi-om t h e back-wafer contact i m p l a n t a t i o n . Tlris damage consists of Si i n t e r s t i t i a l s , w l i i c h ai'e i n j e c t e d i n t o t h e silicon d m i n g t h e i m p l a n t a t i o n [36]. Since t h e i n t e r s t i t i a l s can easily d i f f u s e i n t h e siUcon, t h e y are n o t coirfined t o t h e a c t u a l i m p l a n t e d c o n t a c t region, a n d t h u s t h e y are n o t annealed b y t h e laser anneaUng, w h i c h o i d y recrystallizes a f e w tens of nanometers t h i n r e g i o n at t h e sm-face [37]. A previous w o r k o n S O G v a r a c t o r diodes has s h o w n t h a t i n these devices t h e arsenic-implanted back-wafer contact induces defects at least as f a r as 0.2 | r m away f r o m t h e c o n t a c t [38]. A comparable residt f o r B F 2 + i m p l a n t a t i o n has been r e p o r t e d i n [39] where t h e defect d i s t r i b u t i o n created hy t h e i m p l a n t a t i o n is analyzed b y p o s i t r o n a n n i l d l a t i o n D o p p l e r broadeiring. Moreover, i n t h e above case of S O G varactors, i t has been

(46)

SiGe heterojimction Ijipolar transistors w i t l i Schottky collector contacts

observed t l i a t t h e device b r e a k d o w n voltage decreases i f t h e d e p l e t i o n r e g i o n extends i n t o t h e defect region.

I n t h e fii'st p a r t of t l i i s C h a p t e r (Section 3.2), t h e r e U a b i l i t j ' o f S O G v e r t i c a l N P N ' s a n d P N P ' s is i n v e s t i g a t e d i n connection w i t h t h e collector c o n t a c t i n g m e t h o d . I n p a r t i c t d a r , a l t e r n a t i v e back-wafer contact designs are presented i n order t o reduce t h e Si l a t t i c e damage ( a n d t h e associated d e t r i m e n t a l effects) created i n t h e area s m r o t m d i n g t h e contact itself. T h e proposed coUector contacts are f o r m e d b y t U t e d i m p l a n t a t i o n of t h e dopants or b y using Schottkj^ back-wafer contacts, w h i c h c o m p l e t e ^ eUminate t h e i m p l a n t a t i o n .

I n t h e second pai't of t h e C h a p t e r (Section 3.3), t h e D C performance of v e r t i c a l P N P ' s w i t h d i f f e r e n t back-wafer collector contacts, i n c l u d i n g ohmic p"*" regions a n d p- or n - t y p e A l / S i ( l % ) S c h o t t k } ' j i m c t i o n s , is characterized. T h e i n f l u e n c e of t h e coUector design o n t h e offset voltage Voffset) w h i c h is t h e emitter-coUector voltage at zero coUector c m r e n t f o r a f o r c e d base c u r r e n t i n c o m m o n - e m i t t e r configm-ation, is i n v e s t i g a t e d as weU.

3.2. Base leakage and impact ionization

current in S O G vertical B J T ' s

3 . 2 . 1 . E x p e r i m e n t a l m a t e r i a l

T h e basic D I M E S S O G back-wafer contacted c o m p l e m e n t a r y bipolar' process is iUustrated i n F i g m e 3 . 1 . T h e .starting m a t e r i a l is a S O I wafer w i t h 0.34 p m i n t r i n s i c mono-crystaUine Si o n a 0.4 p m B O X laj^er. T h e t o p Si layer thickness is increased b y e p i t a x y t o 0.94 p m a n d t r e n c h e t c h i n g is used t o define islands electrically-isolated b y Si02. I n such siUcon islands t h e f u U y i m p l a n t e d transistors are f a b r i c a t e d . T h e f r o n t -wafer process ( F W P ) consists o f t h e i m p l a n t a t i o n s f o r t h e l o w l y doped coUector, t h e enritter and base regions, metaUization a n d d e f i n i t i o n of t h e base a n d e m i t t e r contacts. A 400 ° C aUoying step i n f o r m i n g gas Itydrogen-passivates aU oxide-silicon interfaces. T h e n , t h e f r o n t - w a f e r is covered w i t h 1 p m P E C V D oxide a n d glued t o a glass substrate. N e x t , t h e silicon b u l k is r e m o v e d b y selective wet etcliing using t h e B O X as etch-stop layer. I n t h e back-wafer process ( B W P ) t h e ohmic contacts t o t h e coUector are made b y i m p l a n t a t i o n of As^*- and BFj"*" f o r N P N ' s a n d P N P ' s , respectively, i n t o c o n t a c t w i n d o w s opened cUrectly below t h e e m i t t e r regions. T h e i m p l a n t a t i o n s are p e r f o r m e d at 5 k e V w i t h a dose of

Cytaty

Powiązane dokumenty

Topological insulators (TI) are new remarkable materials that have band gap in the bulk but can conduct electricity on their surface via special surface electronic

Bardzo proszę zwrócić uwagę na informację, zapisaną przy objętości kwasu solnego zużytego podczas miareczkowania prowadzonego wobec oranżu metylowego – jest

Taki mały, taki chudy, nie miał domu ani budy, Więc go wzięłam, przygarnęłam, no i jest... Razem ze mną kundel bury penetruje

Dla chętnych- można przesłać nagrany filmik z ćwiczeń domowych, albo

To achieve this goal in the master's thesis formulated the following tasks: analysis methods, processes and tools redocumentation software; document review

У ході виконання магістерської роботи було досліджено структуру і функції інтелектуальної системи у цілому і її окремих

The following measures to improve the structure and efficiency of transportation can be singled out: the installation of GPS monitoring Dynafleet, the development of an

англійською: The first - architectural and construction - chapter describes the initial data of the project, the conditions of the construction area and