• Nie Znaleziono Wyników

The Generalized Saddle-Node Bifurcation of Degenerate Solution

N/A
N/A
Protected

Academic year: 2021

Share "The Generalized Saddle-Node Bifurcation of Degenerate Solution"

Copied!
6
0
0

Pełen tekst

(1)

Seria I: PRACE MATEMATYCZNE XLV (2) (2005), 145-150

Ping Liu, Yu-Wen Wang

The Generalized Saddle-Node Bifurcation of Degenerate Solution

Abstract. In this paper we discuss the bifurcation problem for the abstract operator equation of the form F (u, λ) = θ with a parameter λ, where F : X × R → Y is a C1mapping, X, Y are Banach spaces. By the bounded linear generalized inverse A+ of A = Fu(u0, λ0), an abstract bifurcation theorem for the case dimN (Fu(u0, λ0)) ≥ codimR(Fu(u0, λ0)) = 1 has been obtained.

2000 Mathematics Subject Classification: 35J25, 35J65.

Key words and phrases: Operator equation, bifurcation, generalized inverse of oper- ator.

1. Introduction. Let F : X × R → Y be a nonlinear differential mapping, and (u0, λ0) a solution of F (u, λ) = θ. If Fu(u0, λ0) is a linear homomorphism (so (u0, λ0) is a non-degenerate solution), then by the implicit function theorem, for λ close to λ0, F (u, λ) = 0 has a unique solution (u(λ), λ) and u(λ) is continuously differentiable with respect to λ. Thus λ0 is a bifurcation point only if Fu(u0, λ0) is singular. If (u0, λ0) is a solution of F (u, λ) = 0 with N (Fu(u0, λ0)) 6= {θ}, then we call (u0, λ0) a degenerate solution. Very commonly at a degenerate solution (u0, λ0), λ0is a simple eigenvalue of Fu(u0, λ0) that is

(F1) dimN (Fu(u0, λ0)) = codimR(Fu(u0, λ0)) = 1

and N (Fu(u0, λ0)) = span{w0}, where N (Fu(u0, λ0)) and R(Fu(u0, λ0)) are the null space and the range of Fu(u0, λ0).

M. G. Crandall and P. H. Rabinowitz, under the condition (F1) proved two bifurcation theorems (Theorem 1.7 in [1], Theorem 3.2 in [2]), but they also gave

The research was supported in part by the National Science Foundation Grant (19971023,10471032) of China.

(2)

an example for which dim(N (Fu(u0, λ0))) = 2. J. P. Shi. systematically studied the bifurcation of degenerate solution with the condition F1and its applications [3]. In this paper, we assume that

(F2) dimN (Fu(u0, λ0)) ≥ codimR(Fu(u0, λ0)) = 1

and extend the results of Crandall and Rabinowitz for (F2) holding. The tools to prove the results are the generalized inverse and the implicit function theorem.

Definition 1.1 ([13]) Let X, Y be Banach spaces, A ∈ L(X, Y ) be a linear op- erator, A+∈ L(Y, X) is called generalized inverse, if it satisfies

(i) AA+A = A, (ii) A+AA+= A.

Definition 1.2 Let X, Y, A be the same as Definition 1.1, if A ∈ L(X, Y ) has bounded linear generalized inverse A+, then A is called generalized regular operator.

Definition 1.3 ([5]) Let X, Y be Banach spaces, V ⊂ X × R an open set, and F ∈ Cp(V, Y ), p ≥ 0. Suppose that there exists a trivial solution (u(λ), λ) of equation F (u, λ) = θ in a neighborhood of (u0, λ0) such that (u(λ), λ) → (u0, λ0).(u0, λ0) is called a bifurcation solution of equation F (u, λ) = 0 if (un, λn) → (u0, λ0) such that un6= u(λn) and F (un, λn) = θ (n = 1, 2, · · · ).

Lemma 1.4 ([6]) Let A ∈ L(X, Y ), then A is a generalized regular operator iff N (A), R(A) are topologically complemented in X, Y respectively. In this case, PN (A)= I − A+A, PR(A)= AA+ and X = N (A) ⊕ R(A+).

2. Abstract Bifurcation Theorem.

Theorem 2.1 (Generalized Saddle–Node Bifurcation) Let V ⊂ X × R be a neighborhood of (u0, λ0), F ∈ C1(V, Y ). Suppose that

(i) Fu(u0, λ0) : X → Y is a generalized regular operator, and dimN (Fu(u0, λ0)) ≥ codimR(Fu(u0, λ0)) = 1.

(ii) Fλ(u0, λ0) 6∈ R(Fu(u0, λ0));

Let Z = R((Fu(u0, λ0))+), then

(I) The subset {(u, λ)|F (u, λ) = θ} contains the curve (u(s), λ(s)) = (u0+ sw0+ z(s), λ(s)) near (u0, λ0), where w0 ∈ N (Fu(u0, λ0)) \ {θ}, the mapping s 7→

(z(s), λ(s)) ∈ Z × R is continuously differential near s = 0, and λ(0) = 0, λ0(0) = 0, z0(0) = z(0) = θ.

(3)

(II) If F ∈ Ck(V, Y ), then λ(s), z(s) are k-differential, and λ00(0) = −hl, Fuu(u0, λ0)[w0, w0]i

hl, Fλ(u0, λ0)i , where l ∈ N ((Fu(u0, λ0))) \ {θ}.

Proof (I) Taking an arbitrary w0∈ N ((Fu(u0, λ0))) \ {θ}, define G : R × (R × Z) → Y as

(1) G(s, λ, z) = F (u0+ sw0+ z, λ) − F (u0, λ0), then G and F have the same smoothness and G(0, λ0, θ) = θ.

Next to prove that G(λ,z)(0, λ0, θ) : Z × R → Y is a regular operator. First of all, we assert that

(2) G(λ,z)(0, λ0, θ)[(τ, ψ)] = τ Fλ(u0, λ0) + Fu(u0, λ0)[ψ].

Indeed, by the definition of Fréchet derivative operator and (1), we have G(λ,z)(0, λ0, θ)[(τ, ψ)] = lim

t→0

G(0, λ0+ tτ, θ + tψ) − G(0, λ0, θ) t

= lim

t→0

F (u0+ tψ, λ0+ tτ ) − F (u0, λ0) t

= lim

t→0

 F (u0+ tψ, λ0+ tτ ) − F (u0+ tψ, λ0)

t +

F (u0+ tψ, λ0) − F (u0, λ0) t



= τ Fλ(u0, λ0) + Fu(u0, λ0)[ψ].

This is (2). Next to prove that G(λ,z)(0, λ0, θ) is an injective. Suppose that there exists (τ, ψ) ∈ R × Z such that

G(λ,z)(0, λ0, θ)[(τ, ψ)] = 0.

By (2), we have

(3) τ Fλ(u0, λ0) + Fu(u0, λ0)[ψ] = θ.

Since A+is bounded linear, then R(Fu(u0, λ0)) is closed, hence Banach Closed Range Theorem implies that

(4) R(Fu(u0, λ0))= N (Fu(u0, λ0)).

Taking l ∈ N (Fu(u0, λ0)) and l 6= θ. Applying l to (3), we get from (4) that τ < l, Fλ(u0, λ0) >= 0.

Because of Fλ(u0, λ0) 6∈ R(Fu(u0, λ0)), it follows that from (4) that

< l, Fλ(u0, λ0) >6= 0

(4)

and so τ = 0 and hence

Fu(u0, λ0)[ψ] = θ.

and therefore ψ ∈ N (Fu(u0, λ0)), note that

ψ ∈ Z = R((Fu(u0, λ0))+)

and R((Fu(u0, λ0))+) is the topological complement of N (Fu(u0, λ0)) from Lemma 1.4, so ψ = θ, i.e. G(λ,z)(θ, λ0, 0) is an injective.

To prove that G(λ,z)(0, λ0, 0) is surjective.

For any y ∈ Y , set τ = < l, y >

< l, Fλ(u0, λ0) >, ψ = (Fu(u0, λ0))+(y − τ Fλ(u0, λ0)),

where (Fu(u0, λ0))+ is bounded linear generalized inverse of Fu(u0, λ0). By the condition (i), it exists. By Lemma 1.4 and condition (i), the complement subspace Z of N (Fu(u0, λ0)) exists and

Z = R(Fu+(u0, λ0)), thus ψ ∈ Z i.e. (ψ, τ ) ∈ Z × R. In view of (2)

G(λ,z)(0, λ0, θ)[(τ, ψ)] = τ Fλ(u0, λ0) + Fu(u0, λ0)[ψ]

= τ Fλ(u0, λ0) + Fu(u0, λ0)(Fu(u0, λ0))+(y − τ Fλ(u0, λ0)) (5)

Since

Fλ(u0, λ0) 6∈ R(Fu(u0, λ0)), codim(R(Fu(u0, λ0)) = 1, then

Y = R(Fu(u0, λ0)) ⊕ span{Fλ(u0, λ0)}

and hence, y has a unique decomposition

(6) y = y1+ tFλ(u0, λ0), where y1∈ R(Fu(u0, λ0)).

Applying l to (6), we have

(7) t = < l, y >

< l, Fλ(u0, λ0) > = τ.

therefore, combining (6) with (7), we obtain

(8) y − τ Fλ(u0, λ0) ∈ R(Fu(u0, λ0)).

By Lemma 1.4, Fu(u0, λ0)(Fu(u0, λ0))+ is the bounded linear projector from Y to R(Fu(u0, λ0)), and hence, combining (5) with (8), we obtain that

G(λ,z)(0, λ0, θ)[(τ, ψ)] = τ Fλ(u0, λ0) + y − τ Fλ(u0, λ0) = y, and so for each y ∈ Y , there exists (τ, ψ) ∈ R × Z, such that

G(λ,z)(0, λ0, θ)[(τ, ψ)] = y,

(5)

i.e. G(λ,z)(0, λ0, θ) : Z × R → Y is surjective, and hence G(λ,z)(0, λ0, θ) is one-to one and onto. It follows from Banach Inverse Operator Theorem that G(λ,z)(0, λ0, θ) is a regular operator.

For equation G(s, λ, z) = θ, by the implicit function theorem, there exists ε > 0 and s 7→ λ(s), |λ(s) − λ0| < δ, s 7→ z(s), s ∈ I(−ε, ε) and (z(s), λ(s)) is continuously differential on I = (−ε, ε) with λ(0) = λ0, z(0) = θ, and

G(s, λ(s), z(s)) = θ, s ∈ I and hence

F (u(s), λ(s)) = F (u0+ sw0+ z(s), λ(s)) = θ.

i.e. the subset {(u, λ)| F (u, λ) = θ} contains the curve

(u(s), λ(s)) = (u0+ sw0+ z(s), λ(s)), s ∈ I.

Differentiate G(s, λ, z) = 0 with respect to s ,

G(λ,z)(s, λ, z)[λ0(s), z0(s)] + Gs(s, λ, z) = θ and hence

G(λ,z)(0, λ0, θ)[λ0(0), z0(0)] = −Gs(0, λ0, θ) = −Fu(u0, λ0)w0= θ, the inverse of G(λ,z)(0, λ0, θ) implies that λ0(0) = z0(0) = θ, then (I) follows.

(II) Differentiating two sides of F (u(s), λ(s)) = θ, we obtain that (9) Fu(u(s), λ(s))[u0(s)] + Fλ(u(s), λ(s))λ0(s) = θ.

Differentiating again two sides of (9), we have

Fλλ0(s))2+ Fλu[u0(s)]λ0(s) + Fλλ00(s)

+ Fλ0(s)[u0(s)] + Fuu[u0(s), u0(s)] + Fu[u00(s)] = θ Taking s = 0, note that λ0(0) = 0, we obtain

(10) Fλλ00(0) + Fuu00(0) + Fuu[w0, w0] = θ.

Taking l ∈ N ((Fu(u0, λ0))) = R(Fu(u0, λ0)), and acting two sides of (10), we have λ00(0)hl, Fλ(u0, λ0)i + hl, Fuu(u0, λ0)[w0, w0]i = 0

and hence

λ00(0) = −hl, Fuu(u0, λ0)[w0, w0]i hl, Fλ(u0, λ0)i .

as that (II) follows. 

(6)

References

[1] M. G. Crandall and P. H. Rabinowitz,Birfurcation simple eigenvalue, J. Functional Analysis 8 (1971), 321-340.

[2] M. G. Crandall and P. H. Rabinowicz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration Mech. Anal. 52 (1973), 161-180.

[3] J. P. Shi, Persistence and bifurcation of degenerate solution, J. Functional Analysis 168(2) (1990), 494-531.

[4] X. C. He and W. Y. Sun, The generalized inverse for matrices, Jiangsu Science Press 1990.

[5] C. K. Zhong, X. L. Fan and W. Y. Chen, Introduction to Nonlinear Functional Analysis, Lanzhou University Press 1998 (in Chinese).

[6] X. M. Sun, H. C. Yin and Y. W. Wang, The generalized Lyapunov-Schmidt Process in the Bifurcation Theory of Nonliear Operator Eqation, Mathmatics In Practice and Theory 33(5) (2003), 108-114 (in Chinese).

[7] M. S. Berger, Nonlinearity and functional analysis, Academic Press New York 1977.

[8] K. Deimling, Nonlinear functional analysis, Springer Verlag Berlin 1985.

[9] M. Golubisky, D. G. Schaeffer, Singularities and groups in bifurcation theory, Vol I, Springer Verlag Berlin 1985.

[10] T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear prob- lem,J. Diff. Eq. 146(1) (1998), 121-156.

[11] J. Shi,Persistence and Bifurcation of Degenerate Solutions, J. Func. Anal. 169(2) (1999), 494-531.

[12] Y. W. Wang and H. Wang, Generalized orthogonal decomposion theorem in Banach space and generalized orthogonal complemented subspace, Acta Math. Sinica 44(6) (2001), 1045-1050 (in Chinese).

[13] M. Z. Nashed, Ed. Generalized Inverse and Applications, Academic Press, New York-London 1976.

Ping Liu

Department of Mathematics, Northeast Normal University Changchun,130000, P. R. China

E-mail: wangyuwen2003@sohu.com Yu-Wen Wang

Department of Mathematics, Harbin Normal University Harbin,150080, P. R. China

E-mail: wangyuwen2003@sohu.com

(Received: 20.12.03)

Cytaty

Powiązane dokumenty

Porównanie funduszy pod względem ogólnych warunków uzyskania poręczenia W tabeli 1 przedstawiono zestawienie Zachodniopomorskiego Regionalnego Fundu­ szu Poręczeń

Zarówno lekarze jak i media alarmują, że zjawisko otyłości jest szczególnie niebezpieczne dla dzieci w wieku przedszkolnym i szkolnym, gdyż zwiększa ryzyko występowania

In MacDonald’s The Barbarous Coast, the Polish translator, perhaps un- wittingly, drops clues as to Lew Archer’s age at the very start of the book, when Archer first meets George

Przez pierwsze 4 dni stoso- wano 12 tabletek, zawierających po 500 mg diosminy, w trzech podzielonych dawkach 3 razy dziennie, przez kolejne 10 dni dwa razy dziennie po dwie

23 Najczęściej pojawiającym się słowem wywodzącym się z „języka smerfów” w języku potocznym jest prawdopodobnie smerfy ‘policjanci’. Co ciekawe, także

rego pomocą można tworzyć zdania o postaci (zdanie ϕ jest prawdziwe) dwuargumentowym predykatem, który pozwala na tworzenie zdań o postaci (zdanie ϕ jest prawdziwe w czasie t

Jednym z najwłaściwszych jest „rodzenie człowieka, a to znaczy kształtowanie jego ciała, rozwijanie dyspozycji psychicznych, wprowadzenie go w świat wartości i norm,

[r]