• Nie Znaleziono Wyników

Influence of wall proximity on flow around two tandem circular cylinders

N/A
N/A
Protected

Academic year: 2021

Share "Influence of wall proximity on flow around two tandem circular cylinders"

Copied!
15
0
0

Pełen tekst

(1)

Ocean Engineering 94 (2015) 3 6 - 5 0

ELSEVIER

C o n t e n t s lists available at ScienceDirect

Ocean Engineering

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / o c e a n e n g

Influence of wall proximity on flow around two tandem

circular cylinders

X.K. Wang^'* J.-X. Zhang ^ Z. Hao^ B. Zhou^ S.K. Tan^

" Maritime Researcix Centre, Nanyang Technological University, 639798, Singapore

"School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China ' College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China

CrossMark

A R T I C L E I N F O A B S T R A C T

Article history: Received 3 August 2013 Accepted 30 November 2014 Available online 16 December 2014 Keywords:

Tandem cylinders Wall proximity Vortex shedding Drag and lift coefficients Spectrum of lift coefficient Particle image velocimetry (PIV)

A n e x p e r i m e n t a l s t u d y w a s c o n d u c t e d to investigate the f l o w a r o u n d t w o t a n d e m c y l i n d e r s placed near and parallel to a p l a n e w a l l . T h e R e y n o l d s n u m b e r b a s e d o n the c y l i n d e r d i a m e t e r ( D ) w a s 6 3 0 0 . T h e c y l i n d e r c e n t r e t o c e n t r e s p a c i n g ratio (Z.*=£,/D) w a s varied f r o m 1.5 to 6, a n d t h e g a p h e i g h t t o -c y l i n d e r - d i a m e t e r ratio (G* = G / D ) f r o m 0.15 to 2. T h e f l o w fields w e r e m e a s u r e d u s i n g Parti-cle Image V e l o c i m e t r y (PIV), i n c o n j u n c t i o n w i t h m e a s u r e m e n t s of fluid d y n a m i c forces ( d r a g a n d lift) o n the d o w n s t r e a m c y l i n d e r u s i n g load cell. T h e f l o w strongly d e p e n d s on the c o m b i n e d v a l u e of G* a n d I * . W i t h reference to G * , the f l o w could be classified as v o r t e x - s h e d d i n g s u p p r e s s i o n r e g i m e ( G * < 0 . 3 ) , i n t e r m e d i a t e - g a p r e g i m e ( 0 . 3 < G * < 1 ) w h e r e v o r t e x s h e d d i n g o'ccurs but is i n f l u e n c e d b y w a l l proximity, a n d large-gap r e g i m e ( C * > 1) w h e r e the w a l l i n f l u e n c e b e c o m e s negligible. Similarly, three categories c a n be identified as a f u n c t i o n o f i * , n a m e l y , e x t e n d e d - b o d y r e g i m e 1 < £ , * < 2 , r e a t t a c h m e n t r e g i m e at 2 <Z,* < 4 , a n d i m p i n g i n g r e g i m e at L * > 4 . V a r i a t i o n s of d y n a m i c d r a g a n d lift coefficients, spectra, S t r o u h a l n u m b e r s , a n d R e y n o l d s s h e a r stress are also p r e s e n t e d to c h a r a c t e r i z e the d i f f e r e n t flow r e g i m e s in the G * - L * plane.

© 2014 E l s e v i e r Ltd. A l l rights r e s e r v e d .

1. Introduction

T h e i n t e r f e r e n c e o f f l o w a r o u n d t w o c i r c u l a r c y l i n d e r s is o f b o t h a c a d e m i c i n t e r e s t a n d p r a c t i c a l i m p o r t a n c e , see S u m n e r ( 2 0 1 0 ) f o r a c o m p r e h e n s i v e r e v i e w . A m o n g t h e m a n y possible a r r a n g e m e n t s o f t h e t w o cylinders to be positioned i n relative to the f l o w direction, t h e t a n d e m c o n f i g u r a t i o n has b e e n extensively studied. This t y p e o f interference, r e f e n e d to as 'wake i n t e r f e r e n c e ' by Z d r v k o v i c h (1987), is a f u n c t i o n o f the inter-cylinder distance (expressed as the r a t i o b e t w e e n t h e centre-to-centi-e spacing and the c y l i n d e r diameter, L * = L / D , t h e r e a f t e r abbreviated as the spacing ratio). Z d r a v k o v i c h (1987) p r o p o s e d t h a t the f l o w can be classified i n t o t h r e e basic types: ( i ) single b l u f f - b o d y regime at small L* (1 < L * < 1.2~1.8), w h e r e p e r i o d i c v o n K a r m a n v o r t e x s h e d d i n g is observed o n l y i n the w a k e o f the d o w n s t r e a m cylinder; ( i i ) read:achment regime at m o d e r a t e L* (1.2 —1.8 < L* < 3 . 4 ~ 3 . 8 ) , w h e r e t h e shear layers e m a n a t i n g f r o m the u p s t r e a m cylinder read:ach o n t o the sutface o f t h e d o w n s t r e a m cylinder; ( i i i ) i m p i n g i n g r e g i m e at large L* (L* > 3.4 ~ 3.8), w h e r e v o n K a r m a n vortices are shed f r o m t h e u p s t r e a m c y l i n d e r and p e r i o d i -cally i m p i n g e o n the d o w n s t r e a m cylinder. Z h o u a n d Y i u ( 2 0 0 6 ) s h o w e d t h a t t h e r e a t t a c h m e n t r e g i m e (2 < L* < 5) can be f u r t h e r

* Corresponding author. Tel.: + 6 5 6790S619; fax: -1-65 6790S620. E-maii address: cxkwang@ntu.edu.sg (X.K. Wang).

http://dx.doi.Org/10.1016/j.oceaneng.201411.01S 0 0 2 9 - 8 0 1 8 / © 2014 Elsevier Ltd. All rights reserved.

s u b - d i v i d e d i n t o t w o d i s t i n c t categories, f o r w h i c h t h e r e a t t a c h m e n t is o n t h e rear and leading surfaces o f the d o w n s t r e a m cylinder, respectively (see Fig. 1). The exact values o f L* t o delineate the boundaries b e t w e e n d i f f e r e n t regimes d e p e n d o n t h e value o f Reynolds n u m b e r (Carmo et al., 2010) a n d f r e e - s t r e a m t u r b u l e n c e i n t e n s i t y ( L j u n g k r o n a et al., 1991). The critical spacing ratio ( ! * „ ) , at w h i c h periodic v o r t e x s h e d d i n g begins t o occur f r o m the u p s t r e a m cylinder, varies f r o m L * c r = 3 t o 5 i n t h e literature (e.g., Lee et al., 2 0 0 9 ) . Correspondingly, the f l u i d forces o n t h e cylinders w o u l d experience a discontinuous ' j u m p ' at a b o u t L*a ( Z d r a v k o v i c h and Pridden, 1977). Moreover, X u and Z h o u ( 2 0 0 4 ) s h o w e d t h a t t h e v o r t e x s h e d d i n g frequency is d e p e n d e n t o n Reynolds n u m b e r over the range Re = 8 0 0 - 4 . 2 x l O ' ' (Ke=UD/v, w h e r e u is t h e k i n e m a t i c viscosity o f f l u i d ) .

On t h e o t h e r h a n d , t h e r e are a n u m b e r o f e n g i n e e r i n g practices i n w h i c h c y l i n d r i c a l structures are placed near a p l a n e w a l l , s u c h as s u b m a r i n e pipelines, risers a n d cables o n seabed. To date, m a n y researchers have e x a m i n e d t h e i n f l u e n c e o f w a l l p r o x i m i t y o n a single c y l i n d e r w i t h t h e cross-section o f e i t h e r c i r c u l a r (e.g., B e a r m a n a n d Z d r a v k o v i c h , 1978; Lei et al., 1999; Price e t al., 2 0 0 2 ; D i p a n k a r a n d Sengupta, 2 0 0 5 ; Nishino e t al., 2 0 0 7 ; W a n g a n d Tan, 2 0 0 8 a ; L i n et al., 2 0 0 9 ; Sarkar and Sarkar, 2010; O n g et al., 2012; W a n g e t al., 2013), square (e.g., W a n g a n d Tan 2 0 0 8 b ; M a h i r , 2 0 0 9 ) o r r e c t a n g u l a r (e.g., M a i t i , 2 0 1 2 ; M a i t i a n d Bhad:, 2014). The n e a r b y w a l l affects n o t o n l y the d y n a m i c pressure a n d forces o n t h e

(2)

X.K. Wang et al. / Ocean Engineenng 94 (2015) 36-50 37

cylinder, b u t also t h e w a k e p a t t e r n and f l o w - i n d u c e d v i b r a t i o n s . The r a t i o b e t w e e n t h e gap h e i g h t to the c y l i n d e r d i a m e t e r ( G * = G / D , abbreviated hereafter as t h e gap r a t i o ) is f o u n d t o be the p r e d o m i n a n t p a r a m e t e r The i m p e r m e a b i l i t y o f the w a l l poses an i r r o t a t i o n a l c o n s t r a i n t t o the w a k e d e v e l o p m e n t , r e s u l t i n g i n suppression o f the classical v o n K a r m a n v o r t e x s h e d d i n g t h a t is i n absolute i n s t a b i l i t y ( H u e r r e and M o n k e w i t z , 1990) b e l o w a c r i t i c a l gap r a t i o (G*cr). As sketched i n Fig. 2(a), w h e n G* < G\r, t h e w a k e is steady w i t h a l o n g r e c i r c u l a t i o n r e g i o n : w h i l e t h e gap f l o w keeps attached o n t h e w a l l , t h e u p p e r shear layer e m a n a t i n g f r o m t h e c y l i n d e r e x h i b i t s as elongated K e l v i n H e l m h o l t z (KH) t y p e o f r o l l -ups ( i n convective i n s t a b i l i t y ) . However, w h e n G* > G'cr (Fig. 2(b)), the gap f l o w is s t r o n g e n o u g h to d e t a c h u p w a r d f r o m t h e w a l l ( o r u p w a s h ) , a n d t o i n t e r a c t w i t h t h e u p p e r shear layer t o f o r m discrete vortices. I t s h o u l d be n o t e d t h a t t h e v o r t e x s h e d d i n g is a s y m m e t r i c about t h e h o r i z o n t a l w a k e centerline; also, there is a c o u p l i n g b e t w e e n t h e l o w e r shear layer and the w a l l b o u n d a r y layer, as reflected b y the p h e n o m e n o n t h a t each anticlocl<wise v o r t e x is a c c o m p a n i e d by a s m a l l cloclcwise v o r t e x i n t h e near w a l l r e g i o n . The v a l u e o f G * c r « 0.3 s l i g h t l y varies w i t h Re and thickness o f t h e w a l l b o u n d a r y layer (e.g., Buresti a n d Lanciotti, 1992; Price et al., 2002).

H o w e v e r , l i t t l e a t t e n t i o n has b e e n p a i d t o t h e c o n f i g u r a t i o n o f t w o t a n d e m c y l i n d e r s i n p r o x i m i t y t o a plane w a l l (see Fig. 3 ) . The flow i n t e r f e r e n c e b e t w e e n t h e t w o cylinders is f u r t h e r c o m p l i -cated d u e t o t h e presence o f t h e w a l l b o u n d a r y . B h a t t a c h a r y y a a n d D h i n a k a r a n ( 2 0 0 8 ) n u m e r i c a l l y s t u d i e d the 2 - d i m e n s i o n a l ( 2 D ) flow a r o u n d t w o t a n d e m square c y l i n d e r s w i t h a l i n e a r i n c i d e n t v e l o c i t y p r o f i l e at G* = 0.5 and L * = 1 . 5 - 6 . The n o n - u n i f o r m approach flow causes difference i n the strength o f the upper a n d l o w e r shear layers. The flow can be steady u p to Re = 125 d e p e n d i n g o n t h e value of L*. M o r e recently, Harichandan and Roy (2012) simulated t h e flow around t w o near-wall t a n d e m cylinders (circular/square) at Re=:100 and 200, G * = 0 . 5 and 1, a n d L * = 2 and 5. For a g i v e n Re, t h e Strouhal numbers o f the t w o cylinders are identical, b u t t h e l i f t and drag coefficients are d i f f e r e n t .

As described above, there is l i m i t e d i n f o r m a t i o n available o n t h e flow a r o u n d t w o t a n d e m cylinders i n p r o x i m i t y to a w a l l b o u n d a r y . T w o aspects need a t t e n t i o n . Firstiy, t h e o n l y t w o p u b l i s h e d studies, namely, D h i n a k a r a n ( 2 0 0 8 ) a n d H a r i c h a n d a n and Roy (2012), w e r e c o n d u c t e d at r e l a t i v e l y l o w Re ( u p to 200), t h a t is, i n t h e l a m i n a r regime. Yet, i n e n g i n e e r i n g practice t h e flow is generally i n t h e subcritical r e g i m e . Secondly, b o t h studies considered o n l y a r a t h e r l i m i t e d n u m b e r o f c o m b i n a t i o n s o f G* a n d L*, and hence a c o m p l e t e p i c t u r e i n the G*-L* plane is still unavailable. These m o t i v a t e t h e present r e l a t i v e l y systematic i n v e s t i g a t i o n f o r 0 . 1 5 < C * < 2 a n d 1.5 < L* < 7 u n d e r a c o n s t a n t Reynolds n u m b e r i n s u b c r i t i c a l r e g i m e ( R e = 6 3 0 0 ) .

2. Experimental set-up and methodology

The e x p e r i m e n t s w e r e p e r f o r m e d i n a r e - c i r c u l a t i n g o p e n c h a n n e l l o c a t e d at M a r i t i m e Research Centre, N a n y a n g T e c h n o l o -gical U n i v e r s i t y , w i t h a test s e c t i o n o f 5 m x 0.3 m x 0.45 m ( l e n g t h X w i d t h x h e i g h t ) . The c h a n n e l bed a n d t h e t w o side w a l l s

o f t h e test section w e r e m a d e o f glass t o a l l o w f o r o p t i c a l access. The f r e e - s t r e a m v e l o c i t y w a s u n i f o r m t o w i t h i n 1.5% across t h e test section, a n d the t u r b u l e n c e i n t e n s i t y i n t h e f r e e stream w a s b e l o w 2%.

Fig. 3 shows a sketch o f t h e t w o t a n d e m c y l i n d e r s placed near a n d p a r a l l e l t o a p l a n e w a l l . The c y l i n d e r m o d e l s w e r e m a d e o f s m o o t h , t r a n s p a r e n t acrylic r o d w i t h an o u t e r d i a m e t e r o f D = 1 5 m m . D u r i n g the e x p e r i m e n t s , the f r e e - s t r e a m v e l o c i t y was k e p t c o n s t a n t at L / = 0 . 4 2 m / s ( R e = 6 3 0 0 ) . The a p p r o a c h b o u n d a r y layer was f u l l y d e v e l o p e d w i t h a thickness o f 5 = 7 m m ( - 0.5D). The c y l i n d e r s ' c e n t r e - t o - c e n t r e spacing w a s v a r i e d as L = 2 2 . 5 , 30, 4 5 , 60, 75, 9 0 a n d 105 m m (L* = 1.5-7), a n d t h e gap h e i g h t G = 2 . 2 5 , 6, 9 , 1 2 , 21 a n d 3 0 m m ( C * = 0 . 1 5 - 2 ) . T h e r e f o r e , t o t a l l y 4 2 cases w e r e c o n s i d e r e d i n t h e p r e s e n t study.

The s p a n [b) o f t h e c y l i n d e r s w a s 2 0 0 m m , l e a d i n g t o a n aspect r a t i o (AR) o f i / D = 1 3 . 3 . This v a l u e w a s c o n s i d e r e d t o be large e n o u g h ( A R > 1 0 a c c o r d i n g to p r e v i o u s finding, f o r e x a m p l e . L a m a n d Z o u , 2010) t o ensure a n o m i n a l l y 2 D flow i n t h e near w a k e . T h e r e f o r e , t h e v e l o c i t y m e a s u r e m e n t s w i t h Particle Image V e l o c i -m e t r y (PIV) w e r e p e r f o r -m e d i n t h e -m i d - s p a n p l a n e . The o r i g i n o f t h e c o o r d i n a t e s y s t e m was located at t h e c e n t e r o f t h e u p s t r e a m c y l i n d e r , w i t h x, y a n d z d e n o t i n g t h e s t r e a m w i s e , transverse a n d spanwise d i r e c t i o n s , respectively. The p o s i t i v e d r a g a n d l i f t forces are i n t h e x- a n d y - d i r e c t i o n s , respectively.

Velocity measurements w e r e p e r f o m e d u s i n g a digital PIV system (LaVision m o d e l ) . The flow field was i l l u m i n a t e d w i t h a double cavity Nd:YAG laser l i g h t sheet at 532 n m w a v e l e n g t h ( L i t r o n model, p o w e r ~ 1 3 5 mJ per pulse, d u r a t i o n ~ 5 ns). S p h e r i c e l ® 110P8 h o l l o w glass spheres ( n e u t r a l l y b u o y a n t w i t h a m e a n diameter o f 13 p m ) w e r e seeded i n t h e flow as Q-acer particles. The images w e r e

Upper shear layer (elongated, K-H type)

Gap flow

b Upper shear layer (broken, Kérman type)

L

Upwash

<ï*5

Fig. 2. Schematic of the flow around a near-wall single cylinder: (a) vortex-sheddlng-suppression regime at small gap ratio; and (b) vortex-shedding regime at moderate gap ratio. Proposed based on the flow measurement results in Wang and Tan (2008a).

1 D - 2 D 2D-3D

Kcnltuclimcnt oii rcur surface

3 D - 5 0

Rcntlachnicni on leading surface

> 5 D

• E x l e n d s d - b o d y ' R e g l m a • R e a t t a c h m e n f R e g i m e ' I m p i n g i n o ' R e g i m o

(3)

3S X.K Wang et al / Ocean Engineering 94 (2015) 36-50

Upstream cylinder Downstream cylinder

Fig. 3. Schematic of the flow around two near-wall tandem cylinders.

recorded u s i n g a 1 2 - b i t CCD camera w i t l i a r e s o l u t i o n o f 1600 X 1200 pixels. LaVision Davis s o f t w a r e ( V e r s i o n 7.2) was used to process t h e particle images and d e t e r m i n e t h e v e l o c i t y vectors. Particle d i s p l a c e m e n t was calculated u s i n g the f a s t - F o u r i e r - t r a n s f o i m (FFT) based c r o s s - c o n e l a t i o n a l g o r i t h m w i t h standard Gaussian sub-p i x e l f i t s t r u c t u r e d as an iterative m u l t i - g r i d m e t h o d . The sub-processing p r o c e d u r e i n c l u d e d t w o passes, s t a r t i n g w i t h a g r i d size o f 64 x 6 4 pixels, s t e p p i n g d o w n to 3 2 x 32 p k e l s o v e r l a p p i n g b y 50%, w h i c h r e s u l t e d i n a set o f 7 5 0 0 vectors (100 x 7 5 ) f o r a t y p i c a l f i e l d . I n b e t w e e n the t w o passes, t h e vector maps w e r e f i l t e r e d b y using a 3 x 3 m e d i a n f i l t e r i n order to remove possible outliers. T h e n u m b e r o f particles i n a 3 2 x 3 2 p i x e l w i n d o w was o f t h e o r d e r o f 1 0 ~ 1 5 to y i e l d s t r o n g correlations. The f i e l d o f v i e w was set at 190 m m x 143 m m , t h e r e f o r e t h e spatial resolution was 1.9 m m x 1.9 m m (i.e., 0.13D x 0.13D). For each case, a series o f 1050 instantaneous f l o w fields was a c q u i r e d at the s a m p l i n g f r e q u e n c y o f 1 5 f i z ( o r 7 0 s recordings), i n o r d e r t o achieve a reasonably statistical convergence o f the measured quantities, such as Reynolds shear stress. The u n c e i t a i n t y i n t h e instantaneous velocities (it a n d v ) was estimated to be a b o u t 3.5% f o r the present setup. The instantaneous spanwise v o r t i c i t y (cOz = A v / A x - A u / A y ) w a s calculated u s i n g t h e least squares e x t r a p o l a t i o n scheme. The u n c e i t a i n t y i n Wz was estimated to be a b o u t 10% based o n t h e m e t h o d proposed b y Fouras a n d Soria (1998).

A p i e z o e l e c t r i c l o a d cell (Kistler M o d e l 9317B) w a s used to d i r e c t l y m e a s u r e t h e fluid d y n a m i c forces o n t h e d o w n s t r e a m cylinder, d r a g ( F D ) a n d l i f t [FL). The o u t p u t signal w a s c a p t u r e d w i t h a N a t i o n a l I n s t r u m e n t s A / D card at a s a m p l i n g rate o f 100 Hz ( a t least 1 o r d e r o f m a g n i t u d e greater t h a n t h e v o r t e x s h e d d i n g f r e q u e n c y , w h i c h w a s a b o u t 5 - 6 H z ) . The d u r a t i o n o f r e c o r d i n g f o r each case w a s a b o u t 2 0 0 s, w h i c h c o r r e s p o n d e d to a b o u t 1 0 0 0 cycles o f v o i t e x s h e d d i n g a n d was s u f f i c i e n t l y l o n g a c c o r d i n g to t h e c r i t e r i o n p r o p o s e d b y Sakamoto et al. (1987). T h e d i m e n s i o n l e s s s h e d d i n g f r e q u e n c y was expressed as S t r o u h a l n u m b e r ( S t = / D / U ) , w h e r e ƒ is t h e f r e q u e n c y d e t e r m i n e d f r o m spectral analysis o f t h e fluctuating l i f t c o e f f i c i e n t u s i n g p o w e r spectral d e n s i t y (PSD) f u n -c t i o n . Also, t h e m e a n and r o o t - m e a n - s q u a r e (RMS) values o f fluid d y n a m i c d r a g a n d l i f t c o e f f i c i e n t s {CD = 2FD/plfiDb a n d CL^2FI/ pU'^Db) w e r e calculated, w h e r e p is t h e fluid density. T h r o u g h a n u m b e r o f repeated m e a s u r e m e n t s o n a single c y l i n d e r , t h e uncer-t a i n uncer-t y i n uncer-t h e m e a n d r a g w a s d e uncer-t e r m i n e d uncer-t o be w i uncer-t h i n 1%. The dauncer-ta f o r a f r e e - s t a n d i n g (isolated) single c y l i n d e r m e a s u r e d a t t h e same Reynolds n u m b e r ( R e = 6 3 0 0 ) served as t h e b e n c h m a r k reference: Coo = l . l , CD'O = 0 . 0 5 5 , Cid = 0 . 0 7 5 and S t o = 0 . 2 ( w h e r e t h e subscript 0 denotes t h e i s o l a t e d c y l i n d e r ) .

3. Results and discussion

3.1. Near-wall single cylinder

T h e effects o f w a l l p r o x i m i t y o n a single c y l i n d e r has b e e n e x a m i n e d i n t h i s s e c t i o n . Fig. 4 s h o w s t h e v a r i a t i o n o f t h e d y n a m i c f o r c e c o e f f i c i e n t s ( C D , Q , Ch a n d Ci) v e r s u s G*, t o g e t h e r w i t h t h e d a t a r e p o r i i e d b y Roshko e t al. ( 1 9 7 5 ) a n d L e i et al. ( 1 9 9 9 ) . As s h o w n i n Fig. 4 ( a ) , a p r o m i n e n t f e a t u r e is t h a t t h e m o s t d r a m a t i c change o f Co occurs f r o m s m a l l - t o i n t e r m e d i a t e - g a p r a t i o s (e.g., G * < 0 . 7 5 ) ; w h e n G * > 1 , b y c o n t r a s t , i t r e m a i n s a p p r o x i m a t e l y c o n s t a n t at CD « 1 . 1 ( a s y m p t o t i c a l l y a p p r o a c h i n g t h e v a l u e f o r a n i s o l a t e d c y l i n d e r ) , i n d i c a t i n g t h a t t h e w a l l e f f e c t s b e c o m e n e g l i -g i b l e . A s i m i l a r t r e n d is f o u n d f o r t h e RMS c o e f f i c i e n t s ( C ó a n d Cl) as s h o w n i n Fig. 4 ( c ) . H o w e v e r , i t is n o t e d t h a t t h e a s y m p t o t i c values are c o n s i d e r a b l y l o w e r t h a n t h o s e r e p o r t e d i n Roshko e t al. ( 1 9 7 5 ) a n d L e i et a l . ( 1 9 9 9 ) , n a m e l y , Co « 1 . 1 versus 1.3 a n d Ci 0.075 v e r s u s 0.6. T h e d i s c r e p a n c y is l i k e l y a t t r i b u t e d t o t h e d i f f e r e n c e i n m e a s u r e m e n t t e c h n i q u e s a n d o n c o m i n g flow c o n d i -t i o n s ( s u c h as Re a n d &l-t;5). N o -t e -t h e d a -t a i n Roshko e-t al. ( 1 9 7 5 ) a n d Lei et a l . ( 1 9 9 9 ) w e r e based o n pressure d i s t r i b u t i o n a r o u n d t h e c y l i n d e r circumference f o r a n e l e m e n t a l slice ( r e f e r r e d to as sectional force b y N o r b e r g ( 2 0 0 3 ) ) , w h i l e the present study measured the total force o n t h e w h o l e span o f t h e cylinder, w h i c h always has a l o w e r

m a g n i d i d e due t o t h e end effects ( W e s t a n d A p e l t , 1997). I n the p r e s e n t study, t h e thickness o f b o u n d a r y layers d e v e l o p e d o n the side w a l l s w h e r e the t w o ends o f the c y l i n d e r w e r e attached was about 0.5D, so the l e n g t h o f t h e c y l i n d e r subjected t o e n d effects was about I D (or 75% o f the t o t a l span). Therefore, the d i f f e r e n c e b e t w e e n the measured t o t a l force a n d t h e ideal sectional force w o u l d be less t h a n 10%. I n fact, t h e present results are i n good a g r e e m e n t w i t h t h e p u b l i s h e d data o n a single^cylinder u s i n g s i m i l a r measure-m e n t technique ( l o a d cell), such as Co « 1 . 1 8 6 a n d Ci « 0.089 i n L a measure-m e t al. ( 2 0 0 3 ) f o r R e = 4 . 8 x W, a n d C/ « 0.08 i n Tadrist e t a l . (1990) f o r R e = 7 0 0 0 . As depicted i n Fig. 4 ( b ) , the c y l i n d e r experiences a p o s i t i v e m e a n l i f t ( Q > 0 ) at s m a l l - t o intermediate-G*, suggesting t h a t t h e c y l i n d e r is pushed u p w a r d fi'om t h e w a l l . The m e a n l i f t c o e f f i c i e n t has a m a x i m u m o f Q x 0.3 at the smallest gap ratio ( G * = 0 . 1 5 ) , and t h e r e a f t e r decreases m o n o t o n i c a l l y u n t i l r e a c h i n g the a s y m p t o t i c value o f C i , = 0 a t G * > 1.

Fig. 5(a) s h o w s t h e time h i s t o r i e s o f d y n a m i c l i f t c o e f f i c i e n t ( C L ) o n t h e c y l i n d e r at d i f f e r e n t gap r a t i o s . As G * increases, t h e signal changes f r o m a c h a o t i c p a t t e r n at G * = 0.15 a n d 0.25, t o a p e r i o d i c p a t t e r n at G * > 0.4 w i t h a m u c h h i g h e r m a g n i t u d e o f fluctuation. T h e c h a o t i c p a t t e r n at s m a l l - G * is d u e t o t h e cessation o f p e r i o d i c

(4)

X.K. Wang et al / Ocean Engineering 94 (2015) 36-50 39 Present Lei etal. (1999) Roshko et al. (1975) s h e d d i n g becomes s t r o n g e r w i t h i n t h i s range (a s i m i l a r t r e n d is i n f e r r e d f r o m t h e v e l o c i t y d a t a i n W a n g a n d T a n ( 2 0 0 8 a ) ) . A t G*=0.15 or 0.25, o n t h e o t h e r h a n d , a w e a k peak is d i s c e r n i b l e a t a r e l a t i v e l y h i g h f r e q u e n c y , t h a t is, S t » 0.85, w h i c h c o r r e s p o n d s t o t h e K - H roU-ups i n shear layer i n s t a b i l i t y . R a j a g o p a l a n a n d A n t o n i a ( 2 0 0 5 ) p r o p o s e d an e m p i r i c a l r e l a t i o n s h i p b e t w e e n t h e shear layer i n s t a b i l i t y f r e q u e n c y ( f d ) a n d t h e v o r t e x s h e d d i n g f r e q u e n c y ( f y ) as a f u n c t i o n o f Re f o r a n i s o l a t e d c y l i n d e r , n a m e l y , / s i / / , / = 0 . 0 2 9 x [^g0.65_ j j ^ g p r e d i c t e d v a l u e u s i n g this e q u a t i o n f o r R e = 6 3 0 0 is

f^^/fy=8.55, w h i c h is a b o u t t w i c e t h e m e a s u r e d v a l u e o f 0.85/ 0 . 2 = 4 . 2 5 . H o w e v e r i t is noted t h a t the w o r k i n g f l u i d i n Rajagopalan and A n t o n i a ( 2 0 0 5 ) is air (vs. w a t e r i n the present study), w h i c h w o u l d result i n relatively t h i n n e r shear layers and hence h i g h e r ƒ j , , since/si is inversely p r o p o r t i o n a l t o the shear layer thickness (Gerrard, 1967). Fig. 5(b) also shows t h a t at G* = 0.4 (corresponding to onset o f periodic v o r t e x shedding), the s p e c t m m exhibits co-existence o f b o t h peaks ( S t « 0.2 and 0.85), albeit rather weak, i m p l y i n g a t r a n s i t i o n / c o m p e t i -tion b e t w e e n the t w o types o f instability ( v o n K a r m a n vs. K-H).

0.7 0.6 0,5 0.4 -I O 0.3 0.2 0,1 0.0 0.1 -0.03 — B — Present ^ ^ l e i et al. (1999) Roshko et al. (1975) 1 ' ) ' 1 1 I 1 1 ' I ' 1 . . . . W < 7^ y » T —

Ir^--/

Ir^--/

—f—C' 1 - V - C ; . (Leietat, 1999) 0.7 0.6 0.6 - 0.4 - 0,3 0,2 0.1 0.0 0,0 0.6 1.0 1.5 2.0 2.5 3.0 G*

Fig. 4. Variation of dynamic force coefficients with C for the near-wall single cylinder: (a) mean drag coefficient (Co); (b) mean lift coefficient (Cj.); and (c) RMS drag ( C d ) and lift (CÏ) coefficients. Present: Re=6300 and a=0.5D; Lei et al. (1999): R e = 1 . 3 6 x 1 0 " and 5=0.140; Roshko e t a l (1975): R e = 2 x l O " a n d « = 0 . 5 D . v o r t e x s h e d d i n g f r o m t h e c y l i n d e r (e.g.. Price e t al., 2 0 0 2 ; W a n g a n d Tan, 2 0 0 8 a ) . Also, t h e c r i t i c a l gap r a t i o (G*cr) is b e t w e e n 0.25 a n d 0.4, i n accordance w i t h t h e r e p o r t e d value o f G * c r « 0.3 i n t h e l i t e r a t u r e . T h e p e r i o d i c i t y o f l i f t signals is r e f l e c t e d i n t h e c o r r e -s p o n d i n g -spectra -s h o w n i n Fig. 5 ( b ) . For G* > 0.4, each -s p e c t r u m displays one obvious p e a k at S t « 0.2 ( s i m i l a r t o t h e case o f an i s o l a t e d c y l i n d e r ) , w i t h t h e m a g n i t u d e o f t h e peak p r o g r e s s i v e l y i n c r e a s i n g w i t h G* u n t i l G* = 0.8. This i n d i c a t e s t h a t v o r t e x

3.2. Near-wall tandem cylinders

3.2.1. Instantaneous flow patterns around the cylinders

Fig. 6 shows a representative snapshot o f t h e instantaneous v o r t i c i t y fields a r o u n d the n e a r - w a l l t a n d e m cylinders at selected gap ratios (G*=0.15, 0.4, 0.6 and 1.4) and spacing ratios ( L * = 2 , 3 and 5). It is obvious t h a t t h e flow p a t t e m s d e p e n d o n b o t h G* a n d L*. Periodic v o i t e x s h e d d i n g f r o m b o t h cylinders is suppressed w h e n G* is small. For G* = 0 . 1 5 (1^'^ r o w ) , t h e upper shear layer e m a n a t i n g f r o m the u p s t r e a m c y l i n d e r is K - H t y p e o f roU-ups ( e l o n g a t e d i n t h e streamwise d i r e c t i o n w i t h negative v o r t i c i t y ) , w h i c h pass over (or overshoot) the d o w n s t r e a m c y l i n d e r However, the l o w e r shear layer, w h i c h is evident i n the spacing b e t w e e n the cylinders, is rather w e a k i n m a g n i t u d e a n d s m a l l i n size. For G''' = 0.4 (2""^ r o w ) , b o t h shear layers are still largely i n K - H type at small spacing ratios (e.g., L * = 2 or 3). A t L * = 5 , o n tiie other hand, they begin to display as relatively large, discrete 'patches' o f v o i t i c i t y b e h i n d the d o w n s t r e a m cylinder, i n d i -cative o f the occurrence o f vortex shedding. However, n o vortex shedding is observed f r o m t h e upsb-eam cylinder: w h i l e t h e upper shear layer is s t i l l i n K - H type, t h e l o w e r shear layer e i t h e r reattaches steadily o n t h e leading surface o f the d o w n s t r e a m c y l i n d e r at L ' * = 2 and 3, or dissipates around x / D 4 at L* = 5. In a d d i t i o n , flow-induced separation is f o u n d i n t h e near w a l l region, similar t o the case o f t h e near-wall single cylinder s h o w n i n Fig. 2(b). W h e n C* increases to 0.6 (3'''' r o w ) , the w a l l effects still exist, b u t to a lesser degree. A t this gap ratio, periodic vortex shedding is always observed f r o m the d o w n -sti-eam cylinder, as w e l l as f r o m the upstream c y l i n d e r at wide-spacing ratios (e.g., L* = 5). A t G'' = 1.4 ( 4 * r o w ) , the w a l l effects become almost negligible such that t h e flow is similar to the free-standing case. Obviously, the three cases, L*=2, 3 and 5, belong t o the 'extended-body', 'reattachment and ' i m p i n g i n g ' regimes, respectively, as s h o w n i n Fig. 1. The critical spacing ratio is L*cr ~ 4.5, w h i c h is also consistent w i t h t h e reported values o f L * a - = 3 - 5 i n t h e literature.

A closer e x a m i n a t i o n o f the i n s t a n t a n e o u s v o r t i c i t y fields i n d i -cates t h a t t h e effects o f w a l l p r o x i m i t y c a n n o t s i m p l y be described as i n h i b i t i n g v o r t e x s h e d d i n g f r o m the c y l i n d e r s ; i n s t e a d , i t plays a c o m p l e x role i n a f f e c t i n g t h e shear layer d e v e l o p m e n t a n d i n t e r a c -t i o n . Take -t h e case o f L* = 2 a-t d i f f e r e n -t gap ra-tios ( l e f -t c o l u m n i n Fig. 6 ) as an e x a m p l e . A t G'* = 1.4, t h e flow is i n e x t e n d e d - b o d y r e g i m e , and t h e t w o shear layers separated f r o m t h e u p s t r e a m c y l i n d e r are k e p t n e a r l y h o r i z o n t a l l y a n d w r a p a r o u n d the d o w n -s t r e a m c y l i n d e r A t i n t e r m e d i a t e gap ratio-s (G* = 0.4 a n d 0.6), h o w e v e r , t h e l o w e r shear layer is b r o k e n i n t o t w o segments. The one i n b e t w e e n t h e t w o c y l i n d e r s deflects u p w a r d a n d reattaches o n t h e l e a d i n g surface o f t h e d o w n s t r e a m c y l i n d e r . S i m i l a r shear layer d e f l e c t i o n a n d r e a t t a c h m e n t are e v i d e n t f o r L * = 3 a t i n t e r -m e d i a t e gap ratios.

(5)

40 X.K. Wang et al. / Ocean Engineering 94 (2015) 36-50

a

0,4 0.2 0,0 0.4 0,2 0,0 0,4 0,2 0,0 c 'o g> 0.4 0,2 0,0 0,4

ro

% 0,2 0,0 0.4 0.2 O.D 0.4 0.2 0.0 : 1 1 ' 1 1 1 1 1 1 -1 ' G * = 0 . -1 5 1 . 1 . 1 . 1 G* = 0.25 : 1 . 1 , 1 . 1 . ' G* = 0.4 1 . 1 . 1 1 G* = 0.5

h

fl 1 . 1 , 1 1 q * = 0.6 1 . 1 , 1 . 1 . • G * = 0 , 8 ji J

jl

fl 1 - G * = 1 1 4 6

t

(s)

10 0.01 \-0,00 0.01 0.00 0,01

- r — ' r

G* = 0.15

1,

S l = 0 , 8 6 I I 1 — G* = 0.25 0.00 F O 001 co ^ 0,00 0,04 0,02 0.00 0.04 0.02 0.00 0.04 0,02 0,00 S t = 0 , S 5 G* = 0.4 Sl=0,85 G* = 0.5 S l = 0 , 2 G* = 0.6 G* = 0.8 S l = 0 . 2 G * = 1 0.0 0.2 0.4 0.6 S t 0.8

Fig. 5. (a) Time histories of dynamic lift coefficient (Cj.) on the near-wall single cylinder at different gap ratios; and (b) corresponding spectra based on power spectral density (PSD) function. L * = 2 L * = 3 L * = 5 Ö -0.4

(j!:mU

" öt

1.4

Q

SI

r r • \ . V '

' f l

0 . ) »

r r - I —1 — I — 1— r 1 6 x/D —I r-10 O - 7— 1 — 1 — 1— r 2 A —I r -10 O - I —1— I —1— I — I —I —t — r x/D

Fig. 6. A representative snapshot of the instantaneous normalized vorticity (lu* = wD/U) fields around the near-wall tandem cylinders at i ' = 2 , 3 and 5 and G*=0.15, 0.4, 0.6 and 1.4. Positive: solid red lines; negative: dashed blue lines. Cut-off value |<w''|,^i„ = l ; contour interval=0.5. (For interpretation ofthe references to color in this figure, the reader is referred to the web version of this article.)

(6)

X.K Wang et al / Ocean Engineering 94 (2015) 36-50 41

Based o n the PIV m e a s u r e m e n t results, a m a p o f f l o w patterns a r o u n d t h e n e a r - w a l l t a n d e m cylinders i n t h e G*-L* plane is p r o p o s e d i n Fig. 7. W i t h reference t o L*, i t can be r o u g h l y d i v i d e d i n t o t h r e e basic types o f spacing, t h a t is, close (1 < L* < 2), m o d e r a t e (2 < I * < 4 ) a n d w i d e (L* > 4 ) , w h i c h are r o u g h l y e q u i v a l e n t t o the 'extended-body', ' r e a t t a c h m e n t ' a n d ' i m p i n g i n g ' regimes, respec-tively, f o r f r e e - s t a n d i n g t a n d e m cylinders. Similarly, t h e f l o w can be b r o a d l y classified as a f u n c t i o n o f G*: ( i ) large-gap r e g i m e ( a p p r o x . > 1), t h e f l o w a n d v o r t e x s h e d d i n g characteristic are s i m i l a r t o the f r e e - s t a n d i n g case; ( i i ) i n t e r m e d i a t e - g a p r e g i m e ( a p p r o x . 0.3 < 1 ) ,

w h e r e p e r i o d i c v o r t e x s h e d d i n g occurs, b u t t h e s t r e n g t h o f v o r t e x s h e d d i n g reduces w i t h decreasing G*; a n d ( i i i ) small-gap r e g i m e (approx. G* < 0.3), w h e r e p e r i o d i c v o r t e x s h e d d i n g is c o m p l e t e l y suppressed.

3.2.2. Forces, lift spectra and Strouhal numbers on the downstream cylinder

This section presents t h e time h i s t o r i e s o f f l u c t u a t i n g l i f t o n t h e d o w n s t r e a m c y l i n d e r a n d t h e c o r r e s p o n d i n g spectra f o r d i f f e r e n t I n c r e a s i n g p i t c h ratio (L*) o Oi CQ <Q OJ Ó' C l o s e - s p a c i n g M o d e r a t e - s p a c i n g

d

-r^

y^

- ^ 0 W i d e - s p a c i n g

O

I QX).

T3

Q

S>

ozxiu a

TJ

Fig. 7. Overview of flow patterns for the near-wall two tandem cylinders as a function of both C and i * .

b 0,2 0.0 -0,2 0.2 0,0 -0,2 ^ 0,2

S

0,0

lg

-0,2

8

0.2 ^ 0-0 g -0.2 § 0.2 • § 0,0 -0,2 0,2 0, -0,2 0.2 0.0 -0.2 -I 1 I -L* = 4 L * = 5 L* = 6

0 ^ii-t'Hf^^Af^]^^^^

'4

L* = 7 4 6

t(s)

1 0 0.01

I-0.00 0.01 0.00 0,01 0,00 0.01 0.00 0.01 0.00 0,01 0,00 0.01 0.00 ' 1 1 1 ' 1 ' 1 ' L* = •] 5 SI = 0.86 1 , 1 . 1 , f . L'* ~ 2 st = 0,86 " . 1 . 1 . 1 . 1 . L* = 3 I . I . I , Sl = 0,84 1 L* = 4 1 , 1 . 1 . SI = 0,84 1 | _ i _ g SI = 0.85 1 , 1 . 1 . 1 . St = 0.19 L ' = 6 " , 1 . 1 . 1 , 81 = 0,85 1 i si=o.i8 L* - 7 1 , 1 , c . st = 0,84 1 0.0 0,2 0,4 ' 0,6

St

1,0

(7)

4 2 X.K. Wang et al. / Ocean Engineering 94 (2015) 36-50

c o m b i n a t i o n s t o L* a n d G*. The results f o r L* = 1.5-7 at G*=0.15 are s h o w n i n Fig. 8. I t is clear t h a t t h e f l o w is i n t h e v o r t e x - s h e d d i n g s u p p r e s s i o n r e g i m e . A c c o r d i n g l y , t h e l i f t s i g n a l is i r r e g u l a r f o r a l l

s p a c i n g ratios c o n s i d e r e d . S i m i l a r t o t h e case o f t h e n e a r - w a l l single c y l i n d e r (Fig. 5), each s p e c t r u m displays a p e a k at S t « 0.85 associated w i t h K H t y p e o f roUups. I t is n o t e d t h a t f o r w i d e -0.5 0.0 -0.5 0.5 0.0 -0.5 0.5 i 0,0 O

%

O O ï ë 0,0 I I I _ l . 1 . L - 0 . 5 0 , 5 -0,5 Ul

c

ro 0,5

%

LL. 0,0 -0.5 0,5 0,0 -0.5 0,5 0,0 -0,5 L* = 2 L* = 3 L* = 4 L* = 5 -1 I i L L* = 6 I , I u L* = 7 4 6

t(S)

1 0 0,02 0.00 | i ^ - ^ v - w A v ^ ^ v > y ^ r ~ 0,02 0,00 0,02 0,00 Q 0,02 CO 0,00 0,02 L* = 2 st = 0.84 0.00 1 ' r L * = 1.5 st = 0,8S L* = 3 St=0,2

ik

L* = 4 -L. StH0,18 O.OO 0.02

-0.00 r-^"",'

0.02 L* = 5 L* = 6

J0\

L* = 7 0.0 0 . 2 0,4 0,6

St

St = 0,B4 St = 0,85 Sl = 0,83 ...^;^V^^A,v.... Sl = 0,83 81 = 0,83 0 . 8 1.0

Fig. 9. (a) Time liistories of fluctuating lift coefflcient; and (b) corresponding spectra on the downstream cylinder for different spacing ratios at G'=0.4.

c

0

Ü

8

Ë CD C

ro

ë

0.5 0.0 -0.5 0.5 0.0 -0.5 0.5 0,0 -0,5 0.5 0.0 -0.5 0,5 0,0 -0.5 0,5 0,0 -0,5 0,5 0,0 -0,5 ' L * = 1 . 5 ' L* = 2 L*.= 3 J . L L* = 4 L* = 6 L* = 7 0,04 0,02 0,00 0,04 0.02 0,00 0,02 0,00 0,04 W 0.02 0,00 0,05 0,00 0,05 0,00 0.05 10 L* = 3 0,00 - i 1 r L ' = 1,5 L* = 2 L* = 4 St = (),19 L* = 5 L* = 6 L* = 7 0.0 0.2

t ( s )

0.4 0.6

St

0,8 1,0

(8)

X.K. Wang et al. / Ocean Engineering 94 (2015) 36-50 43

spacing c o n f i g u r a t i o n (L* > 4 ) , t h e r e is an a d d i t i o n a l pealc a r o u n d S t » 0 . 1 8 ( c o r r e s p o n d i n g t o tire large-scale v o n K a r m a n v o r t e x s h e d d i n g ) b u t i t is r a t h e r b r o a d - b a n d e d .

For G * = 0 . 4 (Fig. 9(a)), t h e signal g r a d u a l l y changes f r o m a chaotic p a t t e r n at L* = 1.5 a n d 2, t o a m o r e p e r i o d i c p a t t e r n a t I * >: 4. The a m p l i t u d e o f f l u c t u a t i o n increases s h a r p l y w i t h iL* f r o m close- t o m o d e r a t e - I * ( L * < 4 ) . As s h o w n i n Fig. 9 ( b ) , each spe-c t r u m a l w a y s e x h i b i t s a p e a k at St as 0 . 8 3 - 0 . 8 6 assospe-ciated w i t h t h e K-H i n s t a b i l i t y , i m p l y i n g t h a t t h e w a l l effects are s t i l l s i g n i f i c a n t . I t s h o u l d be n o t e d t h a t f r o m L * = 3 o n w a r d , a n a d d i t i o n a l p e a k at S t a : 0.18 appears as w e l l . T h e d o u b l e - p e a k character i n d i c a t e s t h e co-existence o f t w o d i f f e r e n t f l u i d d y n a m i c processes, as c o u l d be a p p r e c i a t e d f r o m Fig. 6. Located i n t h e lee o f t h e u p s t r e a m cylinder, t h e d o w n s t r e a m c y l i n d e r is s u b j e c t e d t o shear l a y e r r e a t t a c h m e n t o n its surface. A t C * = 0 . 4 , t h e shear layers are basically i n K - H t y p e o f roU-ups. H o w e v e r , w h e n L* is large e n o u g h (e.g., I * = 5), discrete 'patches' o f v o r t i c i t y are f o r m e d i n t h e w a k e of t h e d o w n s t r e a m c y l i n d e r , i n d i c a t i v e o f occurrence o f v o r t e x s h e d d i n g a t r e l a t i v e l y l o w f r e q u e n c y . Fig. 9 ( b ) s h o w s t h a t i n t h e case o f L * = 3 , t h e p e a k at St a; 0.19 is r a t h e r b r o a d - b a n d e d a n d s m a l l i n a m p l i t u d e ; w i t h f u r t h e r increase i n L*, i t becomes m o r e d i s t i n c t , suggesting t h a t v o r t e x s h e d d i n g becomes m o r e r e g u l a r and stronger.

The r e s u l t s f o r G * = 0 . 6 are s h o w n i n Fig. 10. I n t h i s case, t h e l i f t signal becomes s i g n i f i c a n t l y m o r e p e r i o d i c t h a n t h a t o f G ' ' = 0 . 4 at t h e same spacing r a t i o . O n t h e o t h e r h a n d , t h e peak f o r t h e h i g h -f r e q u e n c y K - H r o l l - u p s becomes n e a r l y i n v i s i b l e as a t i n y h u m p , i n d i c a t i n g t h a t the w a l l e f f e c t s reduce w i t h i n c r e a s i n g G*. A l l t h e spectra except f o r those a t L*=3 a n d 4 d i s p l a y a d o m i n a n t f r e q u e n c y o f S t = 0 . 1 8 0 . 2 c o r r e s p o n d i n g t o p e r i o d i c v o r t e x s h e d d i n g . A t L * = 3 and 4 , h o w e v e r , t h e spectral peak is r a t h e r b r o a d -banded, suggestive o f w e a k e n e d v o r t e x s h e d d i n g a c t i v i t y .

A t G* > 1, t h e w a l l effects b e c o m e n e a r l y n e g l i g i b l e , see Fig. 11 f o r G* = 1.4. The h i g h - f r e q u e n c y c o m p o n e n t t h a t m a y o t h e r w i s e

e x i s t at s m a l l - a n d intermediate-G"^ disappears c o m p l e t e l y , so each s p e c t r u m is characterized b y a w e l l d e f i n e d f r e q u e n c y at S t = 0 . 1 5 0.19. Based o n t h e p r o p o s e d c l a s s i f i c a t i o n , t h e y b e l o n g to e x t e -n d e d - b o d y r e g i m e (L* = 1.5 a -n d 2 ) , r e a t t a c h m e -n t r e g i m e (L*=3 a n d 4), a n d i m p i n g i n g r e g i m e (I,* = 5 , 6 a n d 7 ) , respectively. Several f e a t u r e s can be o b s e r v e d . Firstly, i n e i t h e r e x t e n d e d - b o d y o r i m p i n g i n g r e g i m e , t h e p e a k is w e l l - d e f i n e d , w h i l e i n r e a t t a c h m e n t r e g i m e ( I * = 3 a n d 4 ) i t is s o m e w h a t b r o a d - b a n d e d . Secondly, t h e p e r i o d i c i t y o f l i f t signal does n o t v a r y m o n o t o n i c a l l y w i t h L*; instead, i t first achieves a m i n i m u m at L ' * = 3 ( o n s e t o f r e a t t a c h -m e n t r e g i -m e ) a n d t h e n a -m a x i -m u -m at L'* = 5 ( o n s e t o f i -m p i n g i n g 0.24 w 0.22 -] 0.20 0.18 0.15 0.14 - G * = 1.4 - G * = 2

- Free-standing (Xu and Zhou, 2004) -Free-standing (igarashi, 1981)

— I 1 1 —

12 14 16

Fig. 12. Variation of Strouhal number (St) with V at large gap ratios, together with published data on two tandem cylinders under free-standing conditions.

Ü

8

cn g ro =i o 0.5 0.0 -0.5 0,5 0.0 -0,5 0,5 0,0 -0.5 0.5 0.0 -0.5 0.5 0.0 -0.5 0.5 0.0 -0.5 0.5 0.0 -0.5 : ' ' ' L* = 1.5' ' ' : 1 . 1 , 1 , 1 ,

-L -L* =

2 : f . 1 : L* =

c

I . l , 1

Miliiii

- 1 ' , n 1 1 1 1 .' p ' 11 ' 1 °

Ï , ' '

1 ' 1

1

ii | f i |

M

1 1

imi4

i

4 6

t

(s)

10 0.1 0.0 0,1 0.0 0.1 0.0 Q 0.1 CL 0.0 0.2 0.1 0.0 0.2 0.1 0,0 0.2 0,1 0,0 0,0 S I = 0,186 SI = 0,18 - A y St = 0.16

4 , *

st=,ö,1 0,2 L * = 1,5

L* =

2

L* =

3 L* = 4 L* = 5

L* =

6 L * = 7 0.4 0,6

St

0,8 1.0

(9)

44 X.K. Wang et al. / Ocean Engineering 94 (2015) 36-50

r e g i m e ) , as i n d i c a t e d b y t h e a m p l i t u d e o f l i f t f l u c t u a t i o n o r t h e m a g n i t u d e o f spectral peak. These observations i n d i c a t e t h a t t h e d o w n s t r e a m c y l i n d e r is i n f l u e n c e d b y t h e a d v e c t i o n a n d i m p i n g e -m e n t o f v o r t i c e s shed f r o -m t h e u p s t r e a -m c y l i n d e r . A t L* > 5, t h e peak c o n t i n u e s to decrease i n m a g n i t u d e w i t h i n c r e a s i n g L*, suggesting t h a t t h e i n t e r f e r e n c e b e t w e e n t h e t w o c y l i n d e r s is r e d u c i n g .

Fig. 11(b) s h o w s t h a t t h e values o f St f o r t h e spectral p e a k i n i m p i n g i n g r e g i m e (L* > 5) m a i n t a i n a p p r o x i m a t e l y c o n s t a n t . For L * < 4 , o n t h e o t h e r h a n d , St first d r o p s w i t h L* f r o m 0.185 at L * = 1 . 5 t o a m i n i m u m o f 0.15 at L * = 3 , a n d t h e n recovers t o 0.17 at L * = 4 . The i n i t i a l d e c l i n e o f St w i t h L* at s m a l l - t o m o d e r a t e - L * seems t o be a n i n h e r e n t f e a t u r e w h e n t h e w a l l p r o x i m i t y effects are n e g l i g i b l e , since a s i m i l a r t r e n d is f o u n d f o r G* = 2 as w e l l as f o r f r e e - s t a n d i n g t a n d e m c y l i n d e r s p u b l i s h e d i n t h e l i t e r a t u r e (e.g..

Igarashi 1 9 8 1 ; X u a n d Z h o u , 2 0 0 4 ) , as s h o w n i n Fig. 12. This is l i k e l y a t t r i b u t e d t o t h e fact t h a t a n increase i n L* a l l o w s t h e shear layers e m a n a t e d f r o m t h e u p s t r e a m c y l i n d e r to g r o w t h i c k e r u p o n r e a c h i n g t h e surface o f t h e d o w n s t r e a m c y l i n d e r . A c c o r d i n g l y , St decreases p r o g r e s s i v e l y w i t h £*, because a t h i c k e r shear layer leads t o a l o w e r v o r t e x s h e d d i n g f r e q u e n c y f r o m a c y l i n d e r (Roshko, 1954). H o w e v e r , t h i s t r e n d c a n n o t be sustained w i t h f u r t h e r i n -crease i n L* since t h e flow w o u l d change i n t o i m p i n g i n g r e g i m e at L * c r « 4, f o r w h i c h t h e shear layers e m a n a t e d f r o m t h e u p s t r e a m c y l i n d e r w i l l r o l l u p i n t o discrete v o r t i c e s i n b e t w e e n t h e t w o c y l i n d e r s a n d are n o l o n g e r d i r e c t l y c o n n e c t e d w i t h t h e v o r t e x f o r m a t i o n f r o m t h e d o w n s t r e a m c y l i n d e r . The f o r c e data i n d i c a t e t h a t t h e w a l l p r o x i m i t y t e n d s t o i n h i b i t p e r i o d i c v o r t e x s h e d d i n g f r o m t h e c y l i n d e r s . F u r t h e r m o r e , spectral analysis w a s a p p l i e d t o t h e v e l o c i t y data to i l l u s t r a t e t h e p e r i o d i c 0 . 0 4 0 . 0 0 0 . 0 0 0.05 Q CO 0 . 0 0 ° - 0 . 1 0 0 . 1 0 0 . 0 5 0 . 0 0 0 . 1 0 0.05 0 . 0 0 0 . 0 2 h 0 . 0 2 \ -

G* = 0.4

k

c

0.05 \

-G* = 0.15

Upper

Lower

G* = 0,6

^ e

G* = 0.8

G*' = 1.4

. f

G* = 2

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5

St

0 . 2 0 0 . 2 5

Fig. 13. Spectra of transverse velocity (v) in between the two cylinders for the case of L * = 5 at: (a) G*=0.15, (b) 0.4, (c) 0.6, (d) 0.8, (e) 1.4 and (f) 2. The velocity signals are retrieved from: (x,y)=(2.5D, - 0 . 5 D ) , i.e., in the lower shear layer; and (x,y)=(2.5D,0.5D), i.e., in the upper shear layer.

(10)

X.K. Wang et al. / Ocean Engineering 94 (2015) 36-50 4 5

n a t u r e o f t h e f l o w up to ƒ = 7 , 5 Hz (i.e., half the PIV s a m p l i n g rate o f 15 Hz), or St Kl 0.27. Fig. 13 shows the velocity spertra between the t w o cylinders f o r the case o f L * = 5 at difFerent gap ratios. The velocity signals are rehieved f r o m ( x , y ) = ( 2 . 5 D , - 0 . 5 D ) a n d (2.5D, - 0 . 5 D ) , w h i c h are respectively located i n the l o w e r and upper shear layers. A t G*=0.15, there is no peak over the measurement range, whereas at G * > 0 . 4 , each spech'um begins to exhibit a d o m i n a n t peak at St=0.170.2 ( w h i c h is i n accordance w i t l i the l o w f r e q u e n c y c o m p o -n e -n t i -n l i f t spectra). This c o -n f i r m s the validity o f usi-ng l i f t sig-nal as a-n indicator o f vortex shedding process. The peak m a g n i t u d e increases w i t h G* particularly over the range o f G * < 0 . 8 , suggesting t h a t the effects o f w a l l p r o x i m i t y are decreasing a n d the strength o f v o r t e x shedding becomes sti'onger (similar conclusion is i n f e r r e d f r o m the l i f t specti-a). It is n o t e w o r t h y that f o r a given G*, the peak i n the upper shear layer (denoted b y red line) is generally higher i n m a g n i t u d e t h a n that i n the l o w e r shear layer (denoted b y black line) f o r G* < 1.4, indicating flow a s y m m e t r y about the w a k e centeriine. A t large enou gh gap ratios (e.g., G * = 2 ) , the t w o specfi-a almost coincide w i t h each o t h e r

Fig. 14 presents t h e v a r i a t i o n s o f t h e m e a n d r a g ( C D ) a n d l i f t ( C L ) , RMS d r a g ( C ó ) a n d l i f t {Q) c o e f f l c i e n t s o n t h e d o w n s t r e a m c y l i n d e r as a f u n c t i o n o f L* f o r d i f f e r e n t gap ratios, t o g e t h e r w i t h t h e c o r r e s p o n d i n g values o f t h e isolated single c y l i n d e r f o r c o m -p a r i s o n . Located i n t h e lee o f t h e u -p s t r e a m c y l i n d e r , t h e m e a n d r a g

c o e f f i c i e n t o n t h e d o w n s t r e a m c y l i n d e r (Co) r e m a i n s c o n s i s t e n t l y l o w e r t h a n t h a t o f t h e i s o l a t e d c y l i n d e r As s h o w n i n Fig. 14(a), C D increases m o n o t o n i c a l l y w i t h L* f o r a l l gap ratios considered, b u t

2.8 2.4 2.0 1.6 1.2 0.4 O No vortex shedding • Vortex shedding o • o o o o o o

Region of broad-banded peiitcs in lift spectra

Fig.

15.

Critical gap and spacing ratios (C*cr and l * c r ) for onset of vortex shedding from the dovi^nstream cylinder.

ICJ 1.2 1.0 0.6 0.2 4 0.0 4 -0.2 - • - G ' = 0.15 —c— 0.4 - A - - 0.6 - V — 0.8 1.4 2 i.ïiflilifil '•mfilf f v l i i i t k i -I U 0.30 0.25 0.20 0,10 0,05 0.00 0.05

Fig. 14. Variation of dynamic force coefflcients on the downstream cylinder with L * at different gap ratios: (a) mean drag coefficient CCD); (b) mean lift coefflcient ( C J ; (c) R M S drag coefficient (Có); and (d) R M S lift coefficient (Q).

(11)

46 X.K Wans a/. / Ocean Engineenng 94 (2015) 36-50

at d i f f e r e n t rates (as r e f l e c t e d b y slope o f t h e curves). A t G*=0.15, CD is a b o u t 0.1 a n d increases s l i g h t l y w i t h L*. As C * increases t o 2, t h e l o w e n d o f each c u r v e ( a t L* = 1.5) decreases u n t i l r e a c h i n g a m i n i m u m o f ( C D ) n , i n = - 0 . 1 3 , w h e r e a s t h e h i g h e n d (at L* = 7) c o n t i n u e s t o rise u p t o (CD)max=0-84. T h e r e f o r e , w h e n G* is r e l a t i v e l y l a r g e (G* > 0.8), t h e d o w n s t r e a m c y l i n d e r experiences a d r a g i n v e r s e ( f r o m n e g a t i v e t o p o s i t i v e ) w i t h i n t h e range o f 2 ^ L * < 3 . T h i s is a w e l l - k n o w n p h e n o m e n o n f o r f r e e - s t a n d i n g t a n d e m c y l i n d e r s , f o r instance, S u m n e r e t a l . ( 2 0 0 5 ) r e p o r t e d a m i n i m u m o f (CD)n,in= - 0 . 5 5 at L * = 1 . 1 2 5 . T h e n e g a t i v e ( a t t r a c t i v e ) d r a g a t small-L* is d u e t o the f a c t t h a t t h e d o w n s t r e a m c y l i n d e r is c o m p l e t e l y e n w r a p p e d b y t h e shear layers f r o m t h e u p s t r e a m c y l i n d e r , a n d h e n c e experiences a n e g a t i v e pressure. T h e m e a n l i f t c o e f f i c i e n t (CL), as s h o w n i n Fig. 14(b), o n t h e o t h e r h a n d , varies s i g n i f i c a n t l y w i t h b o t h G* a n d L*. S i m i l a r t o t h e n e a r - w a l l single c y l i n d e r , t h e d o w n s t r e a m c y l i n d e r g e n e r a l l y experiences a p o s i t i v e 1.4 1.2 1.0 I U 0.4

0.2 - Near-wall single cylinder (Present)

-Near-wall single cylinder (Roshko etal., 1975) - Downstream cylinder (L* = 7) I'o 1.0 0,8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0,6 -0.8 0,5 1.0 1.5 2.0 2.5 3.0 Present (G* = 3)

Harimi and Sagfiafian (2012) - V - Z d r a v k o v i c h and Pridden (1977)

— \ ' 1 1 1 ' 1 ' r

Fig. 16. Variation ofthe mean drag coefficient (Co) on the dowfnstream cylinder with: (a) G* at large spacing ratio ( L ' = 7 ) , and comparison with published data (Roshko et al., 1975) and the present measurement data on a near-wall single cylinder; and (b) V at large spacing ratio (G*=3), and comparison with published data under free-standmg conditions (Zdravkovich and Pridden, 1977; Harimi and Saghafian, 2012).

L * = 2 L * = 3 L * = 5

m.DIU

(12)

X.K. Wang et al. / Ocean Engineering 94 (2015) 36-50 47

m e a n l i f t ( Q > 0 ) , b u t i t is c o n s i d e r a b l y s m a l l e r i n a m p l i t u d e (CL i « 0 . 0 5 - 0 , 2 ) . The s i g n i f i c a n t v a r i a t i o n o f CL w i t h G* a n d L* is p r o b a b l y d u e to t h e f o l l o w i n g t w o reasons. The f i r s t is t h e possible m i s a l i g n m e n t o f t h e models, since i t is e x t r e m e l y d i f f i c u l t , i f n o t i m p o s s i b l e , t o achieve a p e r f e c t a l i g n m e n t e x p e r i m e n t a l l y . Sec-ondly, t h e f l o w i n t h e gap m a y keep steadily r e a t t a c h e d o n t h e surface o f t h e d o w n s t r e a m c y l i n d e r , b u t m a y also s p o n t a n e o u s l y f l i p - f l o p v e r t i c a l l y so t h a t t h e r e a t t a c h m e n t p o i n t varies i r r e g u l a r l y over t i m e , w h i c h is i n a n a l o g y t o t h e f l o w b e t w e e n t w o s i d e b y -side c y l i n d e r s at s m a l l gap r a t i o s ( S u m n e r et al., 1999). Figs. 14 (c) a n d 14(d) s h o w t h a t t h e v a r i a t i o n t r e n d s o f Cb a n d Cl w i t h I * are s i m i l a r , a l t h o u g h t h e l a t t e r has a m u c h h i g h e r ( 3 ~ 4 t i m e s ) m a g n i t u d e . I n g e n e r a l , CÓ a n d Cl d i s p l a y d i f f e r e n t v a r i a t i o n t r e n d s w i t h respect t o L* d e p e n d i n g o n t h e v a l u e o f G*, w h i c h is c o n s i s t e n t w i t h t h e PlV data. A t G*=0.15 w h e n v o r t e x s h e d d i n g is suppressed, Cl a n d Cl increase s t e a d i l y w i t h L* over t h e m e a s u r e m e n t range. I n i n t e r m e d i a t e - g a p r e g i m e ( G * = 0 . 4 , 0.6 a n d 0.8), t h e y increase r a p i d l y w i t h L* u n t i l r e a c h i n g a m a x i m u m at L * = 5 (i.e., o n s e t o f i m p i n g i n g r e g i m e ) . A s i m i l a r

c o n v e x shape is f o u n d f o r G * = 1 . 4 a n d 2, w h e r e t h e t w o curves a l m o s t coincide, i m p l y i n g d i m i n i s h i n g e f f e c t s o f w a l l p r o x i m i t y .

D e p e n d i n g o n the values o f G* a n d L*, t h e shear layers emanated f r o m t h e u p s t r e a m c y l i n d e r m a y overshoot, reattach or i m p i n g e u p o n t h e d o w n s t r e a m c y l i n d e r and t h e n separate, perhaps j o i n i n g those developed o n the d o w n s t r e a m c y l i n d e r i t s e l f t o f o i m vortices a r o u n d the d o w n s t r e a m c y l i n d e r This results i n d i f f e r e n t behavi-ors o f f l u i d d y n a m i c forces o n the d o w n s t r e a m c y l i n d e r Here, a n a t t e m p t is made to i d e n t i f y the critical gap (G*cr) and spacing ( ! * „ ) ratios f o r vortex shedding based o n t h e p e r i o d i c i t y o f f l u c t u a t i n g l i f t signals and the i n t e n s i t y o f t h e peak i n l i f t spectra as s h o w n i n Figs. 8 - 1 1 ( s i m i l a r observation can be o b t a i n e d b y analysis o f t h e v e l o c i t y signal as s h o w n i n Fig. 13). The m a p f o r absence/presence o f v o r t e x shedding from the d o w n s t r e a m c y l i n d e r i n G*-L* plane is presented i n Fig. 15. The v o r t e x - s h e d d i n g suppression r e g i m e is m a i n l y located at t h e l o w e r - l e f t corner (i.e., small-G* a n d small-L*): at t h e smallest gap ratio (G* = 0.15), i t extends t h e w h o l e L* range; as G* increases, i t gradually shrinks i n w i d t h u n t i l c o m p l e t e l y disap-pears a t G* = 0.8. I n a d d i t i o n , the values o f Cl can be used to

B-B A - A S B-B G * = 0.15 0 1 ÜIU G " = 0.4 j 0 1 ÜIU G* = 0.6

F

ul

0 1 TilU G * = 0.8

.2)

0 1 ÜIU G* = 1.4 / 5 7 /.V 0 ^ 1 ÏÏ/U

Fig. 18. Profiles of the normalized streamwise mean velocity (u/U) along two vertical lines (i.e., A-A and B-B, located behind the upstream cylinder and the downstream cylinder, respectively) for different gap and spacing ratios.

(13)

48 X.K. Wang et al / Ocean Engineering 94 (2015) 3S-50

qualitatively d e t e r m i n e t h e strength o f v o r t e x shedding. I t should be n o t e d t h a t measurements with a higher resolution i n G*-L* plane are desirable i n o r d e r t o m o r e accurately d e f i n e t h e boundaries separat-i n g t h e d separat-i f f e r e n t f l o w regseparat-imes. Furthermore, as s h o w n separat-i n Fseparat-igs. 9 - 1 1 , due to enhanced activity o f shear layer reattachment f o r L * = 3 a n d 4 i n intermediate-G* regime, the spectral peak is broad-banded i n these cases, w h i c h has been h i g h l i g h t e d by t h e shaded r e g i o n i n Fig. 15.

_ As s h o w n i n Fig. 16(a), v a r i a t i o n s o f t h e m e a n d r a g c o e f f i c i e n t ( C D ) o n t h e d o w n s t r e a m c y l i n d e r w i t h G* at t h e largest spacing r a t i o ( L * = 7 ) have b e e n c o m p a r e d w i t h the p u b l i s h e d data (Roshko e t al., 1975) a n d t h e p r e s e n t m e a s u r e m e n t o n a n e a r - w a l l single c y l i n d e r . S i m i l a r t o t h e case o f t h e single c y l i n d e r , C D i n i t i a l l y experiences a sharp increase w i t h G* b e f o r e l e v e l i n g o f f at large e n o u g h gap r a t i o s (G* s 1). H o w e v e r , a t t h e same G* i t is a p p r e -c i a b l y l o w e r t h a n t h a t o f t h e single -c y l i n d e r ( p a r t i -c u l a r w h e n G* is s m a l l ) , d u e t o t h e effects f r o m t h e u p s t r e a m c y l i n d e r . This suggests t h a t t h e spacing r a t i o o f L * = 7 is s t i l l n o t s u f f i c i e n t l y large f o r t h e t w o t a n d e m c y l i n d e r s t o be c o n s i d e r e d i n d e p e n d e n t l y . O n t h e o t h e r h a n d , as s h o w n i n Fig. 16(b), t h e v a r i a t i o n o f C D w i t h L* a t G * = 3 agrees w e l l w i t h t h e p u b l i s h e d data u n d e r f r e e - s t a n d i n g c o n d i t i o n s ( Z d r a v k o v i c h a n d P r i d d e n , 1977; H a r i m i a n d Saghafian, 2 0 1 2 ) , c o n f i r m i n g t h a t t h e gap r a t i o o f G * = 3 is large e n o u g h f o r n e g l e c t i n g t h e w a l l effects.

3.2.3. Ensemble-averaged flow pattems around the cylinders As s h o w n above, t h e v o r t e x s h e d d i n g characteristics f r o m t h e c y l i n d e r s d e p e n d o n b o t h G* a n d L*. This leads t o c o r r e s p o n d i n g v a r i a t i o n i n t h e statistical q u a n t i t i e s o f t h e f l o w , such as d i s t r i b u -tions o f m e a n v e l o c i t y vectors a n d Reynolds shear stresses.

Consistent w i t h t h e instantaneous f l o w s t r u c t u r e , t h e m e a n v e l o c i t y v e c t o r f i e l d (Fig. 17) g r a d u a l l y changes f r o m a s y m m e t r i c a l p a t t e r n s a b o u t t h e w a k e c e n t e r i i n e at s m a l l - a n d i n t e r m e d i a t e - g a p

ratios (G* < 1), t o s y m m e t r i c a l p a t t e r n s at large gap ratios (G* > 1). For a g i v e n L*, t h e r e c i r c u l a t i o n l e n g t h , d e f i n e d as t h e distance f r o m t h e c y l i n d e r base t o t h e zero m e a n s t r e a m w i s e v e l o c i t y p o i n t a l o n g t h e w a k e c e n t e r i i n e , increases w i t h G*. M e a n w h i l e , t h e gap flow is d e f l e c t e d u p w a r d i n y - d i r e c t i o n a n d r e a t t a c h o n t h e l e a d i n g face o f the d o w n s t r e a m c y l i n d e r , m o s t n o t a b l y i n t h e case o f i n t e r m e d i a t e - G * a n d m o d e r a t e - L * (e.g., G * = 0.6 a n d L * = 3 ) . This corresponds t o t h e r e g i o n o f b r o a d - b a n d e d peaks i n t h e l i f t spectra, as s h o w n i n Fig. 15.

Profiles o f t h e n o r m a l i z e d s t r e a m w i s e m e a n v e l o c i t y {u/U) a l o n g t w o v e r t i c a l lines l o c a t e d at 0.5D a f t e r t h e t r a i l i n g edges o f t h e t w o c y l i n d e r s (i.e., A - A a n d B-B) f o r d i f f e r e n t gap a n d spacing ratios are p r o v i d e d i n Fig. 18. One o b v i o u s f e a t u r e is t h a t f o r a fixed G*, t h e p r o f i l e s at d i f f e r e n t L* at A - A a l m o s t collapse, w h e r e a s t h o s e at B-B deviate f r o m each o t h e r m o r e e v i d e n t l y . T h i s indicates t h a t t h e presence o f t h e d o w n s t r e a m c y l i n d e r m a i n l y affects t h e flow b e h i n d i t . The presence o f t h e c y l i n d e r s results i n t h e v e l o c i t y d e f e c t b e h i n d each c y l i n d e r , so t h a t t h e v e l o c i t y p r o f i l e s e x h i b i t as a n "S"-shape. W h e n G* < G*cr (e.g., G* = 0.15), h o w e v e r , t h e l o w e r h a l f o f the "S"-shape is n o t o b v i o u s o r even c o m p l e t e l y disappears due t o the r a t h e r w e a k g a p flow.

F u r t h e r m o r e , t h e shear layer d e v e l o p m e n t s can be a p p r e c i a t e d f r o m the c o n t o u r s o f t h e n o r m a l i z e d Reynolds shear stress ( ï ï V / L f ^ ) i n Fig. 19. A t s m a l l - o r i n t e r m e d i a t e - G * , t h e u p p e r shear layer is b o t h s t r o n g e r i n m a g n i t u d e a n d l a r g e r i n size t h a n t h e l o w e r one. For a g i v e n L*, as G* increases f r o m 0.15 t o 1.4, t h e d i s t r i b u t i o n s o f W/U^ g r a d u a l l y b e c o m e m o r e s y m m e t r i c a b o u t t h e w a k e c e n t e r i i n e ; m e a n w h i l e , regions o f s i g n i f i c a n t uY/U^ c o n t r a c t i n t h e s t r e a m w i s e d i r e c t j o n ( t o s m a l l e r x ) , t o g e t h e r w i t h e l e v a t e d level ( o r m a g n i t u d e ) o f u'v'/U^.

S i m i l a r to t h e flow c l a s s i f i c a t i o n based o n t h e i n s t a n t a n e o u s v o r t i c i t y fields, t h e d i s t r i b u t i o n s o f uV/U^ can be d i v i d e d i n t o t h r e e d i f f e r e n t p a t t e r n s - P a t t e r n 1 : regions o f s i g n i f i c a n t u'v'/U^ are f o u n d i n t h e w a k e o f t h e d o w n s t r e a m c y l i n d e r o n l y (e.g., f o r a l l L * = 2 L * = 5

U Ö

O O

O

0.4

O O

O

O

•O

0,6

O

O - O

tm

O

1.4

o:

O

O

I—I—I—I—r- - T —I— r -4 X/D — 1— I —I -2

Fig. 19. Contours ofthe normalized Reynolds shear stress (u'v'/ü^) for l ' = 2 , 3 and 5 and G*=0.15, 0.4,0.6 and 1.4. Positive: solid red lines; negative; dashed blue lines. Cut-off value luV/U^I =0.01; contour interval=0.005 (For interpretation o f t h e references to color in this figure, the reader is referred to the web version of this article.).

Cytaty

Powiązane dokumenty

Aktürk, Gul, &#34;The Rural Landscape as Heritage in Turkey Under Changing Climate // Le Paysage Rural Turque, un Patrimoine Soumis au Changement Climatique&#34; (2019). Rural

Christopher Knill (1995) zauważa, że dotyk jest pierwszym doznaniem w ludzkim życiu. Noworodki doświadczają otaczającego ich świata i komunikują się z opiekunem

Ponieważ autor jest historykiem zajmującym się dzie- jami obozu narodowego podczas wojny (wymieńmy jego obszerną monografi ę Polityka i walka. 615),.. większość haseł

Nie ten u mnie jest wielkim, który w dobrym bycie Bardziej myślał o własnym, niż kraju zaszczycie, A kryjąc popod maską dobro swoich braci, Coraz w now o

Moreover, by tuning the organic linker (introducing additional substituents, using mixed linkers 19 or even capping additional metal ions), the oxidative power

Chciałoby się dopowiedzieć, że „kto nie zaznał goryczy…”, a raczej błazenady, kto nie uczest- niczył w tworzeniu świata na opak lub gardził jego regułami, ten

The analysis starts with an estimation of the hydraulic conductivity in the field, which is the distribution of hydraulic conductivity characterised by its mean, stan- dard

W każdym człowieku jest jakaś strona jego osobowości, która może stać się podstawą obrony i której ujawnienie, uw ypuklenie ma w pływ na ocenę czynu i