• Nie Znaleziono Wyników

The wave field scattered by a vertical cylinder in a narrow wave tank

N/A
N/A
Protected

Academic year: 2021

Share "The wave field scattered by a vertical cylinder in a narrow wave tank"

Copied!
13
0
0

Pełen tekst

(1)

The wave field scattered by a vertical cylinder in a

narrow wave tank

p. Mclver

Department of Mathematical Sciences, Loughborough Umversity of Technology, Loughborough, Leicestershire, UK, LEll 3TU

(Received 5 March 1992; accepted 9 October 1992)

When a plane wave is incident on a fixed vertical cylinder standing in a narrow wave tank, the scattered wave field will be influenced by reflections f r o m the side walls. This situation is investigated using an approximate solution for scattering by a cyhnder of arbitrary cross-section derived under the fundamental assumptions that the cylinder diameter is much less than the tank width and the wavelength. The solution is used to examine i n detail the wave field around the cylinder and to improve understanding of many of the tank-confinement eff'ects observed i n other work. Particular attention is paid to the hydrodynamic forces and pressures on the cylinder surface and situations where the tank walls may have a particularly significant effect are highUghted.

1 I N T R O D U C T I O N

W h e n c a r r y i n g o u t physical m o d e l tests i n a n a r r o w wave t a n k i t is i m p o r t a n t t o be able t o assess the effects o f wave reflections f r o m the t a n k walls. .To this e n d , a n u m b e r o f authors'"^ have given theoretical descriptions o f the scattering a n d r a d i a t i o n o f water waves b y a v e r t i c a l , c i r c u l a r c y l i n d e r i n a n a r r o w wave t a n k . One o f the m o s t notable features o f a l l these results is t h a t m o s t h y d r o d y n a m i c quantities, w h e n considered as a f u n c t i o n o f f r e q u e n c y , display resonant 'spikes' c o r r e s p o n d i n g t o cross-tank s t a n d i n g waves i n the e m p t y t a n k . F o r a t a n k o f w i d t h 2b a n d d e p t h /?, standing waves m a y occur at r a d i a n frequencies w = (g/ctanh/cA)'/^ where, f o r waves a n t i s y m m e t r i c a b o u t the t a n k centre-plane, k = (« — l / 2 ) 7 r / è , a n d f o r symmetric waves, k = nTr/b, f o r a n y positive integer n. I n general, h y d r o d y n a m i c q u a n t i t i e s have spikes close to a l l o f these standing-wave frequencies t h o u g h i f there is a n t i s y m m e t r y ( s y m m e t r y ) o f the fluid m o t i o n a b o u t the t a n k centre-plane, o n l y the a n t i s y m m e t r i c ( s y m m e t r i c ) resonances can be excited.

A w a y f r o m the standing-wave frequencies, i t has been f o u n d t h a t some h y d r o d y n a m i c quantities are r e l a t i v e l y insensitive t o the presence o f the t a n k walls, w h i l e others s h o w m a r k e d a n d a p p a r e n t l y u n p r e d i c t a b l e v a r i a t i o n f r o m t h e i r open sea values. F o r example. S p r i n g a n d M o n k m e y e r ' a n d Thomas'* made detailed c a l c u l a t i o n s

Applied Ocean Research 0141-1187/93/S06.00 © 1993 Elsevier Science Publishers L t d .

f o r the scattering o f an i n c i d e n t plane wave b y a c y l i n d e r s y m m e t r i c a l l y placed a b o u t the t a n k centre plane a n d extending t h r o u g h o u t the d e p t h . T h e i r results were given i n terms o f ratios c o m p a r i n g values i n the w a v e t a n k w i t h the c o r r e s p o n d i n g open sea values; i f there were n o effects due t o r e f l e c t i o n f r o m the t a n k walls t h e n such a r a t i o w o u l d be u n i t y . I t was f o u n d t h a t the i n - l i n e d i f f r a c t i o n f o r c e r a t i o usually v a r i e d l i t t l e f r o m u n i t y , w h i l e , o n the other h a n d , the r a t i o f o r the h y d r o d y n a m i c pressure measured o n the c y l i n d e r surface o f t e n showed considerable v a r i a t i o n f r o m u n i t y ' b u t n o t i n a w a y t h a t is easily predictable.'* I t is the purpose o f t h e present w o r k t o g a i n f u r t h e r u n d e r s t a n d i n g o f these results b y e x a m i n i n g i n d e t a i l an a p p r o x i m a t e s o l u t i o n .

T h e geometry t o be considered here is t h a t o f a v e r t i c a l c y l i n d e r o f a r b i t r a r y cross-section e x t e n d i n g t h r o u g h o u t the d e p t h o f the wave t a n k . T h i s g e o m e t r y includes the case o f m u l t i p l e cylinders. T h e a p p r o x i m a t e s o l u t i o n is derived, b y the m e t h o d o f m a t c h e d a s y m p t o t i c expansions, under the a s s u m p t i o n t h a t a t y p i c a l h o r i z o n t a l d i m e n s i o n o f the c y l i n d e r is m u c h less t h a n the distance f r o m the nearest t a n k w a l l ( a n d hence also m u c h less t h a n the t a n k w i d t h ) . T h e w a v e l e n g t h is t a k e n t o be o f the order o f the t a n k w i d t h so t h a t i t t o o is m u c h greater t h a n the b o d y d i m e n s i o n . These assumptions t u r n o u t t o be n o t t o o restrictive a n d comparisons w i t h k n o w n solutions f o r the c i r c u l a r cylinder show that the approximate s o l u t i o n gives reason-able accuracy even outside its strict range o f v a l i d i t y .

T h e p l a n o f the paper is as f o l l o w s . T h e scattering p r o b l e m is f o r m u l a t e d i n Section 2 a n d the s o l u t i o n is

(2)

f u l l y described i n Section 3. T h e paper has been w r i t t e n so t h a t Section 3 m a y be o m i t t e d by a reader n o t interested i n the details o f the s o l u t i o n procedure. A n a l t e r n a t i v e , i n f o r m a l , account o f the s o l u t i o n is g i v e n i n Section 4 a n d this leads to a simple i n t e r p r e t a t i o n o f flume c o n f i n e m e n t effects i n terms o f the flow generated by the images i n the t a n k walls. T h e i m p l i c a t i o n s o f the s o l u t i o n f o r pressures a n d forces are discussed i n detail i n Sections 5 a n d 6, respectively.

2 F O R M U L A T I O N

A n i n f i n i t e l y l o n g wave t a n k o f u n i f o r m d e p t h h has p a r a l l e l walls a distance 2b apart. Cartesian coordinates are chosen w i t h the o r i g i n i n the m e a n free surface a n d m i d w a y between the channel walls so t h a t the x'-axis is directed a l o n g the channel a n d the z-axis vertically u p w a r d s . A v e r t i c a l cylinder o f a r b i t r a r y cross section T extends t h r o u g h o u t the d e p t h a n d {x,y) = {0,d) is chosen as a reference p o i n t w i t h i n T . Plane polar c o o r d i n a t e s r a n d 6 w i t h o r i g i n at this reference p o i n t are d e f i n e d by

rcosd a n d y-d=rsm9. (2.1)

A p l a n v i e w o f the geometry is g i v e n i n F i g . 1.

A plane wave o f a m p l i t u d e A a n d f r e q u e n c y u is i n c i d e n t f r o m large negative x. U n d e r the usual assumptions o f linear water-wave t h e o r y the time-h a r m o n i c flow m a y be described by a v e l o c i t y p o t e n t i a l

igA cosh /r(z + li) > cosh Ich

(2.2) where Ic is the wavenumber satisfying the dispersion relation

to g / c t a n h / d ï , (2.3)

g is the acceleration due to g r a v i t y a n d Re indicates that the real p a r t is to be t a k e n . T h e f o r m o f the p o t e n t i a l has been chosen to satisfy the linearised free-surface c o n d i t i o n , o n z = 0, a n d the bed c o n d i t i o n , o n z = -/?. T h e p o t e n t i a l $ must satisfy the three-dimensional L a p l a c e e q u a t i o n so t h a t , o n s u b s t i t u t i n g the f o r m

/ / / / / / / / / / / / / / /

2b

/ / / / / / / / / / / / / / /

Fig. L Definition sketch.

(2.2), the c o m p l e x - v a l u e d f u n c t i o n ^j{x,y) m a y be seen to satisfy the H e l m h o l t z e q u a t i o n . T h e i n c i d e n t wave is described b y

Jkr cos 9

(2.4) a n d the t o t a l p o t e n t i a l (px is decomposed as

cPT='f>i + 'P- (2.5) T h e p o t e n t i a l (/> describing the scattered wave field w i l l

t h e n satisfy the H e l m h o l t z e q u a t i o n .

• +

-dx^ ' dy^ + k^<f) = Q (2.6)

i n the fluid d o m a i n , the c o n d i t i o n s o f n o flow t h r o u g h the channel wafls,

d(f> dy 0 o n y ±b, (2.7) (2.8) a n d the c y l i n d e r surface, ^ = - ? f ^ o n r , dn dn

where n is a n o r m a l c o o r d i n a t e directed i n t o the fluid, a n d also the r a d i a t i o n c o n d i t i o n s p e c i f y i n g that the scattered waves m u s t be o u t g o i n g as oo.

Let fl be a t y p i c a l d i m e n s i o n o f the b o d y cross-section r . A s o l u t i o n o f the above p r o b l e m w i l l be f o u n d under the assumptions t h a t a is m u c h smaller t h a n b o t h the w a v e l e n g t h a n d the distance f r o m the nearest t a n k w a f l , t h a t is ka < 1 and a b — \d\ respectively. T h e second i n e q u a h t y i m p l i e s t h a t the b o d y d i m e n s i o n a is also m u c h less t h a n the t a n k w i d t h b. T h e t a n k w i d t h a n d w a v e l e n g t h are t a k e n t o be o f the same order o f m a g n i t u d e so t h a t kb = 0 ( 1 ) .

3 S O L U T I O N P R O C E D U R E

T h e s o l u t i o n is by the m e t h o d o f m a t c h e d a s y m p t o t i c expansions a n d requires t h a t the flow d o m a i n be d i v i d e d i n t o t w o regions. T h e inner r e g i o n s u r r o u n d s the cylinder to r a d i a l distances - c /c~' a n d , because o f the assumptions a <^ b — \d\ and kb = 0 ( 1 ) , does n o t c o n t a i n the t a n k walls. T h e outer r e g i o n is external t o this at distances » a, w h e r e a is a t y p i c a l h o r i z o n t a l d i m e n s i o n o f the b o d y , a n d includes the t a n k walls. F r o m the p o i n t o f view o f an observer i n the outer r e g i o n the c y l i n d e r appears as a p o i n t disturbance. S o l u t i o n s c o n t a i n i n g u n k n o w n constants are c o n -structed separately i n the t w o regions a n d , w i t h the a s s u m p t i o n e = /co < 1, they can be f u l l determined b y m a t c h i n g i n a n overlap r e g i o n .

F o r the inner r e g i o n define scaled coordinates w i t h o r i g i n w i t h i n the b o d y c o n t o u r F b y

(3)

T h e i n n e r scattered p o t e n t i a l ^i{^,rj) = (j){x,y) satisfies the field equation (2.6) a n d the b o d y b o u n d a r y c o n d i t i o n (2.8) w h i c h , i n terms o f t h e i n n e r coordinates, are

0 (3.2)

a n d

^ = - ^ ( e ' - ^ ^ )

| ^ ( / < - i . V - ^ ' . ¥ ) + 0(e^) o n r,

respectively.

Scaled outer coordinates are defined b y

X=kx, k { y - d ) , R = kr.

(3.3)

(3.4) T h e o u t e r r e g i o n s o l u t i o n ^g{x,Y) = 4'{x,y) m u s t satisfy a l l the c o n d i t i o n s o f the p r o b l e m except f o r the b o d y b o u n d a r y c o n d i t i o n (2.8). T h e outer s o l u t i o n w i l l be c o n s t r u c t e d f r o m 'channel m u l t i p o l e s ' d e r i v e d b y M c l v e r a n d Bennett."" These m u l t i p o l e s are solutions o f the H e l m h o l t z e q u a t i o n (2.6) s a t i s f y i n g the t a n k - w a l l c o n d i t i o n (2.7) a n d the r a d i a t i o n c o n d i t i o n ; t h a t is, a l l the c o n d i t i o n s o f the p r o b l e m except the b o d y b o u n d a r y c o n d i t i o n .

T h e i n n e r a n d outer solutions w i l l each c o n t a i n a n u m b e r o f u n k n o w n constant coefficients a n d these w i l l be d e t e r m i n e d b y m a t c h i n g . T h e structure o f the i n n e r a n d outer solutions f o r a n a r b i t r a r y c o n t o u r F is s i m i l a r to the case o f a c i r c u l a r c o n t o u r treated i n M c l v e r a n d Bennett^ a n d so, to s i m p l i f y the p r e s e n t a t i o n , the c o r r e c t f o r m o f the expansions w i l l be assumed f r o m the outset.

Leading-order terms in the inner solution

T h e i n n e r s o l u t i o n has a n e x p a n s i o n

= + I n e * , - 2 i + £"^i,2 + e M n e ^-,-31 + e^*;^3

(3.5) where \ l / [ ' ' denotes the inner s o l u t i o n e x p a n d e d u p t o o r d e r e'. T h e field e q u a t i o n a n d b o d y b o u n d a r y c o n d i t i o n g o v e r n i n g each o f the terms o n t h e r i g h t -h a n d side o f eqn (3.5) m a y be f o u n d b y s u b s t i t u t i n g i n t o eqn (3.2, 3.3) a n d e q u a t i n g l i k e terms i n e. I t is f o u n d t h a t the l e a d i n g - o r d e r t e r m i n the inner s o l u t i o n , is h a r m o n i c a n d satisfies

dn - i l ^ i p c o s f f ] on

r.

(3.6)

T h e s o l u t i o n 1 is the disturbance to a u n i f o r m stream o f speed / i n the ^ d i r e c t i o n flowing past the c o n t o u r F w h e n i n an u n b o u n d e d fluid. T h e l e a d i n g - o r d e r inner s o l u t i o n is t h e r e f o r e w r i t t e n

(3.7) where x is the response to a u n i f o r m flow o f u n i t speed so t h a t dx/dn = ~d^/dn o n T. F r o m B a t c h e l o r , ' Section 2.10, X = Mr cos( + A s i n ö c o s 2 ö , s i n 2 ö + At2 7 - + h T -+ 0 as p (3.8)

T h e t e r m \I>,-2i i n eqn (3.5) is also h a r m o n i c a n d , f r o m eqn (3.3), satisfies a h o m o g e n e o u s b o u n d a r y c o n d i t i o n o n r. A s i n M c l v e r a n d Bennett,^ the o n l y h o m o g e n e o u s s o l u t i o n suitable f o r m a t c h i n g is a constant, so w r i t e

* / , 2 i = ^ 0 - (3.9) ( T h r o u g h o u t this section P „ , , where m is an integer, is

used t o denote a constant i n the inner s o l u t i o n ) . T h e t h i r d t e r m i n eqn (3.5) is again h a r m o n i c b u t this satisfies the b o u n d a r y c o n d i t i o n

dn 2dn^^ ' o n F . (3.10)

T h i s n o n - h o m o g e n e o u s b o u n d a r y c o n d i t i o n generates a net flow across F o f

' dn dl = (3.11)

by the divergence t h e o r e m , where / is arc l e n g t h a n d S is the ( d i m e n s i o n a l ) cross-sectional area o f T. T h i s net flow implies t h a t ^Pj^ m u s t be source-like at large distances f r o m F . W r i t e *,-,2 = ^ l + f ^ l ( p , Ö ) , where is a constant a n d (3.12) lira as ^ , ^ c o s ( \np + D s i n ö O (3.13) T h e source s t r e n g t h i n eqn (3.13) has been chosen t o compensate f o r the net flow g i v e n b y eqn (3.11) a n d the r e m a i n i n g terms again f o U o w f r o m B a t c h e l o r , ' Section 2.10.

T h e inner s o l u t i o n t o o r d e r e^, \ l / f ' , w i l l n o w be m a t c h e d w i t h t h e outer s o l u t i o n . T h e b e h a v i o u r o f ^I/p^ at large distances f r o m F f o l l o w s f r o m eqns (3.5), ( 3 . 7 ¬ 3.9), (3.12-3.13^. T h e l e a d i n g - o r d e r terms i n the o u t e r e x p a n s i o n o f ^ are f o u n d b y expressing \I/p^ i n terms o f the outer variables a n d f u r t h e r e x p a n d i n g i n e. F o l l o w i n g this p r o c e d u r e a n d w r i t i n g the result b a c k i n terms o f the i n n e r variables gives

,T,(2,2) . / cos( A

sin 0

- F e M n e P , 0

V2™2 (3.14)

H e r e denotes the i n n e r s o l u t i o n t o order / r e w r i t t e n i n terms o f the outer variables a n d e x p a n d e d t o order tn. A similar n o t a t i o n is used f o r the o u t e r

(4)

p o t e n t i a l T h u s ^f^'"^ denotes the o r d e r « j s o l u t i o n w h i c h , w h e n r e w r i t t e n i n terms o f the inner variables a n d expanded to o r d e r /, is d e n o t e d b y ^ ^ " ' ' ' \ T h e m a t c h i n g p r i n c i p l e requires t h a t ^f"'^ = \l/("''') (see, f o r example, C r i g h t o n a n d L e p p i n g t o n ^ ) .

Leading-order outer solution and matching

T h e outer e x p a n s i o n o f the i n n e r s o l u t i o n eqn (3.14) contains b o t h source- a n d d i p o l e - l i k e terms a n d this m u s t be reflected i n t h e outer s o l u t i o n . T h e leading-order outer s o l u t i o n is w r i t t e n i n terms o f the source-a n d d i p o l e - h k e c h source-a n n e l m u l t i p o l e s source-as

=e\A,<j), + A,<t>,+B,,lj,), (3.15)

where f r o m M c l v e r a n d Bennett,^ eqns (3.7) a n d ( 3 . 1 4 ) ,

(j)„ = H„[R) COSWÖ • n - l I -27r iXl '2jkd 7 sinh X e •' c o s h « T dt a n d -ip,, = H„{R) sinnO 1 2 ^ (3.16) -27Arf\ 7 sinh 27A;6 X e ' ^ ' s i n h 7 ! r dt, (3.17) where H„ denotes a H a n k e l f u n c t i o n o f the first k i n d , 7 = (^2 _ 1)1/2 ^ _ ^2^/2 c o s h r = t. T h e p a t h o f i n t e g r a t i o n here, a n d b e l o w , is i n d e n t e d beneath the poles o f the i n t e g r a n d i n o r d e r t o satisfy the correct r a d i a t i o n c o n d i t i o n . T h e H a n k e l f u n c t i o n terms are the singular solutions o f the H e l m h o l t z e q u a t i o n a p p r o -p r i a t e to scattering i n o -p e n w a t e r w h i l e the i n t e g r a l terms are the c o r r e c t i o n s due t o the presence o f the channel walls. T o o b t a i n the i n n e r e x p a n s i o n o f the outer s o l u t i o n the f o l l o w i n g results f r o m M c l v e r a n d Bennet,^ eqns ( 3 . 1 9 ) - ( 3 . 2 4 ) are used:

h^H„{R) c o s « Ö + £ (

«;=0

, cos mO + P„i„ sin m9 ) / , „ ( i ? ) ,

(3.18) where

em( _.yn-n+l

y •oo e-^-r'^b + coshljkd A — OO 7 sinh 2'ykb 2 ( ^

-0"'-"

'°° smh2jkd - o o 7 sinh 2'jkb cosh m r cosh 7!T dt, (3.19) sinh H 7 r c o s h « r dt, (3.20) a n d Ip,, = H„{R) smnO + £ ( f l ™ , c o s « 7 0 + b,„„ smme)J,„{R), (3.21) where

-0"

2 ( - 0

TT m—n—\ sinh 27/cö?

, 7 sinh 2'ykb cosh mr s i n h nr dt, (3.22)

TT -27/tft

cosh 2')kd

7 sinh 2 7 / c è sinh mr sinh « r dt. (3.23) I n the above EQ = 1 a n d e,„ = 2 f o r m> 1. N o t e t h a t AiO = t>iiO = 0 f o r a l l n. T h e expansions (3.18) a n d (3.21) are v a l i d f o r Q < R< 2k{b - d). T h e coefficients a,„„ a n d b,„„ are zero i f m + n is o d d w h i l e /3,„„ a n d a,„„ are zero i f m + n is even; these zero coefficients are r e t a i n e d i n expansions (3.18) a n d (3.21) i n o r d e r t o have a c o m p a c t n o t a t i o n . T h e n u m e r i c a l e v a l u a t i o n o f these coefficients is described i n appendix A o f M c l v e r a n d Bennett."^

U s i n g the k n o w n series expansions o f Bessel f u n c t i o n s ( A b r a m o w i t z a n d S t e g u n , ' p . 360) i n expansions (3.18) a n d (3.21), the i n n e r expansion o f the o u t e r s o l u t i o n (3.15) is f o u n d to be (2,2) TT V 2 / c o s Ö " TT ep 2 / s i n 6» TT ep - + a 10 (3.24) where ^ — 0.57721 . . . is Euler's constant. T h i s m a y n o w be m a t c h e d w i t h the outer e x p a n s i o n o f the i n n e r s o l u t i o n , eqn (3.14) to get - ( ' g ' - l n 2 ) + a o o + 5 , f l , o = P i , 1 TT An- = Pn 2'na 2 ' 2i - = ipi. -B, 2i --iXy. (3.25) T a k i n g account o f eqn (3.25), the i n n e r a n d outer solutions to o r d e r m a y n o w be w r i t t e n as S (2) eix- I n e 2 ™ 2 -he-iS_

•47

2i 1 + - ( ' ^ - l n 2 ) + aoo TT 1 a n d 2 ^ - ^ 2 ' 27ri3' •</'0 + A l l / * ! (3.26) (3.27) respectively.

(5)

Extension of the inner solution

R e f e r r i n g b a c k t o eqn (3.5), the f o r m o f the f u r t h e r terms i n the i n n e r s o l u t i o n over those i n eqn (3.26) are g u i d e d b y the c o n t i n u e d inner expansion o f the outer s o l u t i o n eqn (3.27). I t is f o u n d t h a t ^(2,3) ^ 2i

+

-TT 27ra2 2/ — I TT In 2) + aoo lne/9 + siné*- \ ep 2i 1 i , 1- - ep I n ep TT ep TT lepi 1 - - ( 1 - 2 ' ^ + 2 1 n 2 ) + a „ cos 9 + A, 2i 1 , _ _ _ + _ e p l n e p + i e p 2<ë' + 2 1 n 2 ) + è i , s i n ö + ö '10 (3.28) T h e r e m a i n i n g terms t o be considered i n the i n n e r s o l u t i o n are those at orders e M n e a n d e^ i n eqn ( 3 . 5 ) . S u b s t i t u t i n g eqn (3.5) i n t o the g o v e r n i n g eqns ( 3 . 2 ) -(3.3) f o r the i n n e r p r o b l e m a n d e q u a t i n g l i k e terms i n e it m a y be seen that * , - 3 i is a h a r m o n i c f u n c t i o n s a t i s f y i n g a homogeneous b o u n d a r y c o n d i t i o n o n T. T h e large p b e h a v i o u r o f this s o l u t i o n m u s t m a t c h w i t h the terms at o r d e r e ^ n e i n eqn (3.28) w h i c h m a y be i d e n t i f i e d as ' u n i f o r m flow' terms p r o p o r t i o n a l t o p c o s 9 a n d p sin 6. T h e a p p r o p r i a t e f o r m is t h e r e f o r e

*,-31 = P 2 + P 3 [ P C 0 S Ö + X ( P , Ö ) ]

+ P4 [p sin ö + r ( p , 6»)] (3.29) where T is the response t o a u n i f o r m flow o f u n i t speed i n the 77 d i r e c t i o n so t h a t dr dn a n d ^1 ^ t • cos> T = OTi ' , s i n ö ^ + I] + O P P \P' T h e field e q u a t i o n f o r \!/,-3 is V2vl/,-,3 = = -ix w i t h the b o u n d a r y c o n d i t i o n _ d dn dn as

00.

o n

r.

(3.30) (3.31) (3.32) (3.33) L e t ifl2{p,9) be a p a r t i c u l a r s o l u t i o n o f eqn (3.32) (the i m a g i n a r y u n i t has been i n t r o d u c e d to ensure t h a t Ü2 is real). T h e f a r - f i e l d f o r m o f ^ 2 m a y be deduced f r o m eqn (3.32) u s i n g the k n o w n b e h a v i o u r o f x g i v e n b y e q n (3.8) a n d , e x c l u d i n g solutions o f the h o m o g e n e o u s e q u a t i o n , i t m a y be v e r i f i e d b y s u b s t i t u t i o n i n eqn (3.32) t h a t O2 - ( - 5 ( M I COS Ö + Al sin Ö )P In P + |(/i2Cos26i + A 2 s i n 2 6 i ) ) ^ 0 as p ^ 00. (3.34) T h e s o l u t i o n O2 generates a flow across the b o d y c o n t o u r F w h i c h m a y be calculated as f o l l o w s . L e t L denote a n enclosing circle at large p a n d F the fluid d o m a i n between F a n d L; a p p l i c a t i o n o f the divergence t h e o r e m gives

V^n2dA

ruL

Ö0_2

dn dl. (3.35)

N o w because o f the angular dependence i n e q n (3.34), the c o n t r i b u t i o n to the r i g h t - h a n d side o f e q n (3.35) f r o m L is zero so the flux across F is

d^7 „ ( { 0

.V on } ip XdA (3.36)

( T h e last step f o l l o w s because iÜ2 satisfles e q n (3.32).) N o w w r i t e *,-3 = / ( 0 2 + 0 3 ) (3.37) so t h a t f r o m eqns ( 3 . 3 2 ) - ( 3 . 3 3 ) ^ 3 is h a r m o n i c a n d satisfies 0 ^ 3 dn ^ ^ - ^ 2 ) o n F . (3.38)

T h e flow across F r e s u l t i n g f r o m the b o u n d a r y c o n d i t i o n (3.38) w i f l be reflected i n a source-like b e h a v i o u r at large distances so t h a t , a g a i n e x c l u d i n g s o l u t i o n s o f the homogeneous p r o b l e m ,

O3

- Q In p 0 as p

00

(3.39)

where, f r o m eqns (3.38), (3.36) a n d the divergence t h e o r e m .

e

27r r dn 2n ^dA xdA). (3.40)

H e r e S is the cross-sectional area o f F . F i n a l l y , i n c l u d i n g solutions o f the homogeneous p r o b l e m needed t o m a t c h w i t h ( 3 . 2 8 ) ,

*;,3 = (O2 + O3) + P5 + Pg [p cos 9 + x ( p , 9)]

+ Pj[psm9 + T{p,9)]. (3.41)

T h e outer expansion o f m a y n o w be calculated t o give, i n terms o f the i n n e r variables,

(3,3) .ƒ cose^ , s i n ö cos 20 , sin 261

+ e^ I n e 2'Ka' J 5 '4a^ P TT -iTrAiflio 27ra -S" , ^ cos 9 \np + D \-E P I n 2) sin 9 « 0 0

(6)

+ I n e{P2 +P3P cos 6 + P^p sin 6}

+ e "I - - ( ^ 1 COS0 + Al sm9)p\np

+ - ( ^ 2 C0S2Ö + A 2 s i n 2 ö )

+ iQ In p + P 5 + P(,p cos 9 + PTP sin ö j (3.42)

T h e singular terms i n p"^ at order e w h e n expressed i n terms o f the outer variable R = p/e indicate the need f o r s i m i l a r singular terms i n the outer s o l u t i o n so t h a t the outer expansion continues as

= ^-P^ + e\A2<Po + ^ 3 ^ 1 + ^ 4 0 2 + 52V'i + ^ 3 ^ 2 ) (3.43) where \1/P^ is given b y eqn (3.27). T h i s has a n inner e x p a n s i o n 1 + — ('^ - I n 2 ) + «00 + - I n ep TT TT 2;cos6'' A , + B2 TT

ep

2 / s i n 6» TT e p + AA «10 4/COS2Ö i TT e2p' + 5 3 TT 4 / s i n 26» TT e^p^ IT COS 29 + Q'20 sin 29 (3.44) where ^ ^ ' ^ ^ is given b y eqn (3.28). M a t c h i n g eqn (3.44) w i t h e q n (3.42) determines a l l o f the u n k n o w n constants to give a n inner s o l u t i o n = e/x + e^lne-—=• 1 — iS

2Tva^

2i

^ { - Y ^ 1 + - ( ^ - l n 2 ) + Q'oo - i T r A i f l i o + O 4fl^

+ e' I n e{iQ - \ip,

(^ + x ) -

i ' A i (?] + r ) }

+ e^ <j ( ^ 2 + O3) + 5TTÖ ( 1 + 5 - I n 2 ) + aoo 2i - ( TT -\'ïïp2O!-20 + \'^iEa 10 - i 7 r M i ( l - - ( l - 2 ' g ' + 2 1 n 2 ) + a i i ) (^ + x ) k A i 1 - - ( 1 - 2 ^ + 2 1 n 2 ) + è i i TT (5' 8fl 2/^01 (^7 + ^ ) (3.45) a n d a n outer s o l u t i o n (3) e ^ W l 1-.

2-ïïa

•(po + Pxcpi + A i ' 0 i

e'i7r(2e</)o + 2//),^i - /x2</>2 + 2iE^y - X2^2)-(3.46)

4 I N T E R P R E T A T I O N O F T H E S O L U T I O N B e f o r e g o i n g o n to l o o k i n d e t a i l at the consequences o f the results o b t a i n e d i n Section 3, a n alternative, p a r t i a l , d e r i v a t i o n w i l l be g i v e n using i n f o r m a l arguments i n order t o a i d u n d e r s t a n d i n g o f the s o l u t i o n .

Consider, f i r s t the w e l l - k n o w n s o l u t i o n f o r scattering b y a vertical cyhnder o f radius a s t a n d i n g i n open water. D e f i n i n g the scattered wave field 0 as i n eqns (2.2) a n d (2.5), i t is f o u n d t h a t i n o p e n water

- T e J " S ^ H „ i k r ) cos,19 (4.1)

(see, f o r example. M e i , ' " p . 312) where {r,9) are plane p o l a r coordinates w i t h o r i g i n o n the c y l i n d e r axis, eo = 1 a n d e„ = 2, n>\. T h e s o l u t i o n o f the previous section was d e r i v e d using m a t c h e d a s y m p t o t i c expansions under the a s s u m p t i o n t h a t the w a v e l e n g t h is m u c h longer t h a n the cyhnder radius, t h a t is /ca - C 1. Expansions o f the p o t e n t i a l i n terms o f ka were f o u n d b u t , because o f the singular n a t u r e o f the p e r t u r b a t i o n p r o b l e m , n o single expansion c a n be v a l i d t h r o u g h o u t the fluid d o m a i n a n d i t was necessary t o consider separate expansions i n inner a n d o u t e r regions close t o a n d f a r f r o m the b o d y , respectively.

T h e inner r e g i o n is t h a t fluid at distances m u c h less t h a n a w a v e l e n g t h f r o m t h e c y l i n d e r so t h a t kr <^ 1. E x p a n d i n g t h e terms i n e q n (4.1) (using resuhs i n A b r a m o w i t z a n d Stegun,^ p . 360) u n d e r the a s s u m p t i o n t h a t b o t h kr a n d ka are s m a l l , w i t h ;• = 0{a), gives a n inner r e g i o n a p p r o x i m a t i o n t o the scattered field

kai-cos 9 -\- \{Ica) In ka

+ Wcaf I n - -

la'

2a 2 ; cos26l + ' ^ - T (4.2) where = 0 . 5 7 7 2 1 . . . is Euler's constant. T h e inter-p r e t a t i o n o f this scattered field is aided by c o n s i d e r a t i o n o f a s i m i l a r inner expansion o f the i n c i d e n t wave field (2.4) 1

\+kai---{lea

= 1 - I - A : f l ! - c o s ö - ^ ( / c a ) ^ - ^ ( l + C 0 S 2 Ö '

a

4 ^ «2 V (4.3) T h e t e r m at 0{ka) i n (4.3) represents a n o s c i f l a t o r y u n i f o r m flow i n the x d i r e c t i o n a n d the c o r r e s p o n d i n g t e r m i n (4.2) is the d i p o l e response t o t h a t flow (recall t h a t a n o s c i l l a t o r y t i m e dependence has been r e m o v e d i n e q n (2.2)). T h e t e r m at 0{{lca)^) i n t h e i n c i d e n t wave e x p a n s i o n (4.3) generates a non-zero flux across the c y l i n d e r surface a n d this is compensated f o r b y the l o g a r i t h m i c source t e r m i n eqn (4.2). I n a s i m i l a r w a y t o the u n i f o r m flow a n d d i p o l e terms at 0{ka), w h e n t a k e n together the terms i n cos 20 at 0[{kaY) i n

(7)

the t w o equations have zero n o r m a l derivative o n the cylinder surface. T h e constant terms i n eqn (4.2) cannot be explained simply b u t they clearly satisfy the n o - f l o w c o n d i t i o n o n the cylinder surface.

T h e outer region is the fluid m a n y cylinder r a d i i f r o m the o r i g i n so that ;• 3> a. E x p a n d i n g the terms i n eqn (4.1) f o r smafl ka, b u t w i t h kr = 0 ( 1 ) , gives an outer r e g i o n a p p r o x i m a t i o n to the scattered field

order outer s o l u t i o n is

(4.4)

T h e leading-order terms i n the o u t e r field consist o f the source a n d dipole terms f r o m the complete expansion a n d the strengths o f the singularities i n these terms are the same as the c o r r e s p o n d i n g terms i n the i n n e r expansion o f the scattered field, eqn (4.2).

T h e scattering b y a v e r t i c a l c y l i n d e r o f a r b i t r a r y cross section w i t h i n a c o n t o u r T has been considered b y L a m b , " A r t . 305 a n d the results m a y also be o b t a i n e d using m a t c h e d a s y m p t o t i c expansions. T h e inner region scattered field

kaix{-,9) + {Icay In/ca-^

+ ( k a f \ n A - , 9 ] + Ina^

1

ni — In 2

(4.5) where S is the cross-sectional area o f the c y l i n d e r and a is n o w a t y p i c a l h o r i z o n t a l d i m e n s i o n . T h e t e r m at 0{ka) is the response t o the u n i f o r m flow t e r m i n the incident wave expansion (4.3) a n d satisfles

dx dn X - Pi-Idx adn a cos 9 o n A, asinO as -r a (4.6)

A t large distances the leadingorder b e h a v i o u r is d i p o l e -like; a f u l l discussion o f the f a r - f i e l d b e h a v i o u r is given by B a t c h e l o r , ' Section 2.10. ( F o r a c y l i n d e r s y m m e t r i c a b o u t y = d, A j = 0 w h i l e f o r a c i r c u l a r c y l i n d e r o f radius a, x = a c o s 0 / r . ) T h e response t o the 0{{kaf) terms i n the i n c i d e n t wave is described b y fii w h i c h satisfies a f i l ~d^ fi, 1 dx^ ''2^~d^ r l n -2 ™ ^ o n 0 as (4.7)

T h e strength o f the l o g a r i t h m i c source t e r m i n fij compensates f o r the flow F i n d u c e d by the b o u n d a r y c o n d i t i o n i n eqn (4.7). T h e f u n c t i o n s x and fij have been expressed i n terms o f r/a, rather t h a n ;•, f o r consistency w i t h the usage i n Section 3. T h e

leading--{-Kikaf

i-—2-^o(/c'') + Hi{kr)[px cos 0 + A j sin 0

(4.8) A g a i n the strength o f the source i n the outer s o l u t i o n corresponds w i t h t h a t i n the i n n e r s o l u t i o n , as i n e q n (4.7), w h i l e the d i p o l e strengths c o r r e s p o n d t o those i n the u n i f o r m flow response, eqn (4.6).

T h e presence o f the t a n k walls is equivalent t o a set o f image cylinders at y = Amb + d a n d y = 2{2m - \)b - d where m is any integer {m = 0 i n the first f o r m u l a corresponds t o the o r i g i n a l c y l i n d e r ) . L e t {rj, 9j) be plane p o l a r coordinates relative t o image j where the cylinders have been n u m b e r e d i n ascending order o f y c o o r d i n a t e w i t h J = 0 as the o r i g i n a l cylinder. I n the a p p r o x i m a t i o n considered here, the p r i m a r y effect o f the t a n k walls is f o u n d b y assuming t h a t each image c y l i n d e r scatters the incident wave as i f i t were i n the open sea w i t h subsequent scatterings between the images considered t o be negligible. S u m m i n g over the images d e r i v e d f r o m eqn (4.8) b y a p p r o p r i a t e changes o f o r i g i n gives a f a r -field p o t e n d a l S ^ o ( ^ ' > ) + M i 2 Hx{krj) COS9j + \x ^ ( - l ) - ' 7 7 i ( / c ; > ) s i n 0 ; = - o o j=-oo J ^ n { k a f ( i - ^ M k > ; 9 ) + fi,Mkr,9) + \iMkr,9) (4.9)

where the H a n k e l f u n c t i o n series have been s u m m e d a n d w r i t t e n i n terms o f the 'channel m u l t i p o l e ' representa-t i o n s defined i n equarepresenta-tions ( 3 . 1 6 ) - ( 3 . 1 7 ) a n d d e r i v e d b y M c l v e r and Bennett.^ T h u s (pQ is the s u m o f the source terms, 4>i the sum o f the i n - l i n e dipoles a n d V i the s u m o f the cross-tank dipoles. N o t e t h a t the o r i e n t a t i o n o f successive image cross-tank dipoles is reversed, hence the appearance o f (—1)-' i n the s u m m a t i o n i n eqn (4.9).

T h e near-field effects o f the image cylinders m a y be deduced f r o m the expansions o f the m u l t i p o l e potentials given b y eqns (3.18) a n d (3.21). I n the i n n e r r e g i o n

0 o ( / c / - , 0 ) - / / o ( / « - ) - E ^ o ( f c o )

= Y^[ao,2,>,cos2m9J2,„{kr)

m=0

(8)

= aoo + A;a^/3oi ^ s i n ö + 0{{kaf) - aoo

+ A:a:r^oi^^ , 2 fl

6i (fo-, 9 ) - Hi {kr) cos 0 = ^ i ^ i (fcj)) cos 9j

OQ

. = X l [ " i . 2 m + i COS ( 2 w + \)9J2,n+x{kr)

r a t i o o f i n c i d e n t plus scattered wave fields a n d is

(4.10)

+ A,2m Sin277t0/2m(^'-)]

= = / c f l ^ a i i - c o s 0 + O ( ( / c f l ) ^ ) - / c f l i a i i - (4.11) 2 " f l 2 " f l

a n d

ipi{kr,9) - Hi{kr) sm9 = ^ ( - l ) - ' / / i ( / c ; y ) smOj

OO [fll,2m cos2m9J2,n{kr) + ^l,2,«+l sin (2/77 + l ) 0 / 2 m + l ( ^ ' - ) ] 1 r flio + ka-bu - s i n 0 + O { { k a f ) 2

a

~ fl]o + ka-bxx 2 fl (4.12)

where t h e series expansions o f the Bessel f u n c t i o n s J,„ have been used t o o b t a i n t h e i n n e r r e g i o n a p p r o x i m a -tions. F o r a c y l i n d e r o n t h e t a n k centre plane, t h a t is w h e n ( i = 0, t h e e x p a n s i o n coefficients /?oi a n d AJO are b o t h i d e n t i c a l l y zero. I n (4.10) a n d (4.12), t h e l o c a l effect near t o the c y l i n d e r o f the image systems f o r t h e sources a n d t h e cross-tank dipoles is t o give a net constant increase t o the p o t e n t i a l a n d t o generate a cross-tank o s c i l l a t o r y f l o w . F r o m (4.11), the l o c a l effect o f the image i n - l i n e dipoles o r i e n t e d a l o n g the t a n k is t o generate a n o s c i l l a t o r y flow a l o n g the t a n k .

5 T H E P R E S S U R E F I E L D

T o ihustrate h o w the t a n k w a f l s i n f l u e n c e the pressures a n d forces o n the c y l i n d e r , a p p r o p r i a t e r a t i o s c o m p a r i n g t a n k a n d open-sea values are deflned. A pressure r a t i o P is d e f l n e d as the m o d u l u s o f the d y n a m i c pressure o n the c y l i n d e r w h e n i n the t a n k d i v i d e d b y the c o r r e s p o n d i n g value w h e n t h e c y l i n d e r is i n open water. I n t h e scattering p r o b l e m the d e p t h dependence m a y be r e m o v e d as i n e q n (2.2), so t h a t this r a t i o is independent o f d e p t h , b u t i t w i l l depend o n p o s i t i o n a r o u n d t h e cross-section. A n alternative i n t e r p r e t a t i o n o f t h e pressure r a t i o is t h a t i t is the r a t i o o f t h e a m p l i t u d e s o f the free surface oscillations a t t h e c y l i n d e r . T h i s pressure r a t i o is calculated f r o m t h e

|e''''^ +<?!'tankl |e*^ + .

(5.1) 'open sea I

where a l l terms are evaluated o n the c y l i n d e r surface. T h e scattered field 0tank f o r tbe inner r e g i o n , w h e n t h e c y l i n d e r is i n a t a n k , is given t o O { { k a f ) b y t h e i n n e r p o t e n t i a l i n e q n (3.45) where e = ka a n d t h e n o n d i m e n s i o n a l r a d i a l c o o r d i n a t e p = r/a. T h e c o r r e s p o n d -i n g result ''open sea is recovered b y setting a l l o f t h e expansion coefficients a „ „ „ P,,,,,, a,,,,,, b„„, (see eqns ( 4 . 1 0 ) - ( 4 . 1 2 ) ) t o be zero. E x p a n d i n g the i n c i d e n t w a v e p o t e n t i a l t o o r d e r 0{{kx)^), s u b s t i t u t i n g i n (5.1) a n d e x p a n d i n g the d e n o m i n a t o r leads t o

-- r iS* 1

— J I m aoo - n TTAI R e «lo

1 +

{ka)'

4fl2

+ (/cfl)^-| l 7 r [ ö R e aoo - \ p 2 ^ e azo - £ I m fljo]

1 / S - npi Re « 1 1 + ^ R c "00 4 \ fl'' \ i^ \ ){-a + ^ ) 2 ? • + T (5.2) T h e terms i n square braces are a l l c o n s t a n t terms, t h a t is they d o n o t depend o n p o s i t i o n a r o u n d t h e c y l i n d e r surface. U s i n g the results o f eqns (4.10) a n d ( 4 . 1 2 ) , t h e terms at 0{{kaf) i n v o l v i n g «oo a n d A J O c a n b e seen t o arise f r o m t h e sets o f image sources a n d image cross-c h a n n e l dipoles, respecross-ctively. These terms are t h e leading c o n t r i b u t i o n t o the a d d i t i o n a l m e a n pressure field due t o the image system.

T u r n i n g t o the terms a t O { { k a f ) , the constants p2, E a n d Ö are d e f i n e d b y eqns (3.8), (3.13) a n d (3.40) respectively. I n p r i n c i p l e these m a y be c a l c u l a t e d f o r a n y geometry b y s o l v i n g t h e b o u n d a r y - v a l u e p r o b l e m s i n d i c a t e d i n Section 3 ( f o r example, t h i s c a n be done f o r a c y l i n d e r o f e l l i p t i c a l cross section, at a n a r b i t r a r y o r i e n t a t i o n t o t h e i n c i d e n t wave, u s i n g e l l i p t i c c o o r d i -nates a n d i n this case p.2 = E = Q = 0). T h e terms i n r o u n d e d braces describe t h e v a r i a t i o n o f P a r o u n d t h e c y l i n d e r . T h e f u n c t i o n x , d e f i n e d b y e q n ( 4 . 6 ) , is t h e response t o a u n i f o r m flow i n the x d i r e c t i o n a n d r is the response t o a flow i n the y d i r e c t i o n a n d satisfies

Ö T _ _ l ö > ;

dn a dn

o n

a cos 9 a sin 9

T ~ nil 1" '1 as

-fl (5.3)

T h e terms i n v o l v i n g a ^ , b^ a n d /?oi arise f r o m t h e u n i f o r m flows generated b y the image sets g i v e n i n eqns ( 4 . 1 0 ) - ( 4 . 1 2 ) ; t h e t e r m i n v o l v i n g /?oi is zero w h e n t h e offset d =0. T h e r e m a i n i n g t e r m at O { { k a f ) i n v o l v i n g « 0 0 bas n o simple i n t e r p r e t a t i o n , i t arises f r o m cross

(9)

O.asI I I I I I I [ I I I I I I I I I I I I I I I I I I r I I I I I I I I I I I I I I I I

Vi'TT-vr-i-0.0 0.1 0.2 C.3 C.4 0.5 0.6 0.7 0,8 0 9 1.0

Fig. 2. Pressure ratio Pv. d/n f o r ka = 0.3 and various kb where 9 is angular position on surface o f circular cylinder and Ö = TT is up-wave direction; comparison o f accurate ( ) and

approximate ( ) theories.

terms w h e n s u b s t i t u t i n g f o r the i n n e r p o t e n t i a l i n eqn (5.1) a n d e x p a n d i n g i n ka.

F o r a b o d y t h a t is s y m m e t r i c w i t h respect t o t w o v e r t i c a l planes aligned w i t h a n d p e r p e n d i c u l a r to the wave d i r e c t i o n , the results given b y B a t c h e l o r , ' Section 2.10 m a y be used t o s h o w t h a t Ai a n d a l l o f the O { { k a f ) constant terms are zero. T h e pressure r a t i o then reduces to P = \ + { k a f ^ I m a o o {ka S Tr^i Re ^ Re QQO

)

( - + X / \a la 2 I m ^ o i l ^ ^ — - + (5.4)

again /3oi = 0 i f the b o d y is c e n t r a l l y placed. F o r a c i r c u l a r c y l i n d e r o f radius a, S = -na^ a n d p.\ — \.

B e l o w the first standing-wave f r e q u e n c y {kb = TF i f the c y l i n d e r is s y m m e t r i c w i t h respect t o the t a n k centre plane, kb = ix/l o t h e r w i s e ) ,

Re aoo = l / / c è - 1 a n d Re Q „ = 2 / / c è - 1. (5.5) T h u s , b e l o w the first s t a n d i n g wave f r e q u e n c y a n d f o r a c e n t r a l l y placed, c i r c u l a r c y l i n d e r

1 1

1 + {ka) I m aoo + {ka)'

kb cosO.

(5.6) Results f o r this s i t u a t i o n are displayed i n F i g . 2. T h e pressure r a t i o is given as a f u n c t i o n o f angle 9 a r o u n d the c y l i n d e r w i t h 9 = TT the u p - w a v e d i r e c t i o n a n d , because o f the s y m m e t r y , o n l y values i n the range 0 < 0 < TT are displayed. T h e sohd curves are calcula-t i o n s m a d e using calcula-the accuracalcula-te m e calcula-t h o d described b y M c l v e r a n d Bennett,'' a n d reproduce some o f the results given i n F i g . 4 o f Thomas,'* the dashed curves are

I

"0.0 0.5 10 1.5

kb/n

2.5 3.0

Fig. 3. Real ( ) and imaginary ( ) parts o f aoo v. kb/ir for offset d=0.

calculated u s i n g eqn (5.6) above. T h e w a v e n u m b e r p a r a m e t e r ka = 0.3, so the present t h e o r y w o u l d be expected to describe this s i t u a t i o n reasonably w e l l . T h e largest errors are f o r kb = 3 w h i c h is close t o the resonance at kb = TT where the present series s o l u t i o n breaks d o w n . H o w e v e r , here a n d i n m a n y other c a l c u l a t i o n s n o t presented, the q u a h t a t i v e features o f the t w o solutions are the same.

I f the channel w a l l s h a d n o effect o n the scattering p r o p e r t i e s o f the c y l i n d e r t h e n P w o u l d be u n i t y . H o w e v e r , b o t h the m e a n value, w i t h respect t o 9, o f P a n d the v a r i a t i o n s a b o u t this m e a n s h o w considerable dependence o n kb. F r o m eqn (5.4), the b e h a v i o u r o f P i n the s i t u a t i o n o f F i g . 2 is g o v e r n e d b y the expansion coefficients aoo a n d a n a n d these are p l o t t e d as a f u n c t i o n o f kb i n F i g s 3 a n d 4 f o r the offset d=0;in this s y m m e t r i c s i t u a t i o n , cross-tank resonances o c c u r o n l y at

kb = nTT. T h e m e a n value o f P is p r o p o r t i o n a l to I m aoo

a n d w i t h i n each i n t e r v a l between resonances i t is a m o n o t o n i c a h y decreasing f u n c t i o n o f kb a n d i n a c c o r d w i t h F i g . 2; this s i m i l a r i t y o f b e h a v i o u r between successive standing-wave frequencies was observed b y

Fig. 4. Real ( ) and imaginary ( ) parts o f a n v. kb/Tr for offset = 0.

(10)

P 1.05

Fig. 5. Pressure ratio P v. Ö/TT f o r ka = 0.3 and various kb where d is angular position on cylinder surface and 9 = TT is up-wave direction; comparison o f circular cylinder ( ) w i t h eUiptic cylinders having major axis parallel (• • •) and perpendicular ( ) to channel walls (see text for further

details o f geometry).

Thomas."* A s each such f r e q u e n c y is a p p r o a c h e d f r o m b e l o w I m aoo is singular; h o w e v e r the expansions i n ka w i l l t h e n break d o w n so this does n o t m e a n the s o l u t i o n to the exact linear p r o b l e m behaves i n this w a y . T h e v a r i a t i o n o f P a r o u n d the b o d y depends w i t h r o u g h l y equal w e i g h t o n the r e a l p a r t s o f aoo a n d a n . F r o m F i g . 4, a n is n o t singular at the standing-wave frequencies a n d , f o r kb > n, is generally o f smaller m a g n i t u d e t h a n aoo. I n other w o r d s , the image dipoles have less influence o n the l o c a l flow t h a n the image sources.

F o r the case o f a c i r c u l a r c y l i n d e r w i t h its axis o n the t a n k centre plane, the deviations f r o m the m e a n value o f

P g i v e n b y the final t e r m i n eqn (5.6) are weakest f o r kb = 1.5 (see also F i g . 4 o f Thomas'*). F r o m F i g . 3,

I m aoo is zero at kb ~ O.VTF ~ 2.2 so the pressures o n a c i r c u l a r c y l i n d e r w i f l be close t o the o p e n sea values f o r 1.5 < kb < 2.2. U n f o r t u n a t e l y , this is close t o the first a n t i s y m m e t r i c channel resonance at kb = TT/I w h i c h m a y cause p r o b l e m s i n an e x p e r i m e n t a l s i t u a t i o n .

F o r a slender c y l i n d e r aligned w i t h the i n c i d e n t wave d i r e c t i o n b o t h S a n d /xj are s m a l l so, b y eqn (5.4), P w i f l deviate h t t l e f r o m u n i t y . F o r a slender c y l i n d e r aligned across the t a n k , S is s t i l l s m a l l b u t p i w i l l n o t be; t h u s the m e a n d e v i a t i o n w i l l be close to zero b u t , depending on w h e t h e r o r n o t Re a ^ is close t o zero, the fluctuations a b o u t the mean m a y be s i g n i f i c a n t . T h i s last p o i n t is i l l u s t r a t e d i n F i g . 5 where P is p l o t t e d as a f u n c t i o n o f the p o l a r angle 0 f o r a c i r c u l a r cross-section a n d a n elliptic cross-section, w i t h m a j o r axis b o t h p a r a l l e l and p e r p e n d i c u l a r to the walls. B o t h cross-sections have been chosen t o have the same area S a n d the l e n g t h scale a is defined b y a^ = S/TT. T h e c i r c u l a r c y l i n d e r has radius a, w h i l e the elliptic c y l i n d e r has semi-m a j o r axis A = Via a n d s e semi-m i - semi-m i n o r axis B = a/VÏ so that the ellipse axes have lengths i n the r a t i o 2 : 1 . W h e n

a 0.5

Fig. 6. Imaginary part ( ) o f «QO V . kb/w for offset d = 0; also pfotted is (/cè)-i/2 ( ) .

the m a j o r axis is ahgned w i t h the t a n k w a l l s the d i p o l e s t r e n g t h

Ml

BjA

+

B)

la^

(5.7)

w h i l e w h e n the m a j o r axis is p e r p e n d i c u l a r t o the w a l l s

A and B m u s t be interchanged. T h e s o l u t i o n f o r t w o

-d i m e n s i o n a l flow past a n ellipse, r e q u i r e -d t o evaluate eqn (5.4), is described b y M i l n e - T h o n i s o n , ' ^ p p . 1 6 7 - 7 1 . I n F i g . 5, results are p l o t t e d f o r t w o channel w i d t h s . F o r the smaller w i d t h , kb = 1 a n d , as m a y be seen f r o m F i g . 4 a n d eqn (5.5), Re an is non-zero so t h a t w h e n the elliptic c y ü n d e r has its m a j o r axis across the channel there are substantial fluctuations a b o u t the m e a n value o f P. T h e second set o f curves is f o r kb = 2 w h e n , f r o m eqn (5.5), Re a n = 0 a n d the pressure r a t i o is s i m i l a r f o r a l l three geometries.

O n e o f the features n o t e d by Thomas'* is the s l o w decay o f t a n k effects w i t h increasing w i d t h (see, f o r example, his F i g . 5 ) . T o f u r t h e r i l l u s t r a t e t h i s , I m «O O J w h i c h c o n t r o l s the m e a n value o f P, is p l o t t e d f o r a larger range o f kb i n F i g . 6. A l s o p l o t t e d f o r c o m p a r i s o n is a curve o f {kb)~^^'^; u s i n g the m e t h o d described i n M c l v e r a n d Bennett,^ Section 6, i t m a y be s h o w n t h a t this is the c o n t r o l l i n g b e h a v i o u r as kb ^ oo o f a l l o f the expansion coefficients. T h i s m i m i c s the large a r g u m e n t b e h a v i o u r o f the H a n k e l f u n c t i o n s i n the image sets.

I f the b o d y is m o v e d o f f the centre hne o f the channel then the s i t u a t i o n is c o n s i d e r a b l y m o r e c o m p l e x . T h e s y m m e t r y a b o u t the t a n k centre plane is destroyed a n d , i n general, resonances w i l l occur at b o t h a n t i s y m m e t r i c a n d s y m m e t r i c frequencies. T h i s is i l l u s t r a t e d i n F i g . 7 f o r I m aoo w i t h d/b = 0.3. A s a f u n c t i o n o f the offset

d/b, I m aoo w i l l behave i n a reasonably consistent

f a s h i o n f o r values o f kb between any t w o successive standing-wave frequencies. F o r example, i n F i g . 8, i t is a m o n o t o n i c a l l y decreasing f u n c t i o n o f d/b w h e n

0 < kb < TT/I b u t has a single m a x i m u m w h e n

(11)

Fig. 7. Real (- -) and imaginary ( for offset rf= 0.3.

' parts of ctoo v. kb/n

B u t l e r and T h o m a s ' ^ have made c o m p u t a t i o n s f o r t w o c i r c u l a r cylinders s y m m e t r i c a l l y placed i n a n a r r o w wave t a n k and m a k e c o m p a r i s o n s w i t h results f o r a single c y l i n d e r i n their F i g . 2. F o r t w o cylinders the cross-sectional area S is d o u b l e d a n d the d i p o l e coefficient p^ a p p r o x i m a t e l y d o u b l e d w h e n c o m p a r e d w i t h a single cyhnder. Consequently, eqn (5.4) predicts t h a t the mean d e v i a t i o n o f P f r o m u n i t y and the a m p l i t u d e o f the v a r i a t i o n s a b o u t t h a t m e a n w i l l also be d o u b l e d a n d this is consistent w i t h the results o f B u t l e r a n d T h o m a s . ' ^ I t s h o u l d be n o t e d t h a t i n those results the w a v e l e n g t h is c o m p a r a b l e w i t h the spacing between cylinders a n d the t h e o r y given here is n o t strictly v a l i d . T h e present ' s m a l l - b o d y ' t h e o r y m a y be extended t o cover the case o f m u l t i p l e cylinders where the w a v e -l e n g t h is o f the o r d e r o f the spacing a n d this w i -l -l be the subject o f f u t u r e w o r k .

6 W A V E F O R C E S

T h e h o r i z o n t a l c o m p o n e n t s o f the wave f o r c e are calculated by i n t e g r a t i o n o f the pressure over the

l l l l l l l l l l l l l l l l l l l l l l : kh = 7 r / 5 1 1 I 1 1 1 1 1 1 1 1 1 1 M > 1 1 1 1 < i M > 1 1 -Jó6 = 3 7 r / 5 ^ 1 kb = 4 7 r / 5 ;^ , , , • 1 1 iNi 1 ' 0.0 0.1 0,2 0.3 0.+ 0.5 0,6 0,7 0.8 0,9 1.0

Fig. 8. Imaginary part o f V . d / b for various values of kb.

c y l i n d e r surface. U s i n g the d e c o m p o s i t i o n o f the v e l o c i t y p o t e n t i a l i n eqns ( 2 . 2 ) - ( 2 , 5 ) , the j {= x o r y) c o m p o n e n t o f the f o r c e is Re { f j e " ' " ' } where ƒ . = - ^ t a n h / c / 7 k J r Jkx )nj dl (6.1) a n d nj is the a p p r o p r i a t e c o m p o n e n t o f the o u t w a r d n o r m a l t o the c y l i n d e r surface. T o evaluate the integrals d e f i n e d b y eqn (6.1), the expansion o f the i n c i d e n t wave p o t e n t i a l to o r d e r {kxf and the i n n e r scattered p o t e n t i a l (3.45) are used. A f o r c e r a t i o

P _ f j , tank

t-j - 7 (6.2) J j , open sea

c o m p a r i n g the t a n k values w i t h open-sea values w i h be used f o r i l l u s t r a t i v e purposes. T h e o n l y terms i n e q n (3.45) t h a t c o n t r i b u t e t o this r a t i o , a n d so the o n l y ones t h a t need be evaluated explicitly, are those i n v o l v i n g the expansion coefficients a „ „ „ a„„„ b,„„. B y a n a p p l i c a t i o n o f Green's theorem over the fluid r e g i o n between the b o d y surface F a n d an enclosing circle at large distances i t m a y be s h o w n t h a t . r rx + x - d . r a - d r V a x + x)nydl = 2TTX, + T \ n^dl = lirnh + T Jiydl : 2A, (6.3)

where the f a r - f i e l d f o r m s i n eqns (4.6) a n d (5.3) have been used. F o r the i n - l i n e force the r a t i o is

1 + (kaf]-\mpLian +7Ti^^^bi 4

I

Pi la^fii 13, '01

(6.4) R e f e r r i n g back t o eqns ( 4 . 1 0 ) - ( 4 . 1 2 ) , the three O { { k a f ) terms m a y be i d e n t i f i e d as a r i s i n g f r o m , respectively, the image i n - l i n e dipoles, cross-tank dipoles a n d sources. E i t h e r , o r b o t h , o f the last t w o terms m a y be i d e n t i c a h y zero f o r certain geometries. I f the b o d y is s y m m e t r i c a b o u t a plane a h g n e d w i t h the d i r e c t i o n o f w a v e advance then Aj is zero while i f i t is s y m m e t r i c a b o u t a cross-tank plane t h e n nii is zero. F o r zero offset d t h e n

Poi is zero.

F o r the simpler case o f a b o d y w i t h t w o v e r t i c a l planes o f s y m m e t r y , one o f w h i c h is aligned w i t h the i n c i d e n t wave d i r e c t i o n , then

F ^ = l + {ka)^\TTipiaii (6.5) C o m p a r i s o n s o f eqn (6.5) w i t h accurate results f o r a c i r c u l a r cyhnder {pi = \) are made b y M c l v e r a n d B e n n e t t p curves are given f o r fixed channel w i d t h b/a w i t h excellent agreement f o r values o f ka u p t o a b o u t 0.8. I n the present F i g . 9, the effect o f increasing channel w i d t h is i l l u s t r a t e d f o r ka = 0.3 s h o w i n g the r e l a t i v e l y r a p i d a p p r o a c h t o u n i t y o f the f o r c e r a t i o .

(12)

kb/TT

Fig. 9. Force ratio \F^\ v. kb/n f o r ka = 0.3; comparison of accurate ( ) and approximate ( ) theories for a

circular cylinder.

T h e p r i m a r y t a n k effect o n the in-line f o r c e is due t o the image in-line dipoles. A s p o i n t e d o u t i n the previous section, the m a g n i t u d e o f is generally s i g n i f i c a n t l y less t h a n t h a t o f aoo, w h i c h governs the m e a n t a n k effects o n the pressure field, and consequently the influence o f the t a n k walls o n the in-line f o r c e is m u c h less t h a n t h a t o n the mean pressure a r o u n d the cyhnder. Because o f this dependence o n the dipole coefficient pi, the f o r c e r a t i o w i f l be smaller i n m a g n i t u d e f o r a slender b o d y aligned w i t h the flow t h a n i f t h a t b o d y is o r i e n t e d across the t a n k . T h i s is i l l u s t r a t e d i n F i g . 10 where results are c o m p a r e d f o r a c i r c u l a r c y l i n d e r a n d e l l i p t i c cylinders o r i e n t e d p a r a l l e l and p e r p e n d i c u l a r to the w a l l s . T h e geometries are m o r e f u l l y described i n the p r e v i o u s section i n the discussion o f F i g u r e 5.

F o r the cross-tank force r a t i o

Fy

=

\ + {kaf\^^miiian+mhbn

" ^ ^ A i j

(6.6) where the O

{{kaf)

terms arise i n the w a y described a f t e r eqn (6.4). F o r a b o d y t h a t is s y m m e t r i c a b o u t a v e r t i c a l plane aligned w i t h the d i r e c t i o n o f wave advance, so t h a t A i = 0, t h e n fy^ open = 0 a n d Fy is u n d e f i n e d . I n this case, the cross-tank wave f o r c e m a y be c o m p a r e d w i t h the in-line o p e n sea force t o get

A } ^ = - { k a f ^ l 3 , , (6.7)

Jx, open sea " M l

w h i c h w i f l be zero f o r a c e n t r a l l y placed b o d y . A slender b o d y aligned w i t h the walls has /[ > pi w h i l e , w h e n placed across the t a n k , /] < px so the cross-tank f o r c e is m o r e significant i n the f o r m e r case.

7 C O N C L U S I O N

A t h e o r y has been given f o r the scattering o f waves b y a

Fig. 10. Force ratio |^';^.| v. ka f o r b/a = 5; comparison o f circular cyhnder ( ) with elliptic cyhnders having major axis parallel ( . . . ) and perpendicular ( ) to channel waUs (see text f o r further details of geometry).

v e r t i c a l c y l i n d e r o f a r b i t r a r y cross-section s t a n d i n g i n a n a r r o w wave t a n k . T h e t h e o r y assumes t h a t a t y p i c a l cylinder diameter is m u c h smaller t h a n other l e n g t h scales i n the p r o b l e m . I n t e r p r e t a t i o n s i n terms o f simple properties o f the images i n the t a n k walls have led t o an i m p r o v e d u n d e r s t a n d i n g o f the w o r k o f previous authors. Because no assumptions a b o u t the cross-section o f the c y l i n d e r have been made, the results m a y be used t o predict c y l i n d e r shapes a n d o r i e n t a t i o n t h a t are l i k e l y t o experience significant t a n k - c o n f i n e m e n t effects o n pressures a n d forces.

A C K N O W L E D G E M E N T S

T h e a u t h o r is g r a t e f u l t o M r G.S. B e n n e t t a n d D r C . M . L i n t o n f o r p r o v i d i n g c o m p u t e r code a n d t o D r G . P . T h o m a s f o r h e l p f u l c o m m e n t s .

R E F E R E N C E S

1. Spring, B.W. & Monkmeyer, P.L., Interaction of plane waves with a row of cylinders. Proc. of the 3rd Speciality Conference on Civil Engng in Oceans, ASCE, Newark, Delaware, USA, 1975, 979-98.

2. Yeung, R.W. 8L Sphaier, S.H., Wave-interference effects on a truncated cylinder i n a channel. / . Engng Math., 23, (1989) 95-117.

3. Yeung, R.W. & Sphaier, S.H., Wave-interference effects on a floating body in a towing tank. Proc. PRADs '89, Varna, Bulgaria, 1989.

4. Thomas, G.P., The diffraction of water waves by a circular cylinder in a channel. Ocean Engng, 18 (1991) 17-44. 5. Linton, C . M . & Evans, D.V., The radiation and scattering

of surface waves by a vertical circular cylinder i n a channel. Phil. Trans. R. Soc. Lond. A, 338 (1992) 325-57. 6. Mclver, P. & « nnett, G.S., Scattering of water waves by axisymmetric bodies in a channel. J. Engng Math., (in press).

(13)

7. Batchelor, G.K., An Introduction to Fluid Dynamics. University Press, Cambridge, 1967.

8. Crighton, D . G . & Leppington, F.G., Singular perturba-tion methods i n acoustics: diffracperturba-tion by a plate of finite thickness. Proc. R. Soc. Lond. A, 335 (1973) 313-39. 9. Abramowitz, M . & Stegun, I . A . , Handbook of

Mathema-tical Functions. Dover, New Y o r k , 1965.

10. Mei, C C , The Applied Dynamics of Ocean Surface Waves. Wiley-lnterscience, New Y o r k , 1983.

11. Lamb, H . , Hydrodynamics, 6th edn. University Press, Cambridge, 1932.

12. Milne-Thomson, L . M . , Theoretical Hydrodynamics, 5th edn. Macmillan, 1968.

13. Butler, B.P. & Thomas, G.P., The diffraction of water waves by an array of circular cylinders in a channel. Ocean Engng, (in press).

Cytaty

Powiązane dokumenty

„szkół badawczych“ inne ma dziś niż dawniej podstaw y —■ różnią się one między sobą nie tyle odm iennością „teorii dzieła literac­ k iego“, ile

Urban Landscape Infrastructure: Strategizing green space for urban development.. Urban China,

Wyczuwam tu centralne miejsce rozważań, ponieważ medialna parafrazowalność stanowiąca nowy cel literatury jest typem komunikacji, którego literatura musi niejako nauczyć się

Artykuł umieszczony jest w kolekcji cyfrowej bazhum.muzhp.pl, gromadzącej zawartość polskich czasopism humanistycznych i społecznych, tworzonej przez Muzeum Historii Polski

W grupie eksperymentalnej znaleźli się uczniowie z różnym rodzajem niepełno- sprawności, co stanowić miało o różnorodności prowadzonych zajęć, które muszą być dostosowane

Ksiądz Profesor swoją formację teologiczną i humanistyczną spożytkował nie tylko dla dobra naszych studentów, ale także poprzez swe liczne publikacje, a zwła­ szcza

Type 2 active site shows the lowest activation barrier for the initial oxidative degradation but also the fastest reaction toward the carbamic acid, providing protection

[r]