• Nie Znaleziono Wyników

Concerted evolution of body mass and cell size : similar patterns among species of birds (Galliformes) and mammals (Rodentia)

N/A
N/A
Protected

Academic year: 2022

Share "Concerted evolution of body mass and cell size : similar patterns among species of birds (Galliformes) and mammals (Rodentia)"

Copied!
18
0
0

Pełen tekst

(1)

1

Downloadedfromhttp://bio.biologists.org/byguestonOctober3,2018

B io lo g yO p e n

©2018.PublishedbyTheCompanyofBiologistsLtd|BiologyOpen(2018)7,bio029603.doi:10.1242/bio.029603

RESEARCHARTICLE

Concertedevolutionofbodymassandcellsize:similarpatternsamong speciesofbirds(Galliformes)andmammals(Rodentia)

MarcinCzarnoleski1,*,AnnaMariaLabecka1,DominikaDragosz-

Kluska1,TomaszPis1,KatarzynaPawlik1,FilipKapustka1,WincentyM.Kilarski2a n dJanKozłowski1

ABSTRACT

Cells i z e p l aysa rolei n b o d y s i z e e volutiona n d e n v i ronment aladaptations.Addressingtheseroles,westudiedbodymassandcellsizei n G a l l i f o r m e s b i r d s a n d Rodentiam a m m a l s , a n d c o l l e c t e d publisheddataontheirgenomesizes.Inbirds,wemeasurederythr ocytenucleiandbasalmetabolicrates(BMRs).Inbirdsandmam mals,largerspeciesconsistentlyevolvedlargercellsforfivecelltypes(erythrocy tes,enterocytes,chondrocytes,skinepithelialcells,andkidneyproximalt ubulecells)andevolvedsmallerhepatocytes.Wefoundnoevidenceth atcellsizedifferencesoriginatedthroughgenomes i z e c h a n g e s . Wec o n c l u d e t h att h e o r g a n i s m -

w i d e coordinationo f c e l l s i z e c h a n g e s m i g h t b e a n e volutiona rilyconservativecharacteristic,a n d theco nvergente volutionaryb o d y sizeandcellsizechangesinGalliformesandRodentiasuggesttheada ptivesignificanceofcellsize.Recenttheorypredictsthatspeciesevolvinglarge rcellswastelessenergyontissuemaintenancebuthavereducedc a p acitiest o d e l i vero x y g e n t o m i t o c h o n d r i a a n d metab olizeresources.I n d e e d , b i r d s w i t h l a r g e r s i z e o f t h e abov ementionedcelltypesandsmallerhep atocyteshaveevolvedlower mass-

specificBMRs.Weproposethattheinconsistentpatterninh e p atocytesd e r i vesf romt h e e f f i c i e n t d e l i verysystemt o hepatocytes,c o m b i n e d w i t h t h e i r i n t e n s e i n volvementi n supracellularfunctio nandanabolicactivity.

KEYWORDS:Allometry,BMR,Bodysize,Concertedevolution,Interspec ificscaling,Karyoplasmicratio,Metabolicrate,Optimalcellsize,Species diversity

INTRODUCTION

Whethertheyarebacteria,protists,fungi,plantsoranimals,livingthing sh avee volveda p l e thorao f d i f f e rentb o d y p l a n s a n d l i f e str ategies,resultingindramaticdifferencesin bodymassamong spe cies.Weknowsurprisinglylittleaboutthecellularmechanismsinvolvedi ntheoriginofthisvariance.Theevolutionoflargerorsmallerorgan ismscanoccursimplythroughchangesincellnumber,whichshould helppreservethefundamentalphysiologicalcharacteristicsofsinglecel lsinabody.However,achangeincellnumbermayaffectphysiological performanceifthenumberofcells

1InstituteofEnvironmentalSciences,JagiellonianUniversity,Gronostajowa7,30- 387Kraków,Poland.2InstituteofZoology,DepartmentofBiologyandCellImaging,Jagielloni anUniversity,Gronostajowa9,30-387Kraków,Poland.

*Authorforcorrespondence(marcin.czarnoleski@uj.edu.pl)M.

C.,0000-0003-2645-0360;A.M.L.,0000-0002-8810-7093

ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense(h ttp://creativecommons.org/licenses/by/3.0),whichpermitsunrestricteduse,distributionandreprod uctioninanymediumprovidedthattheoriginalworkisproperlyattributed.

Received6 September2 0 17 ; A c c e p te d 7 March2018

inanorganaffectsorganfunctionoriftissuemaintenancedependsoncellnu mberandcellsize.Accordingtothetheoryofoptimalcellsize(TOCS) (Atkinsonetal.,2006;Czarnoleskietal.,2015a,2016;Davison,1956;Kozłows kietal.,2003;Szarski,1983),cellsizeisoptimizedaccordingto th eor gan is m’srequirements,a nd i ts adaptivevaluedependsontheco stassociatedwiththemaintenanceofthecellmembraneandtheca pacityofthecelltoperformphysiologicalfunctions.Tomaintainthefuncti oningofcellmembranes,anorganismdevotessubstantialamountsofener gytothemaintenanceofthephysicalpropertiesofcellmembranes(England Attwell,2015)andtothegenerationofelectro-

chemicalpotentialsacrosstheirsurface(RolfeandBrown,1997).

Allelsebeingequal,energeticdemandperunitmassshould be lowerinlargerorganismsifbodymassevolvesinconcertwithcellsize.

Alargerbodythatconsistsofnotonlymorebutalsolargercellshasasmaller amountofcellmembranesperunitoftissuemass,whichshouldl ow eri t s metabolicc o stsp e r unito f b o d y m a s s . Nevertheless,or ganswithlargecellsareexpectedto metabolizeata s lowerratet h a n a reo r g a n s w i t h s m a l l c e l l s b e c a u s e o f t h e smallersurfacear eaofcellsavailablefortheexchangeofsubstratesandp roducts,t h e l o n g e r d i stancesi n volvedi n i n t racellulardiffusion,a n d t h e f ewer n u cleif o r t ranscriptioni n o r g answ i t h largecells(Czarnoleskieta l.,2015b).

Todate,theTOCShasbeenusedtoaddresstheoriginofcellsizevariancei n e c t o t hermsexposedt o e n v i ronmentalg radients(Czarnoleski etal.,2015b;Walczyńskaetal.,2015),andinectothermsa n d e n do thermsc h a racterizedby d i f f e rentm e tabolicrates(Hermaniuketal.,2 017;Maciaketal.,2011,2014;Starostováetal.,2013).Mostofthestudiesonth esetopicshavefocusedononecelltypeandgeneralizedtheirresultstoor ganism-

widetrendsincellsize,butsoundconclusionsregardingthecellulararc hitectureofanorganismrequireinformationaboutthecellsizesindiffere ntbodypa rt sa ndont he cell s i z e s o r i g i n atingfromd iff erentge rmlayers.Toaddressthisproblem,westudiedthebodymassandsizeofe rythrocytes,chondrocytes,hepatocytes,enterocytes,epithelialskinc ellsandkidneycellsindifferentspeciesofGalliformesbirdsandRodentia mammals.Wealsom e a s u redn u c l e i int h e erythrocytesofbird s,andusedthedatabasebyGregory(2017)toextractpublisheddatao nthegenomesizesofthestudiedspecieswhereavailable.Wefirstai medtoexaminewhetherspeciesdivergedw i t h respectt o c e l l s i z e a n d w h e t h e r t h i s d i vergenceinvolvedcoordinatedchangesi ncellsizeindifferenttissuetypes(hypothesisI ) . FollowingG re g o r y ( 20 0 1 ) a n d K o z łowskie t a l .

( 2 0 0 3 ) , wep redictedt h ats u c h e volutioni n volvesa l t e rationsi n genomesize.Toexplorethisidea,weexaminedlinksbetweenthesize so f c e l l s,n u c l e i a n d g e n o mes.Wea l s o c o m p a redt h e karyopl asmic(nu cleus-to-

cells i z e ) ratiosof e r y t h rocytesa m o n g birdspecies.Followingthee videnceofCavalier-

Smith(2005),weexpectednovarianceinthisratio.Next,wetestedw hetherinterspecificdifferencesinbodymassevolvedinassociationw ith

(2)

B io lo g yO p e n

RESEARCHARTICLE BiologyOpen(2018)7,bio029603.doi:10.1242/bio.029603

changesincellsize(hypothesisII)orexclusivelythroughchangesinthen umberofcells.NotethatifhypothesisIholds,wemightthenexpectthatbodym assevolvedwithaninvolvementoforganism-

widechangesincellsize.Finally,focusingonbirds,wemeasured

Table1.Cellsizeunderwentcoordinatedchangesindifferentcelltypes,andthepat ternofthesechangeswassimilarinRodentiaandGalliformes

Organ/ Rodentia Galliformes

basalmetabolicrates(BMRs)inthesameindividualsforwhichwe

collectedinformationaboutcellsize.Inthisway,weexamineda Celltype tissue PC1 PC2 PC1 PC2

predictionregardingtheTOCSstatingthattheevolutionoflarge- celledspeciesshouldbeassociatedwithlowermass-

specificcostsoft i s suem a intenance( h y p o t h esisI I I )

( K o z łowskie t a l . , 2 0 0 3 ) . Notet h ati f h y p o t h esisI I h o l d s , t h e n f o l l owingh y p o t h e s i s I I I , BMRsshouldincreasewithb odymassataratiooflessthan1:1

Erythrocytes Blood 0.77 0.07 0.61 0.68

Enterocytes Duodenum 0.89 0.28 0.59 −0.58

Proximaltubulecells Kidney 0.90 0.30 0.88 −0.21

Epithelialcells Skin 0.99 0.13 0.72 0.27

Chondrocytes Trachea 0.89 −0.27 0.89 0.35

Hepatocytes Liver −0.61 0.77 −0.54 0.74

(negativeallometricscalingwithmass),whichwouldcorrespondto lowermass-specificBMRsinlargerspecies.

%ofexplained variance

72 14 52 26

RESULT S

Accordingtoourprincipalcomponentanalysis(PCA)

(Table1),inbothg roupso f a n i mals,t h e s izeso f e r y t h rocytes,e n t e rocytes,chondrocytes,e p i thelials k i n c e l l s a n d k i d n eyc e l l s l o a d e d positivelyonthefirstprincipalcomponent(PC1), andthesizeofhepatocytesloadednegativelyonPC1.Thispatternin dicatesthatacrossspecies,cellsinfivetissueshadpositivelycorrelat edsizes,andt h e s izeso f t h e s e c e l l s werei n verselyrelatedt o t h e s i z e o f hepatocytes.T h e s e c o n d p r i n c i p alc o m p onent( P C 2 ) m a i n l y explainedt h e p o s i t i vee f f ectso f h e p atocytes( m a m mals)o r t h e positiveeffectsofhepatocytesanderythrocytesandnegativeeff ectsofduodenalenterocytes(birds).Dataontherawmeasuresofcell sizeareprovidedinTableS1.

Intotal,thetwoprincipalcomponents(PCs)explained86%ofthe interspecificvarianceincellsizeinmammalsand78%inbirds.Themajorpar tofthisvariance,explainedbyPC1(72%inmammalsand52%inbirds) ,wasrelatedtointerspecificdifferencesinbodymass(Fig.1),asindicatedby positivecorrelationsbetweenthePC1scoresandbodymassinmamma ls(r=0.84,P=0.04)andbirds(r=0.97,P=0.006).Inotherwords,largerspecie shaveevolvedsmallerhepatocytes,butlargererythrocytes,chond rocytes,enterocytes,k id n eyc el ls a n d s k i n c e l l s . I nf o r m ationo n t h e correlationb e t weenb o d y m a s s a n d rawc e l l s i z e i s p rovi dedi n

Thenatureoftheserelationshipsisshownbytheloadingvaluesfromtheprincipalco mponentanalysisofcellsize.Principalcomponents(PCs)witheigenvalues>1arerep ortedhere.ScoresforPC1andPC2wereusedtointegrateinformationonthecoordin atedchangesincellsizeandinstatisticalanalysestoexaminetheconcertedevolutionb etweencellsizeandadultmassamongspecies.

TableS2.ThepartofinterspecificvarianceincellsizeexplainedbyPC2(14%

inmammalsand26%inbirds)wasunrelatedtobodymass‒

PC2scoresdidnotcorrelatewithbodymass(mammals:r=0.14, P=0.79andbirds:r=0.02,P=0.98).

Inb i r d s , k a r yoplasmicratiosf o r e r y t h rocytesd i f f e redsign ificantlyamongspecies(F4,20=8.40,P=0.001).Themeansizeso f e r y t h rocytesa n d t h e i r n u cleiweren o t c o r relatedacrossspecies(r=

0.20,P=0.75;Fig.2A).Inthetwospeciesofbirdsforwhichweobtaine dinformationaboutgenomesize,thespecieswiththelargergenomehadslightl ylargererythrocytenucleiandsmallererythrocytes(Fig.2A),althought hisdifferenceismostlikelynotstatisticallysignificant.Inthefourspe ciesofmammalsforwhichweh a d i n f o r m ationo n g e n o mes i z e , g e n o m e s i z e wasn o t significantlyc o r relatedw i t h c e l l s i z e f o r P C 1 ( r = 0 . 5 7 , P =0.43;Fig.2B)orPC2(r=0.12,P=0.92).

Inbirds,BMRincreasedwithbodymass(r=0.996,P=0.0003;

Fig.3A).Themass-scalingexponentwas0.827,indicatinga

Fig.1 . I n b i r d s a n d m a m m a l s , l a r g e r s peciesh avee volveds m a l l e r h e p atocytesb u t l a r g e r e r y t h rocytes,c h o n d rocytes,e n t e r o c y t e s , k i d n eyc e l l s andskincells.Linesrepresentthestandardizedmajoraxis(mammals:y=−2.36+1.159x;birds:y=−4.72+1.940x).Symbolsrepresentthespeciesme anscalculatedfromthedataforfiveindividualsandaremarkedwithinitialsforeachspeciesname.Mammals:Ma,Microtusarvalis;Mc,Myocastorcoypus;Mg,

Myodesglareolus;Mm,Musmusculus;Ps,Phodopussungorus;Rn,Rattusnorvegicus.Birds:Ac,Alectorischukar;Cc,Coturnixchinensis;Cj,Coturnixjaponica;Pc,Phasi anuscolchicus;Pp,Perdixperdix.PC1isthefirstprincipalcomponentintheprincipalcomponentanalysisofcellsize.ScoresforPC1wereusedtointegrateinformationonthec

(3)

oordinatedchangesincellsize.Arrowsindicatetheloadingvaluesforcellsizeindifferentorgans/tissuesfromPC1(seeTable1),demonstratingthenatureofcellsizerelations hips.

(4)

B io lo g yO p e n

RESEARCHARTICLE BiologyOpen(2018)7,bio029603.doi:10.1242/bio.029603

Fig.2 . I n b i r d s ( A ) , t h e s i z e o f e r y t h rocytesd i d n o t cor relatew i t h t h e s i z e o f e r y t h r o c y t e n u c l e i , a n d i n mammals( B ) , c e l l s i z e d i d n o t c o r r e l atew i t h g e n o m e size(C-value).Dataaboutgenomesize(C-

value;pg)wereavailableforonlytwobirdspecies,andtheyares howninAneartheinitialsofthespecies.C-

valueswerenotavailablefortwospeciesofmammals.Symbols arespeciesmeans,markedwiththeinitialsforeachspeciesnam e.PanelA:Ac,Alectorischukar;Cc,Coturnixchinensis;Cj,Cotu rnixjaponica;Pc,Phasianuscolchicus;Pp,Perdixperdix.PanelB :Mm,Musmusculus;Mc,Myocastorcoypus;Ma,Microtusarvali s;Rn,Rattusnorvegicus.PC1isthefirstprincipalcomponentinth eprincipalcomponentanalysisofcellsize.ScoresforPC1wereu sedtointegrateinformationonthecoordinatedchangesincellsiz e.Arrowsindicateloadingvaluesforcellsizeindifferentorgans/ti ssuesfromPC1(seeTable1),demonstratingthenatureofcellsiz erelationships.

negativeallometric relationship(0.703and0.973werethelower andu p p e r l i mitse stimateda s 9 5 % c o n f i d e n cei n t e r v a l s ) . M a s s -

specificm e t a bolicrateso f b i r d s weren e g ativelyrelatedt o P C 1 sc ores(r=−0.90,P=0.036;Fig.3B).Thus,largerbirdsthatevolvedsmallerh ep atocytesandlarg ererythrocytes,chond rocytes,enterocytes,s k i n c e l l s andkidneyc e l l s werec h a racterizedb y lowermass- specificmetabolicrates.Notethatalowresidual

varianceintherelationofBMRandPC1tobodymassmakesitdiffi cultt o exploret he m e tabolice ff e c t s o f P C 1 i n d e p e n dento f bod ymass.PC2scoreswerenotrelatedtomass-

specificmetabolicrates(r=0.16,P=0.80).

DISCUSSION

InGalliformesbirdsandRodentiamammals,specieswithalargerbody massareconsistentlycharacterizedbylargercellsforfivecelltypes(erythro cytes,enterocytes,chondrocytes,skinepithelialcells,kidneyp roximalt u b u l e c e l l s)a n d b y s m a l lerh e p atocytes.T h i s patterncalls atten tiontofourimportantph enomena,wh ich haveoftenbeenmisse dbyearlierstudiesbutcanhelpusgainabetterunderstandingofthen atureoftheevolutionaryprocessesthatdrivetheoriginofdifferencesintr aitsbetweenspecies.

Thefirstphenomenonwefounddemonstratesthatspecieshaveevo lvedc e l l s w i t h d i f f e rents i z e s , a n d t h i s e volutionaryc h a n g eshowsanorganism-

widedistribution,indicatingthatthecellular architectureofti ss u e sh a s evolvedin a coordinatedmann er throughouttheentirebod yratherthanoccurringonlyinindividualorgans.Previously,coordin atedchangesinthesizesofdifferenttypesofcellshaverarelybeenstudie d,buttheyhavebeenfound,eitheraspartofanevolutionaryorphenot ypicallyplasticprocess,inflies (A ze vedo etal., 2002;Czarnol eskiet al.,2016;Heinrichetal.,2011;Stevensonetal.,1995),reptiles(C zarnoleskietal.,2017),amphibians,birds,mammals(Kozłowskietal.,20 10;Maciaketal.,2014)andplants(Brodribbetal.,2013).Altogether,thise m e r g i n g e v i d e n c e s u g g e stst h ata n o r g a n i s m- widecoordinationo f c h a n gesi n c e l l s i z e m i g h t b e a n e volutio narilyconservedpropertyoforganisms.Atthemolecularlevel,theev olutionofcoordin atedchangesincellsizeisli kelytoinvolvealt erationsinthesignalingpathwaysthatcontrolandsynchronizecellula rgrowtha nd proliferationratesi n d iff erentt i s s u e s du r i ng develo pment,mostlikelytheTOR(targetofrapamycin)andinsulinregulatorypath ways(DeVirgilioandLoewith,2006;Grewal,2009;Montagneetal.,1999).Alt ernatively,butnotmutuallyexclusiveof

(5)

B io lo g yO p e n

RESEARCHARTICLE BiologyOpen(2018)7,bio029603.doi:10.1242/bio.029603

Fig.3.Inbirds,metabolicrateincreasedallometricallywithbodymass

(A)andbirdswithsmallerhepatocytesandlargercellsintheotherfivetissu essampledhadlowermass-

specificmetabolicrates(B).Linesrepresentthestandardizedmajoraxis(A:y=1.

32+0.827x;B:y=7.11

−1.018x).Symbolsarespeciesmeanscalculatedfromdataforfive individualsandaremarkedwiththeinitialsforeachspeciesname:Ac,

Alectorischukar;Cc,Coturnixchinensis;Cj,Coturnixjaponica;Pc,Phasianuscolchic us;Pp,Perdixperdix.PC1isthefirstprincipalcomponentintheprincipalcomponentan alysisofcellsize.ScoresforPC1wereusedtointegrateinformationonthecoordinate dchangesincellsize.Arrows

indicateloadingvaluesforcellsizeindifferentorgans/tissuesfromPC1(see Table1),demonstratingthenatureofcellsizerelationships.

theroleofTOR/insulinsignaling,organism-

widechangesincellsizecanevolvethroughalterationsingenomes ize,e.g.viapolyploidizationorindel(insertion-

deletion)processes(Cavalier-

Smith,2005).Itishypothesizedthatcytologicalmechanismsregulat ethevolumeofacellbasedonthevolumeofitsnucleus.Giventhatth evolumeofanucleuslimitsthemaximumamountofDNAinacell,achange ingenomesizeshouldelicitachangeinthesizeofcellnuclei,whichshouldulti matelycorrespondtoachangeincellsize(ElliottandGregory,2015;G regory,2002;Kozłowskietal.,2003).Wearenotabletospecificallydeter

minewhichofthetwom e c h a n i s msp l ayeda m orei m p o r t a n t r olei n t h e c e l l u l a r

(6)

evolutionofthebirdsandmammalswestudied,buttheeffectsofgen omesizealoneseeminsufficienttoexplainthisevolutionarycha nge.Inbirds,wefoundevidencecontrarytotheideathatthesizeofc el ls evol vedintightassoci ationwi th th esizeofnucle i.Thekaryoplas micratiooferythrocytesdifferedbetweenspecies,andthesizeoferythroc ytesandtheirnucleiwerenotassociatedwitheachotheracrossspecies ,althoughweacknowledgethatt h e smallnumberofstudiedspecies mightdecreaseourstatisticalpowerfordetectings u cha n a s s o c i ation.N e vertheless,t h e s e i n t e r s p e cificpatternsdonotadhe retocommoncytologicalassumptionsaboutthetightassociationb etweenthesizesofcellsandtheirnucleiandthei n varianceo f k a r yopl asmicratiosi n n ature(Cavalier-

Smith,2005).Whenwecomparedspeciesofbirdsormammalsforwhic hweo b t a i n e d i n f o r m ationo n g e n o mes i z e , wed i d n o t f i n d a n y evidencethatlargercellsorcellnucleiwereassociatedwithl argergenomes.However,thesenegativeresultsshouldbetreated withcautionbecauseonlyasubsetofthestudiedspecieshadavailab ledataongenomesize.Additionally,thepublisheddataongenome sizewereo b t a i n e d f romd i f f e renti n d i v i d u a lst h a n t h e o n e s westudied,andcellsizeandgenomesizeareknowntovarynoto nlyamongb u t a l s o w i t h i n s p e c i e s . H owever,n o t f i n d i n g statisticalconnectionsbetweencellsizeandthesizeofgenomesorcellnucl eimightalsoberevealing–

itislikelythatsomespeciesevolvedcellsizedifferencesthroughalteratio nsingenomesize,whereasinotherspecies,theevolutionofcellsizeinvolved changesinthepropertiesoftheTOR/insulinpathwayswithoutachangei ngenomesize.Wespeculatethatifdecreasesandincreasesingenomesize donothaveequalconsequences(e.g.deletionsresultinahigherrisk ofgenelossthaninsertionsorgenomemultiplications;thenumberofge necopiesaffectsthebiochemicalfunctionofcells),thentheevolutionofc ellsizeinonedirectionwouldproceedmostlythroughchangesing e n o mes i z e , b u t c h a n gesi n t h e o t h e r d i rectionw o u l d o c c u r thro ughalterationsinTOR/insulinsignaling.

Oursecondfindingindicatesthatchangesincellsizeindifferentspecies evolvedintightconnectionwithchangesinbodymass;achangei ncellsizewasapartoftheme chanismin volvedintheevolution ofadultmass.Theroleofchangesincellsizeineitherevolutionary o rp h e n o t y p icallyp l a sticc h a n gesi n b o d y s i z e h a s beensug gestedbyearlierstudies(Adrianetal.,2016;Czarnoleskiet al., 2013, 2015b;H es sen et al., 2013 ;S ta rostováetal., 2005 ;Partrid geetal.,1999),butrarelyhasthisrolebeendemonstratedsimulta neouslywithreferencetoinformationaboutdifferentcelltypes(

b u t s e e K o z ł ow s k i e t a l . , 2 0 1 0 ; S t e vensone t a l . , 1 9 9 5 ) . Unlikeeutelicorganisms,whichhaveconstantcellnumbers,such asrotifers,n e m atodesa n d s p r i n g t a i ls( VanVoorhies,1 9 9 6 ; W a l c z y n ́ s k a e t a l . , 2 0 1 5 ) , d e velopmentalc o nstraintsl i n k i n g t h e growtho f a b o d y w i t h t h e g rowtho f c e l l s c a n n o t explaint h e concertedevolutionarychangesincellsizeandbodymas sinnon-

eutelicvertebrates.Theresultsofan artificialselect ion studyon micede mon stratedt h atce ll s i z e i n d i f f e rentti s suesh a s e volv edindependentlyofbodymass(Maciaketal.,2014),indicatingth atcellsizeandbodymassinnon-

eutelicorganismshavethefreedomtoevolveindependently.

Accordingtoourthirdfinding,cellsizeandbodysizeevolvedinconcert i n a s i m i l a r m a n n e r i n b i r d s a n d m a m m a l s d e s p i t e t h e independentevolutionaryhistoriesofbothg roups.Weviewth isevolutionaryconvergenceasanindicationthatconcertedevolutionb etweencellsizeandbodymassisnotneutral,demonstratingtheeffe ctsofnaturalselectionratherthanrandomchanges.Supportingthisadap tiveview,DrosophilamelanogasterMeigen,1830evolvedsimilarlatit udinalc l i n e s inc e l l size,bodys ize,andt h e characteristicso f t h e i r TOR/insulinp athwayso n t h e A u stralian

(7)

B io lo g yO p e n

RESEARCHARTICLE BiologyOpen(2018)7,bio029603.doi:10.1242/bio.029603

andNorthAmericancontinentsdespitetheindependentoriginsofthet w o c l i n e s ( D e J o n g a n d B o c h d a n ov i t s , 2 0 0 3 ; Fabiane t a l . , 2012;Paabyetal.,2010).Questionsremainregardingthistopic.Forexample, whataretheselectiveadvantagesanddisadvantagesofagivencellsize, andwhyhavelargerspeciesevolvedlargercells?

Basedo n i n f o r m ationa b o u t t h e B M Rso f t h e studiedb i r d s , we foundthatlargerspecies,whichhaveevolvedlargercells(atleastinfivet i s s u e s ) , h aves i m ultaneouslye volvedl owerm a s s -

specificBMRs.Asimilarpatternininterspecificdifferencesinbodymas s,cells i z e a n d standardm e tabolicratesh a s a l s o b e e n f o u n d i n ectothermica n i m a l s , e . g . M a d a g a s carg e c kos( S t a rost ováe t a l . , 2009).Additionally,large-celledtriploidshavelowermass- specificmetabolicratesthandosmall-

celleddiploidsinCobitisfish(Maciaketal.,2011)andPelophylaxfrog s(Hermaniuketal.,2017).Theevidencef oran e gativea s s o c iation b e t weenc e l l s izea nd m a s s -

specificmetabolicrateagreeswiththepredictionoftheTOCSthatabodyb uiltfromlargercellshasarelativelyloweramountofcellmembran esa n d , t h e refore,wastesrelativelyl e s s e n e r g y o n maintaining operationalcellmembranes,i.e.inadesiredphysicalande l e c troche micalstate( C z a r n o l es k i e t a l . , 2 0 1 5 a ; K o z łowskietal.,2003;

Szarski,1983).Savingonmaintenancecostsbyincreasingcellsizewou ldbeadvantageousfororganismsthatfacesupplyli mi t ation.H owever ,l a r g e c e l l s c a n i mp ai r p h ysiologicalactivitybydecreasingthetotal exchangeareaofcellmembranesanddecreasingthediffusionefficiency withincells,butsuchdisadvantagesoflargecellsshouldbeofale sserimportanceforsupply-

limitedorganisms.ThishypothesisoftheTOCSpredictsthatlarg e-

celledorganismshavedecreasedphysiologicalefficiency,especiallyw h e n t h eya rec h a l l e n g e d b y a n i n c reasedm e t a b o l i c demand, e . g . c a u sedb y i n c reasesi n p h ysical( c atabolic)o r biosynthetic(a nabolic)work.Insupportofthishypothesis,acomparativestudyofthero tiferKeratellacochlearis(Gosse,1851)indifferentlakesandalongagradien tofwaterdepthsrevealedthatlargerrotiferst h atc o n s i stedo f l a r g e r c e l l s o c c u p i e d c o o l a n d oxygenatedwaters(Czarnolesk ie t a l . , 2 0 1 5 b).A d d i t i onally,a n experimentalstudyoftherotife rLecaneinermis(Bryce,1892)showedthatlargerrotifershaveana dvantageinfertilityoversmallerrotifersincoldandoxygenatedwatersb utthatsmallrotifersthatconsistedofsmallercellshadsuperiorfertilityinwa rmandoxygen-

deficientconditions(Walczyńskaetal.,2015).Tounderstandthee volutiono f l a r g e r c e l l s i n l a r g ers p e c i e s , f u t u restudiess h o u l d investigatewhetherandwhysupplylimitationsincreasewithbodym assand sh ou l d be ba s e d on a widerangeof bo dy m a s s e s . An in triguingpossibilityisthatlargerspeciesbecomesupplylimitedbec ausetheyareselectedagainstoverinvestinginthenetworkofdistrib utionpathways,whichdeliveroxygenandnutrientstocellsandc o l le ctm e t a b o l i t e s f romc e l l s . Toovercomet h i s l i m i t ation,verteb rateswouldneedtodisproportionallyincreasethevolumesoftheirmainart eriesandthetotalamountofbloodrelativetotheirbodymass,which wouldphysicallyhandicaplargerorganisms.Itisnots u r p r i s i n g t h att h e t o t a l volumeo f b l oodi n a b o d y s c a l e s proportionallyw i t h b o d y m a s s , a n d c o nsequently,l e s s c a p i l l arybloodonaverage perfusesagiventissuevolumeinlargerorganisms(Dawson,2003,2005).

Accordingtoourfourthfinding,hepatocyteshaveundergoneanevolut ionarychangeinsizeintheoppositedirectionthanhavetheotherc e l l t y pes,a n d t h i s p atternwasc o n s i stentlyf o u n d i n t h e studiedbirds andmammals.Earlier,Kozłowskietal.

(2010)foundasimilarpatterninadiversegroupofmammalianspeciesbut notinamphibiansandbirds.Interestingly,Czarnoleskietal.

(2016)studiedc e l l s i z e diff erencesbet weent wo s ub s p e c i esof t he la nd snailCornuaspersum(O.F.Müller,1774)andfoundthatthesizeof

cellsintheirhepatopancreas,theanalogofaliverinvertebrates,fol lowedadifferentpatternthandidthesizesofothercelltypes.Macia ketal.

(2014)postulatedthatthesizeofcellsinatissuecanbefunctionallya s s o c iat edw i t h s u p racellularf u n c t i o n s a n d t h e catabolicversusana bolicactivityofatissue.FollowingtheTOCS,weenvisionthatcells izeismatchedtoabalancebetweenthemetabolicdemandandthesup plyofresourcesinatissue,butthisbalancechangeslocallyinabodya ccordingtothemetabolicactivityofatissueandthelocalcharacteristicsof thesupplysystem.Inf act,b o t h t h e l i veri n vertebratesa n d t h e h e p atopancreasi n mollusksarecharacterizedbyanespeciallyhighleve lofanabolicactivity,whichistoalargeextentdirectedtowardsustain ingthefunctionofothertissuesinthebody.Additionally,theliverappearst obeexceptionallywellsuppliedwithoxygenandresources:bloodreaches t h e liverviaa dualperfusionsystemthat,atl e a stin

mammals,receives∼ 25%o f t h e c a r d iaco u t p u t (Vollmara n dMenger,2009),andhepatocytesareindirectcontactwithhepatic capillaries(Kerr,2010).Finally,independentlyofothercellsinabo dy,h e p atocytesc a n u n d e rgoc h romosomalm u l t i p l i cations,wh icha l t e r s t h e i r s i z e a n d t ranslationalactivity( A n atskayaa n d V inogradov,2007,2010).

Ourworkprovidedcrucialinsightthatcellsizeshouldbegivengreate rc o n s i d e rationa s a n o r g a n i s malp ropertyt h atu n d e r g o es adaptivee volutionaryc h a n g e s a m o n g s p e c i e s . T h i s m a cro-

evolutionaryv i ewi s c o nsistentw i t h e m e rgingc o n c l u s i o nsfro mmolecularresearchth atcellsi zecont rolevolvedto optimize t h e metabolicactivityoftissueandorgansandultimatelytomaximizecellul arfitness(Miettinenetal.,2017).Althoughourdatasuggestthatcellsize, bodymassandmetabolicratescanundergoconcertedevolutionarychanges ,togainabetterunderstandingofthesephenomena,studiesofthecom plexcausallinksamongbodysize,cellsize,physiologicalefficiencyand fitnessareneeded.Ifcellsizeisd e m o nstratedt o affectm a i n t e n ancec o stsa n d o r g a n i s m a l performance,t h e n i t s c o n c e r t e d e volut ionw i t h b o d y m a s s a n d metabolicratesuggeststhatthecellular architectureofthebodyisadjusteda l o n g withm a n y o t hero r g a n i s malt raitst o meetthephysiologicals u p p l y a n d d e m a n d o f a g i venstrategy.T h i s interpretationa d d s an ewpe r s p e c t i vet o vie wson t h eb i o l o gicalsignificanceofcells.

MATERIALSANDMETHODS Animals

WestudiedfivespeciesofGalliformesbirdsandsixspeciesofRodentiam ammals,representingtwodistantlyrelatedordersofendotherms.Eachspe cieswasrepresentedbyfivemales.Thenumberofstudiedanimalswasdictatedby theextremelaboriousnessofthehistologicalandmicroscopicproceduresand thecellsizemeasurements.ThechoiceofGalliformesandRodentiawasmotivated bytheirindependentoriginsanddifferentiationintoawiderangeofspecieswithlargedif ferencesinadultmassbutminimalchangesintheirgeneralbodyplans.Inthisw ay,wemaximizedthestudiedrangeo f b o d y m a s s e s a n d m i n i m i z e d d i f f e rencesi n t h e b i o l o g y o f t h e studieds p e c i e s . Wewerea l s o a b l e t o a d d ressw h e t h e r c o n c e r t e d evolutionaryc h a n g e s i n c e l l s i z e a n d b o d y m a s s o c c u r redi n a s i m i l a r mannerindependentlyinthesetwogr oups.

Allthebirds[commonpheasant,PhasianuscolchicusLinnaeus,1758;chukarpartridg e,Alectorischukar(J.E.Gray,1830);greypartridge,Perdixperdix(Linnaeus,1758);Japanesequ ail,CoturnixjaponicaTemminckandSchlegel,1849;andkingquail,Coturnixchinensi s(Linnaeus,1766)]wereobtainedf romt h e f i e l d stationi n P t a s z kowoo f t h e O sŕodekH o d owliZwierzątŁ ownychi n Parzęczewo-

Cykowo,Poland.TherodentswereobtainedfromdifferentsourcesinPoland[

housemouse,MusmusculusLinnaeus,1758,fromtheJagiellonianCenterofExp erimentalTherapeuticsinKraków;Djungarianhamster,Phodopussungorus(Pallas,

(8)

1773),fromtheD e p a r t m e n t o f A n i m a l P h ysiologyo f t h e N i c o l a u s Copernicus

(9)

B io lo g yO p e n

RESEARCHARTICLE BiologyOpen(2018)7,bio029603.doi:10.1242/bio.029603

UniversityinToruń;

brownrat,Rattusnorvegicus(Berkenhout,1769),fromtheDepartmentofPharmacol ogyoftheMedicalCollegeoftheJagiellonianUniversityinKraków;bankvole,Myod esglareolus(Schreber,1780),andcommonvole,Microtusa r v a l i s ( Pallas, 1778),fromtheInstituteofEnvironmentalS c i e n c e s o f t h e J a g i e l l o n i a n U n i versityi n K raków;a n d coypu,Myocastorc o y p u s ( M o l i n a , 1782),fromthePniewyanimalhusbandryfacility].Theanimalsusedinthiss tudywereeuthanizedfollowingtheproceduresoftheinstitutionsfromwhich theanimalswereobtained,whichhadbeenapprovedbytheirlocalethicalcom mittees.Thebirdsandcoypuswereslaughteredaspartofcommercialmeatprodu ction.Otherrodentswereeuthanizedafterlaboratoryexperimentsinwhichthe yservedascontrolgroups.Thedonationofanimalmaterialandallproceduresusedint hisstudyfollowedregulationsofthePolishMinistryofScienceandHigherEducatio n.

Histologicalmethodsandcellsizemeasurements

Priortodissection,animalsweredeprivedoffoodforatleast12handthenweighedto thenearest0.01g(smallrodents),0.1g(birds),or1g(ratsandcoypu).Wetookblo odsamplesfromeachanimalwithheparinizedglasscapillaryt u b e s ( M e d l a b , R a s z y n , Poland)t o p repareb l o o d s m e a r s . ForGalliformes,blood wastakenfromthebrachialvein,andinrodents,fromthecaudalveinorjugularve in(onlycoypus).Bloodsmears weredriedandfixedwithmethanol(Avant orPerformanceMaterialsPolandS.A,Gliwice,Poland)andthenstainedwithGi ll’sIIIHematoxylin(Merck,Darmstadt,Germany)anda1%ethanolsolutio nofEosinY(hereafter,1%EosinY;Analab,Warszawa,Poland)forbirdsorwi th1%EosinYformammals.

Afterremovingfeathersorshavingthecoat,wecollectedaskinsamplefromb etweenthescapulaealongthedorsum.Wedissectedoutthemiddleparto f t h e t r achea,t h e c e n t ralp a r t o f t h e r i g h t l o b e o f t h e l i ver,t h e descendi ngpartoftheduodenumandthewholerightkidney.Thetissuesamplesw erefixedina10%bufferedsolutionofformaldehyde(BioOptica,Milano,Italy).Then,they weredehydratedinethanol(LinegalChemicals,Warszawa,Poland),c l e a redi n S T U l t ra( L e i ca , Wetzlar,G e r m a n y ) a n d embeddedinParaplastPlus(Le ica).Serialsections(4µmthick)werecutwithamotorizedrotarymicrotome(

HyraxM55;Zeiss,Oberkochen,Germany).SlideswerestainedwithGill’sIIIHe matoxylinand1%EosinYandmountedwithCVUltra(Leica).

Erythrocytesin bloo dsmears,t rachealcho nd rocytes,hep atocytesan d

duodenalenterocyteswerephotographedataresolutionof0.033µmperpix elunderalightmicroscope(Eclipse80i;Nikon,Tokyo,Japan)equippedwithac a m e ra(DigitalSight,Nikon)andLuciaMeasurementimageacquisitions o f t ware ( L i m L a b o ratoryI m a g i n g , P raha,C z e c h Republic)usinga 1 0 0 × - m a g n i f i c ationo i l i m m e r s i o n o b j e c t i ve.Cellsf romk i d n eyproximal tubulesandepithelialskincellswerephotographedataresolutionof1µmperpixelus inga40×-

magnificationobjectiveonanautomatizedlightmic roscope(BX5 1 VS; O l y m p u s , Tokyo,Japan )eq u ip ped w it h adigitalcamera(XC10,Olympus)and dotSlide(Olympus)imageacquisitionsoftware.T h e u s e o f t w o m i c roscopics ystems,i n c l u d i n g o n e t h atwasautomated,helpedtoexpeditethedigitizatio nofmicroscopicslidesanddidnotbiasourresultsbecauseweconsistentlyusedthesame systemtoanalyzeagiventissuetypeinallanimals.

Weu s e d i m a g e a n a l ysiss o f t waret o m e a s u rec e l l s : I m a g e J f ro mt h e NationalI n stituteso f H e a l t h ( U S A ) f o r J P E G i m a g e s f rom t h e N i koncameraandcellSensfromOlympusforaspecializedimageformatobtainedf romtheOlympuscamera.Weoutlined60randomlychosenerythrocytespera n imal a n d c a l c u l atedt h e i r areas( µ m2),w h i c h waso u r m e a s u reo f er ythrocytesize.Forbirds,weusedthesamemethodtomeasuretheareasoferythrocytenu clei.Weoutlinedrandomlychosenlacunaeinchondrocytesandcalculatedthe irareas(µm2),whichwasusedasameasureofchondrocytes i z e . I f c h o n d rocyteso c c u r redi n i s o g e n i c g roups,wemeasuredonechondrocyteper group.Cellbordersintheremainingtissueswereoftennotclearlyvisible.Follow ingthemethodsdevelopedbyWieczoreketal.(2015)andCzarnoleskietal.

(2016,2017),wemeasuredtheareasofcellgroupsintissuesamplesfromt heliver,duodenumand kidney(µm2)andthelengthsoflongitudinaltransectsof cellgroupsinskin(µm)samples.Aftercountingthenucleiwithinthemeasuredareasora longeachtransect,wecalculatedtheaveragecellsizebydividingtheareao rtransectlengthbythenumberofnuclei.Tooutlineareasformeasurement,

demarcationlinesbetweenhepatocytesinliversamplesweredrawnequidis tancebetweenneighboringnuclei.Induodenumsamples,weconsidere do n l y e n t e rocytesi n t h e e p i t h e l i a l m u c o u s m e m b ranei n t h e mi ddlepartofvilli.Weusedthebasementmembraneandtheapicalsurfacesofcellsasthelower andupperbordersoflayers,respectively,andtwocellnucleiattwoendsofthelayer asthebeginningandtheendofthelayer.Inkidneysamples,weoutlinedthecross- sectionalareasofproximaltubules(withoutthelumen).Inskinsamples,wecon sideredepithelialcellsofthebasallayer,whichformedlongitudinaltransects.Theend sofatransectweredefinedbytwonuclei,oneateachendofthelineartransectofn uclei.Wemeasuredthefollowingnumberofcellsperindividual‒

birds:52-71intrachea,88-274inlivers,46-257induodenums,332- 521inkidneysand2-

102i n s k i n ; m a m m a l s : 3 7 - 8 9 i n t rachea,7 0 - 2 3 8 i n l i vers,3 7 - 2 9 5 i n

duodenums,9-600inkidneys,13-

166inskin.Finally,wecalculatedtheaveragesizeofeachcelltype(andthe meansizeofnucleiinbirderythrocytes)foreachanimal.Additionally,wec alculatedmeankaryoplasmicratiosforerythrocytesineachbird.

InformationaboutC-values,whereC-valueistheamountofDNAina haploidc e l l ( pg),i n t h e studieds p e c i e s waso b t a i n e d f roma n o n l i n e database(Gregory,2017).IfmorethanoneestimateoftheC- valuewasavailableforaspecies,wecalculatedthemeanC-

value.WefounddataonC-

valueintwospeciesofbirdsandfourspeciesofmammals.Therefore,thedataforbirdswer eusedonlyfordescriptivepurposes,whereasthedataformammalswereanalyzedst atistically.

Respirometryinbirds

Wemeasuredoxygenconsumptionrates(cm3O

2/h)withaparamagnetican alyzerandcarbondioxideproductionrates(cm3C

O2/h)usingthenon- dispersiveinfraredanalysismethod(MAGNOS6GandURAS10E,respect ively,H a r t m a n n a n d B raun,A B B G roup,Z ü r i c h , S w i t z e r l a n d ) . Beforepassingthroughtheanalyzers,whichwereconnectedtoapersonalc omputer,incurrentairwaspassedthroughacolumnofanhydrous calciumchloride(CaCl2;CHEMPUR,PiekaryŚląskie,Poland).Birdsthat underwentm e t a b o l i c m e a s u rementsweret ransferredi n d o o r s f ro mt h e

breedingroom(kingquailandJapanesequail)orfromtheopenaviary(greypartridge,c hukarpartridge,andcommonpheasant)andwereacclimatedtothemeasurementco nditionsfor1h.Birdsweredeprivedoffoodduringthenightbeforethemeasurementsa ndwereweighedpriortorespirometry.Thebirdswereplacedinplasticchamberswi thvolumescloselymatchedtothesizeo f e achb i r d ( 1 . 2 -

2 5 . 0 l).C h a m b e r s w i t h b i r d s werep l acedi n a thermallyinsulated chamberwiththeambienttemperaturecontrolledtothenearest0 . 1 ° C ( E l m e t ro nP T -

2 1 7 d i g i t a l t h e r m o m e t e r , Z a b r z e , Poland).Airflowthroughthe metabolicchamberwasstabilizedwithamassflowmeter(β-

ERG,Warszawa,Poland)at700-

3000ml/min,dependingonthespecies.Therestingmetabolicrateatthermoneutralit y,representingtheBMR,wasdefinedasthelowest10minaveragemetabolicrateofe achbird.Ambienttemperaturesmatchingspecies-

specificthermoneutralzoneswereknownf rome a r l i e r studiesa n d werea s f o l l ows:t h e t e m p e raturewasmaintainedat35.5°Cforkingquail(Pisand Lusnia,2005),at30.5°CforJapanesequail(T.P.,unpublished),at25.0°Cforgre ypartridgeandchukarpartridge(Pis,2003,2010),andat21.0°Cforcommonphe asant(Góreckia n d N owa k , 1 9 9 0 ) . FollowingK l e i b e r ( 1 9 6 1 ) , weu s e d o u r m e a s u redrespiratoryquotientvaluestoexpressmetabolicratesi nmW.Thefollowingenergyequivalentso f1cm3of

O2wereado pted : 20.27 Jforkingquail,

19.95JforJapanesequail,20.08Jforgreypartridge,20.20Jforchukar partridge,and20.01Jforcommonpheasant.

Statisticalanalysis

Weu s e d t h e R S t atisticalPackagef o r t h e statisticala n a l yses( R Devel opmentCoreTeam,2011).The numberofstudiedspecies didnotallo wu s t o achievea s atisfactoryp owerf o r p h y l o g e n e t i c a l l y i n f o r m e d analyses(Garlandetal.,2005).Theanalysisofthekaryoplasmicratiosoferythr

(10)

ocyteswasperformedondatafromindividualbirds;otheranalyseswerep e rf o r med o n sp e ci e s m e an s , w h i ch werec al c u l atedf romd atafo rin dividualanimals.Tointegrateinformationoncellsizesindifferenttissue,weperforme daPCAonourc e l l sizedata,separatelyforbirdsandmammals.S co resfo rt h e mo stsig n i fican tPC s weref u r th e r u s ed asou rintegratedmeasures ofcellsizesindifferenttissues.

(11)

B io lo g yO p e n

RESEARCHARTICLE BiologyOpen(2018)7,bio029603.doi:10.1242/bio.029603

Then atureo f P C l o a d i n g s wasu s e d t o exploreh y p o t h e s i s I , w h i c h predictedt h att h e e volutiono f d i f f e rencesi n c e l l s i z e a m o n g s p e c i e s involvedc o o r d i n atedc h a n g e s i n t h e s i z e s o f d i f f e r entc e l l t y p e s . Furthermore,weexaminedw h e t h e r t h i s e volutioni n v olvedc h a n g e s i n genomes i z e / n u c l e u s s i z e . U s i n g i n f o r m ati ono n b i r d e r y t h rocytes,weanalyzedthecorrelationbetweenthesizeofe rythrocytesandtheirnucleiusingagenerallinearmodel(GLM)tocomp arekaryoplasmicratiosforerythrocytesa m o n g s p e c i e s . Wea l s o a n a l y z e d t h e c o r relationb e t weengenomesize(C-

value)andcellsize(thePCscores).TotesthypothesisIIabouttheinvolvement ofchangesincellsizeintheevolutionofbodysize,weexaminedt h e c o r relationb e t weenP C s c o resa n d b o d y m a s s ( l o g10-

transformed).Analyseswereperformedseparatelyforbirdsandmammals.Toexpl oreh y p o t h e s i s I I I , w h i c h p redictst h atl a r g e -

c e l l e d s p e c i e s h aveevolvedlowermass-

specificmetabolicrates,weexaminedthecorrelationbetweenthemass- specificBMRsofbirdsandtheirPCscores.Notethatthisanalysislargelyexplorestheinte gratedeffectsofcellsizeandbodymassif,asp redictedb y h y p o t h e s i s I I , c e l l s i z e a n d b o d y m a s s h avee volvedi n concert.Thehighlyconcertedevolutionofc ellsizeandbodymassmakesitimpossibletoreliablyassesstheindependenteffects ofcellsizeandbodymassonmetabolicrate.Finally,weusedaSMATRprocedure(W artonetal.,2006)tofitastandardizedmajoraxis(SMA)tothelog-

transformeddataforBMRandbodymass.Assumingapowerrelationshipbet weenBMRandbodymass,weusedthistoestimatethemass-

scalingofBMR.Forconsistency,wealsofittedSMAsfortherelationshipsbetweenP Cscoreandlog10bodymassandbetweenmass-specificBMRandPCscore.

Acknowledgements

AnimalswereobtainedcourtesyofB.DydymskiandM.Stokarczak(OśrodekHodowliZwie rzątŁownychinParzęczewo-

Cykowo),E.Kuś(JagiellonianCenterofExperimentalTherapeutics),M.Wojciechowski andM.Jefimow(DepartmentofAnimalPhysiology,NicolausCopernicusUniversity),S.C hłopicki(DepartmentofPharmacology,MedicalCollegeofJagiellonianUniversityandJagi ellonianCenterofExperimentalTherapeutics),P.Koteja,M.KruczekandE.Pochroń(Instit uteofEnvironmentalSciences,JagiellonianUniversity),andM.Biedziak(CoypuHusbandr yinPniewy).WethankK.Adamus-Fiszer,P.Kluska,L.Kuriańska-

Piątek,andE.Szmydforhelpduringthestudy.

Competingi n t e rests

Theauthorsdeclarenocompetingorfinancialinterests.

Authorcontributions

Conceptualization:W.M.K.,J.K.;Methodology:M.C.,A.M.L.,T.P.,W.M.K.,J.K.;Software:

F.K.;Validation:M.C.,A.M.L.,F.K.;Formalanalysis:M.C.;Investigation:A.M.L.,D.D.- K.,T.P.,K.P.;Datacuration:A.M.L.,F.K.;Writing-originaldraft:M.C.;

Writing-review&editing:M.C.,A.M.L.,D.D.-K.,T.P.,K.P.,F.K.,W.M.K.,J.K.;

Supervision:J.K.;Projectadministration:J.K.;Fundingacquisition:J.K.

Funding

TheresearchwassupportedbythePolishMinistryofScientificResearchandInformation Technology[1720/B/P01/2009/36]andfundsfromtheInstituteofEnvironmentalSciences JagiellonianUniversity[DS/BINOZ/INOS/757/2018].ThedevelopmentofTOCSwassupporte dbythePolishNationalScienceCenter[2016/21/B/NZ8/00303].

Supplementaryi n f o r mation

Supplementaryinformationavailableonlineathttp://bio.biologists.org/loo kup/doi/10.1242/bio.029603.supplemental

References

Adrian,G.J.,Czarnoleski,M.andAngilletta,M.J.Jr.

(2016).Fliesevolvedsmallbodiesandcellsathighorfluctuatingtemperatures.Ecol.Evol.

6,7991-7996.

Anatskaya,O.V.andVinogradov,A.E.(2007).Genomemultiplicationas adaptationtotissuesurvival:evidencefromgeneexpressioninmammalianheartandliver.Ge nomics89,70-80.

Anatskaya,O.V.andVinogradov,A.E.

(2010).Somaticpolyploidypromotescellfunctionunderstressandenergydepleti on:evidencefromtissue-

specificmammaltranscriptome.Funct.Integr.Genomics10,433-446.

Atkinson,D.,Morley,S.A.andHughes,R.N.(2006).Fromcellstocolonies:at whatlevelsofbodyorganizationdoesthe‘temperature-sizerule’apply?

Evol.Dev.8,202-214.

Azevedo,R.B.R.,French,V.andPartridge,L.

(2002).TemperaturemodulatesepidermalcellsizeinDrosophilamelanogaster.J.Ins ectPhysiol.48,231-237.

(12)

Brodribb,T.J.,Jordan,G.J.andCarpenter,R.J.

(2013).Unifiedchangesincellsizepermitcoordinatedleafevolution.NewPhytol.19 9,559-570.

Cavalier-Smith,T.(2005).Economy,speedandsizematter:evolutionaryforces drivingnucleargenomeminiaturizationandexpansion.Ann.Bot.95,147-175.

Czarnoleski,M . , Cooper,B . S . , K i e r at,J . a n d A n g i l l e t t a , M . J . ( 2 0 1 3 ) . F l i e s developeds m a l l b o d i e s a n d s m a l l c e l l s i n warma n d i n t h e r m a l l y f l u c t u atingenvironments.J.Exp.Biol.216,2896-2901.

Czarnoleski,M.,Dragosz-Kluska,D.andAngilletta,M.J.(2015a).Flies developedsmallercellswhentemperaturefluctuatedmorefrequently.J.Therm.Biol.5 4,106-110.

Czarnoleski,M. ,Ejsm ont - Karabin,J.,An gilletta,M.J. ,Jr.an dKozlowski, J.

(2015b).Colderrotifersgrowlargerbutonlyinoxygenatedwaters.Ecosphere6,art16 4.

Czarnoleski,M.,Labecka,A.M.andKozłowski,J.(2016).Thermalplasticityof bodys i z e a n d c e l l s i z e i n s nailsf romt w o s ubspecieso f Cornua s p e r sum .

J.Molluscan.Stud.82,235-243.

Czarnoleski,M . , L a b e c k a , A . M . ,S t a r o stová,Z . , S i k o rska,A . , B o n d a - Ostaszewska,E . , Woch,K . , K u b i čka,L . , K ratochvıl,L. a n d K o z l owski,J . (2017).Notallcellsareequal:effectsoftemperatureandsexonthesizeofdiffere ntcelltypesintheMadagascargroundgeckoParoedurapicta.Biol.Open.6,1149-1154.

Davison,J .

( 1 9 5 6).A n a n a l y s i s o f c e l l g rowtha n d m e t a b o l i s m i n t h e c rayfish (Procambarusalleni).Biol.Bull.110,264-273.

Dawson,T.H.

(2003).Scalinglawsforcapillaryvesselsofmammalsatrestandinexercise.Proc.R.So c.Lond.Ser.B.Biol.Sci.270,755-763.

Dawson,T.H.(2005).Modelingofvascularnetworks.J.Exp.Biol.208,1687-1694.

DeJong,G.andBochdanovits,Z.

(2003).LatitudinalclinesinDrosophilamelanogaster:bodysize,allozymefreq uencies,inversionfrequencies,andtheinsulin-

signallingpathway.J.Genet.82,207-223.

DeVirgilio,C.andLoewith,R.(2006).TheTORsignallingnetworkfromyeastto man.Int.J.Biochem.CellBiol.38,1476-1481.

Elliott,T.A.andGregory,T.R.(2015).What’sinagenome?TheC-

valueenigmaandtheevolutionofeukaryoticgenomeconte nt.Philos.Trans.

R.Soc.Lond.B.Biol.Sci.370,20140331.

Engl,E.andAttwell,D.(2015).Non-signallingenergyuseinthebrain.J.Physiol.

593,3417-3429.

Fabian,D.K.,Kapun,M.,Nolte,V.,Kofler,R.,Schmidt,P.S.,Schlötte rer,C.andFlatt,T.

(2012).Genome-

widepatternsoflatitudinaldifferentiationamongpopulationso f D rosophilam e l a n o g a s t e r f romN o r t h A m e r i c a . M o l . E c o l . 2 1 ,4748-4769.

Garland,T.,J r , B e n n e t t , A . F.a n d Rezende,E . L . ( 2 0 0 5 ) . P h y l o g e n e t i c approachesincomparativephysiology.J.Exp.Biol.208,3015-3035.

Górecki,A.andNowak,M.

(1990).DurchdieJahreszeitenbedingteThermoregulationsveränderungenb e i m Fasan( P h a s i a n usc olchicus).Z.Jagdwiss.36,236-243.

Gregory,T.R.(2001).Coincidence,coevolution,orcausation?DNAcontent,cell size,andtheC-valueenigma.Biol.Rev.76,65-101.

Gregory,T.R.(2002).Abird’s-eyeviewoftheC-

valueenigma:genomesize,cellsize,andmetabolicrateintheclassaves.Evolution5 6,121-130.

Gregory,T.R . ( 2 0 1 7 ) . A n i m a l G e n omeS i z e D atabase.S e e h t t p : //www.

genomesize.com.

Grewal,S.S.

(2009).Insulin/TORsignalingingrowthandhomeostasis:aviewfromtheflyworld.Int.J.Bi ochem.CellBiol.41,1006-1010.

Heinrich,E.C.,Farzin,M.,Klok,C.J.andHarrison,J.F.(2011).Theeffectof developmentalstageo n t h e s e n s i t i vityo f c e l l a n d b o d y s i z e t o h y p o x i a i n

Drosophilamelanogaster.J.Exp.Biol.214,1419-1427.

Hermaniuk,A.,Rybacki,M.andTaylor,J.R.E.

(2017).MetabolicrateofdiploidandtriploidediblefrogPelophylaxesculentuscorrelat esinverselywithcellsizeintadpolesbutnotinfrogs.Physiol.Biochem.Zool.90,230-239.

Hessen,D.O.,Daufresne,M . andLeinaas,H.P.(2013).Temperature-size relationsfromthecellular-genomicperspective.Biol.Rev.88,476-489.Kerr,J.B.

(2010).FunctionalHistology,2ndedn.Australia:MosbyElsevier.Kleiber,M.

(1961).TheFireofLife.NewYork:JohnWiley.

Kozłowski,J.,Konarzewski,M.andGawelczyk,A.T.

(2003).CellsizeasalinkbetweennoncodingDNAandmetabolicratescaling.Pro c.Natl.Acad.Sci.USA100,14080-14085.

Kozlowski,J.,Czarnoleski,M.,François-Krassowska,A.,Maciak,S.andPis,T.

(2010).Cellsizeispositivelycorrelatedbetweendifferenttissuesinpasserinebir dsandamphibians,butnotnecessarilyinmammals.Biol.Lett.6,792-796.

Maciak,S.,Janko,K.,Kotusz,J.,Choleva,L.,Boroń,A.,Juchno,D.,Kujawa,R., Kozłowski,J.andKonarzewski,M.

(2011).StandardMetabolicRate(SMR)isinverselyrelatedtoerythrocyteandge nomesizeinallopolyploidfishoftheCobitistaeniahybridcomplex.Funct.Ecol.25,1072- 1078.

Maciak,S.,Bonda-Ostaszewska,E.,Czarnoleski,M.,Konarzewski,M.and

Kozłowski,J.

(2014).Micedivergentlyselectedforhighandlowbasalmetabolicratesevolveddifferentc ellsizeandorganmass.J.Evol.Biol.27,478-487.

Miettinen,T.P.,C aldez,M . J . , K a l dis,P.a n d B j örklund,M . ( 2 0 1 7 ) . Cells i z e control-

a m e c h a n i smf o r m a i ntainingf i tnessa n d f u n c t i o n . B i o Essays3 9 ,1 700058.

(13)

B io lo g yO p e n

RESEARCHARTICLE BiologyOpen(2018)7,bio029603.doi:10.1242/bio.029603

Montagne,J . , S tewart,M .J ., S t o c ker,H . , H afen,E . , K o z m a , S . C . a n d Thomas, G.(1999).DrosophilaS6kinase:aregulatorofcellsize.Science285,2126-2129.

Paaby,A.B.,Blacket,M.J.,Hoffmann,A.A.andSchmidt,P.S.

(2010).IdentificationofacandidateadaptivepolymorphismforDrosophilalifehistoryby parallelindependentclinesontwocontinents.Mol.Ecol.19,760-774.

Partridge,L.,Langelan,R.,Fowler,K.,Zwaan,B.andFrench,V.

(1999).Correlatedresponsest o s e l e ctiono n b o d y s i z e i n D rosophilam e l a n o g a ster.Genet.Res.74,43-54.

Pis,T.(2003).Energymetabolismandthermoregulationinhand- rearedchukars(Alectorischukar).Comp.Biochem.Physiol.AMol.Integr.Physiol.136,757- 770.Pis,T.

(2010).Thelinkbetweenmetabolicrateandbodytemperatureingalliformbirdsi n t h e r m o n eutrala n d h e a t exposurec o n d i tions:t h e c l a s s i c a l a n d phylogeneticallycorrectedapproach.J.Therm.Biol.35,309-316.

Pis,T.a n d L u śnia,D .

(2 0 0 5).Growthratea n d t h e rm o regulationi n rearedk i n g quails(Coturnixchinensi s).Comp.Biochem.Physiol.AMol.Integr.Physiol.140,101-109.

RDevelopmentCoreTeam.

(2011).R:ALanguageandEnvironmentforStatisticalComputing.Vienna,Austria:RFou ndationforStatisticalComputing.

Rolfe,D.F.S.andBrown,G.C.

(1997).Cellularenergyutilizationandmolecularoriginofstandardmetabolicrateinm ammals.Physiol.Rev.77,731-758.

Starostová,Z.,Kratochvıl,L.andFrynta,D.

(2005).Dwarfandgiantgeckosfromthecellularperspective:thebiggertheanimal,thebigg eritserythrocytes?Funct.Ecol.19,744-749.

Starostová

,Z . , K u bičk a,L . , K o n a r z e w s k i , M . , K o z łowski,J . a n d K ratochvıl,L . (2009).Cellsizebutnotgenomesizeaffectsscalingofmetabolicrateineyelidgeckos .Amer.Nat.174,E100-E105.

Starostová,Z . , K o narzewski,M . , K o z łowski,J . a n d K ratochvil,L .

( 2 0 1 3 ) . Ontogenyofmetabolicrateandredbloodcellsizeineyelidgeckos:speciesfollowdiff erentpaths.PLoSONE8,e64715.

Stevenson,R.D.,Hill,M.F.andBryant,P.J.

(1995).OrganandcellallometryinHawaiianDrosophila:howtomakeabigfly.Proc.R.

Soc.B259,105-110.

Szarski,H.

(1983).Cellsizeandtheconceptofwastefulandfrugalevolutionarystrategies.J.

Theor.Biol.105,201-209.

VanVoorhies,W.A.(1996).Bergmannsizeclines:asimpleexplanationfortheir occurrenceinectotherms.Evolution50,1259-1264.

Vollmar,B.andMenger,M.D.

(2009).Thehepaticmicrocirculation:mechanisticcontributionsandtherapeutict argetsinliverinjuryandrepair.Physiol.Rev.89,1269-1339.

Walczyńska,A.,Labecka,A.M.,Sobczyk,M.,Czarnoleski,M.andKozłowski, J.(2015).TheTemperature-

sizeruleinLecaneinermis(Rotifera)isadaptiveanddrivenb y n u c l e i s i z e a d j u stme ntt o t e m p e raturea n d o x y genc o m b i n ations.

J.Therm.Biol.54,78-85.

Warton,D.I.,Wright,I.J.,Falster,D.S.andWestoby,M.(2006).Bivariateline- fittingmethodsforallometry.Biol.Rev.81,259-291.

Wieczorek,M.,Szafranska,P.A.,Labecka,A.M.,Lazaro,J.andKonarzewski, M.

(2015).Effectoftheabrasivepropertiesofsedgesontheintestinalabsorptivesurfaceandrest ingmetabolicrateofrootvoles.J.Exp.Biol.218,309-315.

Cytaty

Powiązane dokumenty

Śledzenie markerów akustycznych, pomiary odkształcenia lewego przedsionka (strain) Istotnym ograniczeniem tkankowej echokardiografii dople- rowskiej jest zależność prędkości

W grupie mężczyzn re- dukcja wszystkich zmiennych dotyczących tkanki tłuszczowej stanowiła istotny predyktor zmniejszo- nego ryzyka rozwoju cukrzycy w grupie poddanej modyfikacji

Taking into account tablet formulations prepared with both kinds of the excipients i.e., carrier and coating mate- rial (LS1 ñ LS12), the highest amount of the drug (92.93%)

In order to test whether laying date advance and clutch sizes decrease with the intensity of urbanization, we analyzed the timing of breeding and clutch size in relation to intensity

In a long-term eight-year study on the structure and function of aquatic communities in streams in Iceland, it was shown that some species of diatoms, chironomids and

The phenomenon of achieving smaller size at maturity at higher temperature through phenotypic plasticity in ectotherms is known as the temperature-size rule (Atkinson, 1994), while

In Galliformes birds and Rodentia mammals, species with a larger body mass are consistently characterized by larger cells for five cell types (erythrocytes, enterocytes,

Promień orbity planety jest stosunkowo niewielki (0,405 au), ale gwiazda jest bardzo słaba (ok. 0,3% jasności Słońca), więc spodziewamy się, że temperatura na powierzchni planety