• Nie Znaleziono Wyników

A numerical study on waves induced by wheel-rail contact

N/A
N/A
Protected

Academic year: 2021

Share "A numerical study on waves induced by wheel-rail contact"

Copied!
11
0
0

Pełen tekst

(1)

Delft University of Technology

A numerical study on waves induced by wheel-rail contact

Yang, Zhen; Li, Zili

DOI

10.1016/j.ijmecsci.2019.105069

Publication date

2019

Document Version

Final published version

Published in

International Journal of Mechanical Sciences

Citation (APA)

Yang, Z., & Li, Z. (2019). A numerical study on waves induced by wheel-rail contact. International Journal of

Mechanical Sciences, 161-162, [105069]. https://doi.org/10.1016/j.ijmecsci.2019.105069

Important note

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

(2)

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher

is the copyright holder of this work and the author uses the

Dutch legislation to make this work public.

(3)

InternationalJournalofMechanicalSciences161–162(2019)105069

ContentslistsavailableatScienceDirect

International

Journal

of

Mechanical

Sciences

journalhomepage:www.elsevier.com/locate/ijmecsci

A

numerical

study

on

waves

induced

by

wheel-rail

contact

Zhen

Yang,

Zili

Li

Delft University of Technology, Section of Railway Engineering, Stevinweg 1, 2628 CN, Delft, the Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: Wheel-rail contact Wave Rayleigh wave Crack Explicit FEM

a

b

s

t

r

a

c

t

Recentfiniteelement(FE)simulationshaverevealedthegenerationandpropagationofwavesinrailsurfaces inducedbywheel-railfrictionalrolling.Thesewaveshaverarelybeenaddressedintheliterature.Thispaper presentsanin-depthanalysisofthesewaves,aimingtogivenewinsightsintothecontactmechanics,aresearch area inwhichwaveshavegenerallybeenignored.Thestudyfirstcategorisesthesimulatedcontact-induced wavesaccordingtotheirgenerationmechanismsasimpact-induced,creepage-inducedandperturbation-induced waves.Thelinkbetweenthegenerationofperturbation-inducedwavesandthestick-slipcontactmechanism isthenexplored.Next,byexaminingtherailsurfacenodalmotionthatformsthewave,thecreepage-induced waveisdemonstratedtobeaRayleighwave;thisresultalsoshowsthattheexplicitFEmethodcaneffectively simulatephysicalcontact-inducedwavesandprovidereliabledynamiccontactsolutions.Finally,FEmodelling ispresentedtoinvestigatetheeffectsofsurfacecracksonthewaves,whichmaycontributetowave-basedcrack detection.

1. Introduction

The contact-induced wave phenomenon [1] has rarely been ad-dressedinthestudyofwheel-railrolling.Onepossiblereasonisthat thewavesinitiatedindynamicfrictionalrollingcontactandinfluenced bytheentirevibratingstructurescannotbereproducedbythebroadly usedcontacttheoriesbasedontheassumptionsofasteadystateanda halfspace,e.g.,Hertzcontacttheory[2]andKalker’stheories[3].The fundamentaldifficultyliesisthecombinationofthestronglynon-linear frictionlawandthedynamicsofthesolids.

Toourknowledge,wheel-railcontact-inducedwaveswerefirst men-tionedin[4],inwhichwheel-railfrictionalrollingcontactwassolved withan explicit finiteelement method (FEM). Goodagreement was achievedwhencomparingtheobtainedexplicitfiniteelement(FE) con-tactsolutionwithHertzcontacttheoryandKalker’sboundaryelement contactsolution,butasmallpressurefluctuationexistedintheFE re-sults.Thisfluctuationwasconsideredtobecausedbyhigh-frequency vibrationandwavepropagationinthewheelandrailcontinuabecause theFEcontactsolutionsintrinsicallyincludealltherelevantvibration modesofthestructuresandcontinuaandtheassociatedwave propaga-tions[5].

The explicit FEM has since been increasingly employed for the simulation of wheel-rail dynamic contact involving, for example, impact[6–15],flanging[16–18]andfriction-inducedinstability[19]. Theoverallpictureofthecontact-inducedwavepatternwasobserved whentheauthorsofthispapersimulatedthenon-steady-statetransition

Correspondingauthor.

E-mailaddresses:z.yang-1@tudelft.nl(Z.Yang),z.li@tudelft.nl(Z.Li).

ofwheel-railcontactfromasinglepointtotwopoints[18].Thewave wasfoundtobeinitiatednexttothejunctureoftheadhesionandslip regionsinthecontactpatch,wherethemaximumsurfaceshearstress islocated.Afterthisstudy,thewavesgeneratedbytheimpactsatan insulated rail joint [11] anda crossing [13] andthe waves caused bywheel-raillateralcreepage[19]werereproducedwithexplicitFE contact models. The explicit integration algorithm is considered to becomputationallyattractiveandnaturallysuitableforanalysingthe contact-inducedwavepropagationbecausethetotaldynamicresponse timethatmustbemodelledisonlyafewordersofmagnitudelonger thanthestabilitycriticaltimestep[20]andthecontactconditionsare updatedwithinasmalltimeinterval,whichfacilitatestheanalysisof high-frequencywavepropagation[21].

The aforementioned studies, however, only presented the wave phenomenaobservedinexplicitFEcontactsimulations.Thegeneration mechanismsandphysicalcharacteristicsofthesimulatedwaveshave not been examined. This study, in this context, first categorises the waves observed in theprevious explicit FE wheel-rail contact simu-lations accordingtotheirgenerationmechanismsasimpact-induced, creepage-induced andperturbation-induced waves.The possible link between thegenerationofperturbation-inducedwaves andthe stick-slipcontactbehaviouristhendiscussed.Afterthat,thestudyanalyses thephysicalcharacteristicsofthecreepage-inducedwaveobservedin

[19],confirmingthatthesimulatedwaveisaRayleighwave.Although theRayleighwavehasbeenextensivelyproposedtoenabledetection of thepresence of rail cracking [22,23], its practical application to

https://doi.org/10.1016/j.ijmecsci.2019.105069 Received15March2019;Accepted6August2019 Availableonline07August2019

(4)

Z. Yang and Z. Li International Journal of Mechanical Sciences 161–162 (2019) 105069 Fig.1. Impact-inducedwavepatterns(seealso theanimationsin[25]and[26]).

fielddetectionisstillunderdevelopment.This studyfinallypresents anexplicitFEwheel-railcontactmodelwithacracktoinvestigatethe influenceofcracksonthewaves,whichmaycontributetowave-based crackdetection.

2. Categorisationandgenerationmechanismsofthesimulated waves

The contact-induced waves discovered in the previous explicit FE wheel-rail contact studies may be categorised according to the generation mechanisms as impact-induced, creepage-induced and perturbation-inducedwaves.Thegenerationmechanismsoftheformer twoappeartobeevident:thesignificantdynamiceffectorkinetic en-ergy[24]inducedbythewheel-railimpactorlargecreepageresultsin largeoscillationsof thewheel/rail surfaceparticlesinthevicinityof thecontactpatch.Thelargelocaloscillationsthenpropagateandform regularwavepatterns.Thegenerationmechanismofthe perturbation-inducedwaveishoweverlessapparentbecausetheperturbationarises duringseeminglysteady-staterolling.

2.1. Impact-inducedwaves

Thepropagationofelasticwavesinevitablyoccursuponimpact[24]. ThecontourgraphsofFig.1presenttwoexamplesofwheel-rail impact-inducedwaves.Becausetheimpactexcitationisnormaltothe wheel-railcontactsurface,thenormal(out-of-plane)nodalvibrationvelocities playmuchmoreimportantrolesthanthetangential(in-plane)onesin theformationoftheimpact-inducedwave[11].Themagnitudeofthe normalnodalvelocityontherailsurfaces isindicatedbythecolour depthofthecontourgraphs;theleadingandtrailingedgesofthecontact patchcanthusbeidentifiedbytheblueandredcolours,respectively.

Fig.1(a)showsanimpact-inducedwaveproducedbysimulatingthe impactofawheelonaninsulatedrailjoint(IRJ);detailsofthemodelling werepresentedin[11].WhenthewheelrollsovertheIRJandhitsthe railendontheothersideofthejoint,animpact-inducedwaveoccurs attheleadingedgeofthecontactpatchandpropagatesforwardalong thewheelrollingdirection.Fig.1(b)showsanothercaseofan impact-inducedwaveproducedbythewheel-railtwo-pointcontacttransition

discussedin[18].Theimpact-inducedwavearisesatthesecondcontact patchontherailgaugecornerimmediatelyafterthewheelflangecomes into contactwith, orhits,therailgauge corner.Thegenerationand propagationoftheimpact-inducedwavesshowninFigs.1(a)and(b) canbemoreclearlyseenintheanimations[25]and[26],respectively.

2.2. Creepage-inducedwaves

When large wheel-rail creepage occurs, wave patterns embody-ing thealternationof thecompression intensificationandrelaxation

[18]maybegenerated.Twoexamplesofcreepage-inducedwavesare presentedinthecontour/vectordiagramsinFig.2.Fig.2(a)showsa creepage-inducedwavepatterncalculatedwiththeexplicitFE squeal-excitingcontactmodelpresentedin[19],inwhichthewheel-railrolling contactwithalargelateralmotionofthewheelissimulated;Fig.2(b) showsanothercreepage-inducedwavepatternobservedinthe simula-tionofthewheel-railtwo-pointcontacttransition[18],inwhichlarge creepageoccursatthefirstcontactpatchontherailtopwhentherolling wheelnegotiateswiththerailviaflangecontact.Theanimations corre-spondingtoFig.2(a)and(b)displayingthegenerationandpropagation ofthecreepage-inducedwavecanbefoundin[27]and[28], respec-tively.

In thecontour/vector diagrams in Fig. 2, themagnitudes of the normalrelativevelocitiesofthewheel/railnodesareindicatedbythe colourdepthwithinthecontactpatches,andthetangentialrelative ve-locitiesbetweenthewheelnodesandtherailnodes,i.e.,themicro-slip, areindicatedbythebluearrows.Thearrowspointinthedirectionof themicro-slip,andtheirlengthsareproportionaltothemagnitude.Both thenormalandtangentialnodalvelocitiescontributetotheformation ofthecreepage-inducedwave.Thecreepage-inducedwaveappearsto propagateparalleltothemicro-slipvectors,andthemicro-slipinthe compressionrelaxationarea(darkercolour)islargerthanthatinthe adjacentcompressionintensificationarea(lightercolour).

2.3. Perturbation-inducedwaves

Perturbation-inducedwaveshavealsobeenobservedinthe previ-ousexplicitFEwheel-railcontactsimulations:perturbationofthenodal

(5)

Z. Yang and Z. Li International Journal of Mechanical Sciences 161–162 (2019) 105069 Fig.2. Creepage-inducedwavepatterns(see alsotheanimationsin[27]and[28]).

velocitysuddenlyoccurswithinthecontactpatchandspreadsradially, consequentlydevelopingintoawavepattern.Themaindifferenceinthe perturbation-inducedwavecomparedwiththeformertwowavetypes isthattheperturbation-inducedwave,ortheperturbationtobe pre-cise,maybeinitiatedduringseeminglysteady-staterollingwithoutthe involvementofsignificantdynamiceffectscausedbyeitherimpactsor largecreepage.

Perturbation-inducedwavesarefoundtobeinitiatedeithercloseto theleadingedgeofthecontactpatch[11]orclosetothejunctureof theadhesion-slipregions[18].Twoanimationsofthegenerationand propagationofperturbation-inducedwavesarepresentedin[29]and

[30].Theperturbationinitiatesclosetotheleadingedgeofthecontact patchin[29]andatthejunctureoftheadhesion-slipregionsin[30]. TheanimationswereobtainedbyexplicitFEsimulationofwheel-rail frictionalrollingcontactwithoutwheellateralmotion(simulationcase 1in[19]).

Eachanimationconsistsoftwowindows:theupperwindowdisplays thesimulatedevolutionofthewheel-railrelativevelocitieswithinthe contactpatch,andthelowerwindowdisplaysthesimulatedevolution ofthenormalandtangentialvelocitiesoftherailsurfacenodeswithin theentiresolutionzone(aregionontherailtopsurfaceforwhichthe wheel-railcontactsolutionisoutput).Thewheel-railrelativevelocities (intheupperwindow)canclearlyindicatetherangeofthecontactpatch andtheadhesion-slipregionsandthusenabletheinitiationpositionof theperturbation tobelocated,whiletherailsurfacenodalvelocities (inthelowerwindow)canmoreclearlyshow thewavepropagation.

Figs.3(a)and(b),extractedfromtheupperwindowsoftheanimations in[29]and[30],respectively,showthegenerationprocessesofthetwo typicalperturbation-inducedwaves.Therangeofthecontactpatchis indicatedbythedashedblackovals,andtheinitialadhesionandslip regionsareroughlydividedbythedashedcurveswithinthecontact patch.TheintervalbetweeneachpairofconsecutivegraphsinFig.3as wellasthetimestepoftheanimationsin[29]and[30]is1μs.Notethat thetimestepsusedinalltheanimationsofthispaperaremorethan10 timeslargerthanthecomputationaltimestepusedinthesimulations. InFig.3,theperturbationoccursatinstantt2andgraduallyspreadsat instantst3∼t6.

Thedivisionoftheadhesionandslipregionscanbedetermined ei-therbythepresenceofmicro-slip,i.e.,micro-slipexistsonlyintheslip region,orbycomparingthewheel-railsurfaceshearstresswiththe trac-tionbound(theproductofthecontactpressureandcoefficientof fric-tion),i.e.,anelementisintheslipregionifitssurfaceshearstressequals thetractionbound,asindicatedinFig.4.Notethatattheinitiation loca-tionsoftheperturbation-inducedwaves,i.e.,closetotheleadingedgeof thecontactpatchandclosetothejunctureoftheadhesion-slipregions, thesurfaceshearstressisclose,butnotequal,tothetractionbound, asindicatedbythetwogreencirclesinFig.4;therefore,thecontact nodes/elementsoriginallyinadhesionattheselocationsaremorelikely toslipthanthoseelsewherewithanincreaseofthesurfaceshearstress oradecreaseofthetractionbound(oradecreaseofthepressurewhen

thecoefficientoffrictionisconstant).Thisphenomenonmayoccur dur-ingthedynamicfrictionalrollingcontactinwhichthecontactstresses varyperiodically[19].AsshowninFig.5anditscorresponding anima-tionin[31],ineachperiod,amovinglocalpeakofthesurfaceshear stress,indicatedbythegreenarrowinFig.5,startsattheleadingedge ofthecontactpatch,movestowardsthetrailingedge,andultimately ex-itstheadhesionregionatthejunctureoftheadhesion-slipregion.This localpeakorincreaseofthesurfaceshearstressappearscapableof caus-ingsuddenslipintheoriginaladhesionareaeitherclosetotheleading edgeofthecontactpatchorclosetothejunctureoftheadhesion-slip regions,actingasaperturbationwithinthewheel-railcontactpatchand thendevelopingintoawave.Becausethevariationinthestress distri-butioniscausedbyvibration[32],theperturbation-inducedwavescan beconsideredtobeintrinsicallygeneratedbydynamiceffectssimilar totheimpact-inducedwaveandthecreepage-inducedwave.However, thedynamiceffectsofthewheel-railfrictionalrollingthattriggerthe perturbation-inducedwavemaybemuchlesssignificantthanthe dy-namiceffectsthatinitiatetheothertwotypesofwaves;therefore,the perturbation-induced waveobservedintheexplicit FEsimulationsis weakerandlastsforashortertime.

The initiation location of the perturbation-induced wave can be influenced bythe simulatedtraction condition of the rollingwheel.

Figs.6(a)and(b)extractedfromtheanimationsin[33]and[34]show theperturbation-inducedwavessimulatedbyabrakingwheelrolling model andatractive wheel rollingmodel, respectively. Thebraking rolling is simulated by applyingan opposite-direction torque tothe wheelaxle.Thedirectionsofthemicro-slipvectorswithintheslip re-gionsshowninFig.6(a)arethusoppositetothewheelrolling direc-tion.Althoughthetimestepsusedintheanimations[33]and[34](30 μs)arenotsufficientlysmalltocapturetheentireprocessofwave gen-erationandpropagation,theanimationsandFig.6stillindicatethat the perturbation-induced waves generally occur at the leading edge of thecontactpatchinthesimulationofwheel braking,whereas the wavesoccurmoreoftenatthejunctureoftheadhesion-slipregionsin thesimulationofwheeltraction.Thecorrespondencebetweenthe trac-tion/brakingconditionandtheinitiationpositionofthewavemight sup-porttheactualexistenceofaperturbation-inducedwaveduring wheel-railfrictionalrollingcontactbecauseturbulencecausedbynumerical errorsoccursmorerandomly.

Perturbationsoccurregularlyintheanimationsin[33]and[34]with a periodof approximately 0.6ms (20timesteps in theanimations), correspondingwelltotheperiodofthesurfaceshearstressoscillation shown in Fig. 5 and [31]. This result supports the aforementioned findingthattheperturbationisgeneratedwhenthelocalpeakofthe surfaceshearstressperiodicallypassestheboundaryoftheadhesion regionateithertheleadingedgeorthejunctureoftheadhesion-slip regions. Moreover, Fig. 3shows that theadhesion region decreases graduallywiththespreadoftheperturbation.Theadhesionregioncan beexpectedtovanishundercertaincontactconditions(e.g.,by apply-ingacertaincoefficientoffrictionorwhentheappliedtraction/braking

(6)

Z. Yang and Z. Li International Journal of Mechanical Sciences 161–162 (2019) 105069 Fig. 3. Generation processes of two typical perturbation-inducedwaves(seealsothe ani-mationsin[29]and[30]).

Fig.4. Contactstressdistributionwithinthecontactpatch(thegreencircles indicatetheinitiationlocationsoftheperturbation:closetotheleadingedge andthejunctureoftheadhesion-slipregions).

forceexceedsathresholdvalue),andthestick-slipcontactbehaviour, characterised by sudden, periodic shear stress drops and markedly influencedbyvibrationandwaves[35],mayconsequentlyoccur.This study,therefore,seemstolinkthegenerationofperturbation-induced

waveswiththewheel-railfriction-inducedinstability– therootcauseof squeal[36]andpossiblyofcorrugation[37].Becausetheinitiationof theperturbationisinfluencedbythewheeltraction/brakingcondition asanalysedabove,squealandcorrugationcanpossiblybemitigatedby optimisingthetractionandbrakingcontrolstrategiesbasedonabetter understandingofperturbation-inducedwaves.

3. Physicalcharacteristicsofcreepage-inducedwaves

Thephysicalcharacteristicsofthewheel-railcontact-inducedwave canbeobtainedbyanalysingthenodalmotiononthecontactsurface thatformsthewave.Asafirstattempttoexaminethephysical char-acteristics of wheel-rail contact-inducedwaves, this studylimits the analysisofthewavecharacteristicstocreepage-inducedwavesbecause moredifficultiesarisewhenanalysingthesurfacenodalmotionforming impact-induced andperturbation-induced waves: theimpact-induced wavesshowninFig.1areinterferedwitheitherbythereflectedwave duetotherailjoint(see[38])orbythewavesgeneratedatthe con-tactpatchontherailtop(see[28]),andtheperturbation-inducedwave

(7)

Z. Yang and Z. Li International Journal of Mechanical Sciences 161–162 (2019) 105069

Fig.5. Periodicsurfacestressdistributions(seealsotheanimationin[31].bluecurve:tractionbound;redcurve:surfaceshearstress;A:adhesionregion;S:slip region;thegreenarrowsindicatethepositionofthemovinglocalpeak)[19].

Fig.6. Perturbationinitiationssimulatedunderwheel brak-ing and traction conditions (see also the animations in [33]and[34]).

generatedbythemuchlesspronounceddynamiceffectisoftooshorta durationtoanalyse.

3.1. Preliminaryinferenceofthewavetype

Atypicalcreepage-inducedwavepatternis presented inthe con-tour/vectordiagramsinFig.7(seealso[39]forthecorresponding an-imationwithatimestepof0.3μs).Thewaveisobtainedby simulat-ingwheel-railfrictionalrollingcontactwithlargelateralmotionofthe wheel (simulationcase 4in[19]).Thewavephenomenacanbe ob-servedfromthedistributionofthewheel-railrelativevelocitieswithin thecontactpatch (Fig.7(a))andthedistribution of therailsurface nodalvelocitieswithintheentiresolutionzone(Fig.7(b)).Theregions ofthecontactpatchareindicatedbythedashedblackovalsinFig.7.In thecontour/vectordiagrams,themagnitudesanddirectionsofthe nor-mal(relative)velocitiesareindicatedbythecolourdepth,andthoseof thetangential(relative)velocitiesareindicatedbytheredarrows.The creepage-inducedwaveshowninFig.7(a)embodiesthealternationof thecompressionintensificationandrelaxationwithinthecontactpatch (seealsoFig.2),whereasthewaveinFig.7(b)reflectsthevibration velocitiesoftherailsurfacenodes.ThewavelengthsshowninFig.7are approximately6mm.

Assumingthat thetimestepused intheanimationin [39]– 0.3 μs– issufficientlysmalltocapturethephysical characteristicsofthe wave,e.g.,wavespeedandtravellingdirection,andthustoidentifythe wavetype,threelinesofevidencelinkthesimulatedcreepage-induced

wavetoaRayleighwave.First,theobservedwaveis asurfacewave formedbythesimulatedrailsurfacenodalvelocities,ashasbeenshown. Second,boththenormalandtangentialnodalmotionscontributetothe formationofthewave,andthedirectionofthetangentialnodalmotion isroughlyparallelandoppositetothewavepropagationdirection(see

[39]),aswillbeshownindetailinSection3.3.Third,thewavespeed estimatedbydividingthewavetravellingdistanceof1mmineachtime step bythetimestep sizeof0.3μsapproximates theRayleigh wave speedinsteel(approximately3km/s);thisresultwillbefurtherverified inSection3.3.

3.2. Rayleighsurfacewave

ARayleighwaveisacommonlyknowntypeofsurfacewaveformed by retrograde elliptical particle motion on thesurface, as shown in

Fig.8:thesurfaceparticlesmoveinboththetangential(paralleland oppositetothewavepropagationdirection)andtransverse(normalto thesurface)directions,andthephasedifferencebetweenthe tangen-tialmotionandthetransversemotionis𝜋/2.Thetravellingspeedofa Rayleighwaveinsteelisapproximately3km/s.

3.3. Nodalmotionformingcreepage-inducedwaves

Section3.1 infersthatthe simulatedcreepage-inducedwaveis a Rayleighwavebasedontheassumptionthatthetimestepusedinthe animationin[39]issufficientlysmall.Tovalidatethisassumptionand

(8)

Z. Yang and Z. Li International Journal of Mechanical Sciences 161–162 (2019) 105069

Fig.7. Creepage-inducedwavesimulatedbythewheellateralmotionmodel(seealsotheanimationin[39]).

Fig.8. RetrogradeellipticalparticlemotionofaRayleighwave.

theinferencemadeinSection3.1,thissectionanalysesthesimulated nodalmotionontherailsurfacethatformsthecreepage-inducedwave. ThenormalandtangentialvelocitiesofthreerailsurfacenodesN1∼N3, denotedbythesolidbluepointsinFig.7,areanalysed.Thenodesare locatedapproximatelyonthecentrallaterallineofthecontactpatch. N1andN2arewithinthecontactpatch,whileN3isoutsidethe con-tactpatch.Theselectednodeshavethesamelongitudinalcoordinateof 510mmandlateralcoordinatesof0mm,−4mmand−10mm.

Fig.9(a)plotsthetimehistoriesofthesimulatednormaland tangen-tialvelocitiesofthethreeselectednodesduringtheperiodof18.18ms ∼18.27ms(theanimation[39]displaysthewaveinthesameperiod). Thetangentialnodalvelocitieshavetrendcomponentsbecauseofthe wheellateralmotionprescribedinthesimulation.Thepowerspectrum densitiesofthetimehistoriesarecorrespondinglyshowninFig.9(b), whichindicatethatallthenodalvelocitiesarenarrow-bandsignalsand haveadominantfrequencyofapproximately0.495MHz.Thetravelling speedofthesimulatedwavemaythusbecalculatedbymultiplyingthe

wavelength𝜆w=6mmandthefrequencyfw=0.495MHzas:

𝑣𝑤=𝜆𝑤×𝑓𝑤≈ 3km∕s (1)

ThegoodagreementofthewavespeedcalculatedwithEq.(1)and that estimatedinSection3.1indicatesthat thetimestep ofthe ani-mation [39]is sufficientlysmalltoshow themaincharacteristicsof thewave.Thebandpass-filteredtimehistoriesaroundthedominant fre-quency(between0.48and0.51MHz)areplottedinFig.9(c),and close-upviewsareplottedinFig.9(d),whichclearlyshowthatboththe nor-malandtangentialnodalvelocitiescontributetotheformationofthe creepage-inducedwavewithcomparablemagnitudes.Fig.9(e)indicates thatthephasedifferencesbetweenthetangentialandnormalmotionsof N1andN2insidethecontactpatchareapproximately𝜋/2, correspond-ingtoaRayleighwave,whereasthatofN3outsidethecontactpatch isapproximately0.65𝜋,whichispossiblycausedbythesuperposition ofotherwaves.Fig.9(f)showsthatthecoherenceofthetangentialand normalmotionsis0.98forN1andN3andgreaterthan0.8forN2in thefrequencyrangeofinterest.Fig.9(g)plotstheretrogradeelliptical nodalmotionofN1∼N3indisplacement,whichstronglyindicatesthe presenceofaRayleighwave(seealso[40]fortheanimationsof the correspondingretrogradeellipticalnodalmotion).Theellipticaltrails ofeachnodefordifferentcyclesdonotexactlyoverlapduetothe dy-namiceffectsofwheel-railfrictionalrolling.

4. Wavesgeneratedbyacrack

Experimentalattempts[22,23]havesuggestedthatRayleighwaves can be usedtodetectrail cracks.However,their fieldapplicationis stillunderdevelopment.AstheexplicitFEMcaneffectivelycapturethe contact-inducedRayleighwave,asanalysedinSection3,thissection presentsexplicitFEmodellingofwheel-raildynamicfrictionalrolling contactforarailtopsurfacewithacracktoinvestigatethecrack ef-fectsonthecontact-inducedwaves.Themodelwasdevelopedfromthe

(9)

Z. Yang and Z. Li International Journal of Mechanical Sciences 161–162 (2019) 105069

Fig. 9. Simulated surfacenodal motion(left, middle andright graphsarefortherailsurfacenodesN1,N2andN3,respectively).

(10)

Z. Yang and Z. Li International Journal of Mechanical Sciences 161–162 (2019) 105069

Fig.10. Wheel-railcontactmodelwithacrackontherailtopsurface.

Fig.11. Contact-inducedwavesinfluencedby acrack(seealsotheanimationsin[41]and [42]).

wheel-railcontactmodelwithoutwheellateralmotion(simulationcase 1in [19])byaddinga‘seam’in therailtop,asshowninFig.10(a).

Fig.10(b)showsthesizeandpositionoftheaddedcrack.Contact be-tweenthesurfacesofthecrackisincluded,withastaticcoefficientof frictionof0.35.

Thecontour/vectordiagrams inFigs.11(a)and(b)showthe dis-tributionsoftherailsurfacenodalvelocitieswithintheentiresolution zonewhenthesimulatedwheelapproachesandrollsoverthecrack, re-spectively.Thecontactpatchisindicatedbythedashedblackoval;the crackisdenotedbytheboldblackline.Wavepatternscanbeobservedin

Fig.11,whicharegeneratedatthelocationofthecrackandpropagate radially.Thewavegeneratedwhenthewheelrollsoverthecrack(in

Fig.11(b))ismuchstrongerthanthewavegeneratedwhenthewheel approachesthecrack(inFig.11(a)).See[41]and[42]forthe corre-spondinganimationswithatimestepof1μs.Thecharacteristicsofthe wavesgeneratedbyrailcrackscanbeinvestigatedinfuturestudiesand, togetherwithexperimentalvalidation,beusedforthedevelopmentof wave-baseddetectionofrailsurfacecracks.

5. Conclusionsandfutureresearch

Thispaperpresentedananalysisofthecontact-inducedwaves sim-ulatedbyexplicitFEwheel-rail frictionalrollingcontactmodels. Ac-cordingtothegenerationmechanismsofthewaves,this study cate-gorisedthesimulatedwavesasimpact-induced,creepage-inducedand

perturbation-inducedwaves.Allthreetypesofwavesshouldbe intrinsi-callygeneratedbythedynamiceffectsofthewheel-railfrictionalrolling contact; thedynamic effect triggeringperturbation-induced waves is howevermuchlesssignificantthanthosecausingimpact-inducedand creepage-inducedwaves.

Thisstudyalsodiscussedapossiblelinkbetweenthegenerationof perturbation-inducedwavesandthestick-slipcontactmechanismand foundthattheinitiationlocationoftheperturbation-inducedwavecan beinfluencedbythetraction/brakingconditionoftherailwaywheel: the perturbation generallyoccursat theleadingedge of thecontact patchduringwheelbraking,whereasitoccursmoreoftenatthe junc-ture oftheadhesion-slipregionsduringwheeltraction.Thecauseof periodicperturbation-inducedwavesshouldbefurtherstudied.A bet-terunderstandingofperturbation-inducedwavesmaycontributetothe mitigationofrailcorrugationandsquealasconsequencesofstick-slip contactbyenablingoptimisationof thetractionandbraking control strategies.

Thisstudydemonstratedthatthesimulatedcreepage-inducedwave is a Rayleigh waveby comparing thephysical characteristics of the waves.ThereproductionoftheRayleighwaveconfirmedthatthe ex-plicitFEMisaneffectivetoolfortheanalysisofwheel-raildynamic con-tactandtheassociatedwaves.AnexplicitFEwheel-railcontactmodel withacrackintherailtopsurfacewasfinallypresentedtoinvestigate theeffectsofthecrackontherailsurfacewaves.Thegenerationand propagationofrailsurfacewaveswereobservedinsimulationsinwhich

(11)

Z. Yang and Z. Li International Journal of Mechanical Sciences 161–162 (2019) 105069

thewheelapproachedandrolledoverthecrack.Furtherinvestigationof thephysicalcharacteristicsofthecrack-generatedwavesandtheir ex-perimentalvalidationmayfacilitatethedevelopmentofawave-based crackdetectionmethod.

References

[1] Hu G, Wriggers P. On the adaptive finite element method of steady-state rolling contact for hyperelasticity in finite deformations. Comput Methods Appl Mech Eng 2002;191:1333–48. https://doi.org/10.1016/s0045-7825(01)00326-7 .

[2] Hertz H. Über die berührung fester elastische Körper und über die Harte. J für die reine Angew Math 1882;92:156–71. doi: 10.1515/crll.1882.92.156 .

[3] Kalker JJ. Three-Dimensional elastic bodies in rolling contact. Netherlands: Springer; 1990 https://doi.org/10.1007/978-94-015-7889-9 .

[4] Zhao X, Li ZL. The solution of frictional wheel-rail rolling contact with a 3D tran- sient finite element model: validation and error analysis. Wear 2011;271:444–52. https://doi.org/10.1016/j.wear.2010.10.007 .

[5] Zhao X, Li ZL. A three-dimensional finite element solution of frictional wheel- rail rolling contact in elasto-plasticity. Proceed Inst Mech Eng Part J-J Eng Tribol 2015;229:86–100. https://doi.org/10.1177/1350650114543717 .

[6] Wen ZF, Jin XS, Zhang WH. Contact-impact stress analysis of rail joint region using the dynamic finite element method. Wear 2005;258:1301–9. https://doi.org/10.1016/j.wear.2004.03.040 .

[7] Wiest M, Daves W, Fischer FD, Ossberger H. Deformation and dam- age of a crossing nose due to wheel passages. Wear 2008;265:1431–8. https://doi.org/10.1016/j.wear.2008.01.033 .

[8] Pletz M, Daves W, Ossberger H. A wheel set/crossing model regarding impact, sliding and deformation-explicit finite element approach. Wear 2012;294:446–56. https://doi.org/10.1016/j.wear.2012.07.033 .

[9] Zong N, Dhanasekar M. Minimization of railhead edge stresses through shape optimization. Eng Optim 2013;45:1043–60. https://doi.org/10.1080/0305215x.2012.717075 .

[10] Molodova M, Li ZL, Nunez A, Dollevoet R. Validation of a finite element model for axle box acceleration at squats in the high frequency range. Comput Struct 2014;141:84–93. https://doi.org/10.1016/j.compstruc.2014.05.005 .

[11] Yang Z, Boogaard A, Wei Z, Liu J, Dollevoet R, Li Z. Numerical study of wheel-rail impact contact solutions at an insulated rail joint. Int J Mech Sci 2018;138-139:310– 22. https://doi.org/10.1016/j.ijmecsci.2018.02.025 .

[12] Yang Z, Boogaard A, Chen R, Dollevoet R, Li Z. Numerical and experimental study of wheel-rail impact vibration and noise generated at an insulated rail joint. Int J Impact Eng 2018;113:29–39. https://doi.org/10.1016/j.ijimpeng.2017.11.008 . [13] Wei Z, Shen C, Li Z, Dollevoet R. Wheel–Rail impact at crossings: relating dy-

namic frictional contact to degradation. J Comput Nonlinear Dyn 2017;12:041016. https://doi.org/10.1115/1.4035823 .

[14] Li Z, Zhao X, Esveld C, Dollevoet R, Molodova M. An investigation into the causes of squats —correlation analysis and numerical modeling. Wear 2008;265:1349–55. https://doi.org/10.1016/j.wear.2008.02.037 .

[15] Li ZL, Zhao X, Dollevoet R, Molodova M. Differential wear and plas- tic deformation as causes of squat at track local stiffness change com- bined with other track short defects. Veh Syst Dyn 2008;46:237–46. https://doi.org/10.1080/00423110801935855 .

[16] Chongyi C, Chengguo W, Ying J. Study on numerical method to pre- dict wheel/rail profile evolution due to wear. Wear 2010;269:167–73. https://doi.org/10.1016/j.wear.2009.12.031 .

[17] Vo KD, Zhu HT, Tieu AK, Kosasih PB. FE method to predict damage formation on curved track for various worn status of wheel/rail profiles. Wear 2015;322-323:61– 75. https://doi.org/10.1016/j.wear.2014.10.015 .

[18] Yang Z, Li ZL, Dollevoet R. Modelling of non-steady-state transition from single-point to two-point rolling contact. Tribol Int 2016;101:152–63. https://doi.org/10.1016/j.triboint.2016.04.023 .

[19] Yang Z, Li Z. Numerical modeling of wheel-rail squeal-exciting contact. Int J Mech Sci 2019;153-154:490–9. https://doi.org/10.1016/j.ijmecsci.2019.02.012 . [20] Noh G, Bathe K-J. An explicit time integration scheme for the

analysis of wave propagations. Comput Struct 2013;129:178–93. https://doi.org/10.1016/j.compstruc.2013.06.007 .

[21] Karttunen AT, von Hertzen R. A numerical study of traveling waves in a vis- coelastic cylinder cover under rolling contact. Int J Mech Sci 2013;66:180–91. https://doi.org/10.1016/j.ijmecsci.2012.11.006 .

[22] Armitage PR . The use of low-frequency rayleigh waves to detect gauge corner crack- ing in railway lines. Insight 2002;44:369–72 .

[23] Pantano A, Cerniglia D. Simulation of laser generated ultrasound with application to defect detection. Appl Phys A 2008;91:521–8. https://doi.org/10.1007/s00339-008-4442-1 .

[24] Reed J. Energy-Losses due to elastic wave-propagation dur- ing an elastic impact. J Phys D-Appl Phys 1985;18:2329–37. https://doi.org/10.1088/0022-3727/18/12/004 .

[25] Animation for Fig. 1(a), https://youtu.be/fO-P8M1j0oA . [accessed 19.03.15]. [26] Animation for Fig. 1(b), https://youtu.be/ke9yrlX4Jjk . [accessed 19.03.15]. [27] Animation for Fig. 2(a), https://youtu.be/mpTiKS0uZeQ . [accessed 19.03.15]. [28] Animation for Fig. 2(b), https://youtu.be/avYdpZeVzAM . [accessed 19.03.15]. [29] Animation for Fig. 3(a), https://youtu.be/icNEaQ1EMLs . [accessed 19.03.15]. [30] Animation for Fig. 3(b), https://youtu.be/KLaLjIuPG7M . [accessed 19.03.15]. [31] Animation for Fig. 5, https://youtu.be/DaPhrECTLMI . [accessed 19.03.15]. [32] Ouyang H, Nack W, Yuan Y, Chen F. Numerical analysis of automo-

tive disc brake squeal: a review. Int J Veh Noise Vib 2005;1:207. https://doi.org/10.1504/ijvnv.2005.007524 .

[33] Animation for Fig. 6(a), https://youtu.be/7Vur6bSQa4c . [accessed 19.03.15]. [34] Animation for Fig. 6(b), https://youtu.be/6-tclZGAjzE . [accessed 19.03.15]. [35] Johnson PA, Savage H, Knuth M, Gomberg J, Marone C. Effects of acoustic waves on

stick-slip in granular media and implications for earthquakes. Nature 2008;451:57– 60. https://doi.org/10.1038/nature06440 .

[36] Thompson DJ . Railway noise and Vibration: mechanisms. Modelling and means of control. Elsevier; 2009 .

[37] Sun YQ, Simson S. Wagon–track modelling and parametric study on rail corrugation initiation due to wheel stick-slip process on curved track. Wear 2008;265:1193–201. https://doi.org/10.1016/j.wear.2008.02.043 .

[38] Animation of wave reflection, https://youtu.be/tWyWKw9XxRI . [accessed 16.11.22].

[39] Animation for Fig. 7, https://youtu.be/k_E-RF-NdLU . [accessed 19.03.15]. [40] Animation for Fig. 9(g), https://youtu.be/bAPEgB9meQQ . [accessed 19.03.15]. [41] Animation for Fig. 11(a), https://youtu.be/t2A64jm7BrE . [accessed 19.03.15]. [42] Animation for Fig. 11(b), https://youtu.be/9NtVAQMK5eQ . [accessed 19.03.15].

Cytaty

Powiązane dokumenty

Życie biologiczne nie mieści się w starych kanonach m atem atyki, potrzebna jest nowa m atem atyka chaosu, która byłaby zdolna opisać proces łam ania symetrii i

Stwierdzono, że w funkcji zawartości GO odporność na pękanie ma maksimum dla zawartości 0,02% GO (wzrost o 7% w porównaniu do matrycy), wytrzymałość maleje, moduł Younga

Tłumaczenie przez reprezentację wiedzy – polega na generacji tekstu w obcym języku na bazie wiedzy pozyskanej z wypowiedzi w języku macierzystym... Przykładowe

podstawie fal konieczne jest zastosowanie duŜej ilości elektrod..  Do diagnozowania wystąpienia

24 Analiza sytuacji gospodarczej w krajach Europy Środkowej i Wschodniej...op.. Economic transformation processes o f central and eastern European countries 239 euro

- studenci dziennikarstwa i komunikacji społecznej ujawnili, że jako od­ biorców kampanii społecznych bardziej porusza ich namawianie w reklamach do zaniechania zachowań

В Великом акафисте (равно как и во многих других текстах этого жанра в рамках греческой традиции) концовка проимия, как уже

Oksana Mikolaïvna Slipuško [Oksana Nikolaevna Slipuško, Oksana Miko- laïvna Slipuško [Оксана Николаевна Слипушко, Оксана Миколаївна Сліпушко]),