• Nie Znaleziono Wyników

Holoceńskie gleby rdzawe i rdzawe bielicowane w tundrze i tajdze środkowej Szwecji

N/A
N/A
Protected

Academic year: 2021

Share "Holoceńskie gleby rdzawe i rdzawe bielicowane w tundrze i tajdze środkowej Szwecji"

Copied!
16
0
0

Pełen tekst

(1)

ALOJZY KOWALKOWSKI

HOLOCENE RUSTY AND RUSTY PODZOLIC

SOILS IN THE TUNDRA AND TAIGA

OF MIDDLE SWEDEN

European Institute o f Postgraduate Study in Kielce

INTRODUCTION

In spite o f ample literature, according to Tavernier and Smith [1957], as w ell as Arnold et al. [1990] both the origin and properties o f part o f soils d evelop ed in cold clim ates, referred to as brown earth or podbur and their transient forms to p odzolic soils have not been so far explicated univocally. In more recent com pa­ rative publications [K onecka-B etley, Janowska 1996, M elke 1997], itis stated that chem ical indicators in horizons В and others, which differentiate brown earths as w ell as rusty and p odzolic soils in postglacial areas, as som e authors em phasized [M okm a 1983, Prusinkiewicz, Bednarek 1985, Bednarek 1981], exhibit geogra­ phical differentiation and they may be unreliable as a criterion for type and subtype o f soils.

In this publication a characterisation is presented o f som e chem ical and p hysico-chem ical properties o f the catena o f mountain soils: rusty, rusty p odzolic and p odzolic in the tundra and the northern taiga o f M iddle Sw eden. At present these soils, in the conditions o f subarctic and boreal clim ate are subject to intensive p rocesses o f p odzolizin g [K ow alkow ski 1995a, b, K onecka-B etley, Janowska 1996]. They can be a good comparative material for soils o f sim ilar yet relic structures o f profiles which occur on the areas o f the Central European Low lands within the subboreal clim ate. In the set o f soil-form ation factors, the changing clim ate gives soils in time and space som e very characteristic permanent properties dependent on soil localisation in landscape and on its parent rock [K ow alkow ski

1993].

OBJECT AND METHODS

The field investigation was carried out in 1990 in the slope catena o f soils on N E and E postglacial and periglacial slopes o f granite-gneiss pedestal o f Caledo­ nian orogenesis in M iddle Sw eden. The flattened peak o f the pedestal, reaching

(2)

30 A. Kowalkowski

1420, 1 m a.s.l, with slopes rising to 1000 m above the surrounding, has been sm oothed by the processes o f glacier detersion. T he sm ooth proximal northern and north-eastern slope o f this muton is incised by holocene cryoplanation system s o f terraces o f varying width.

The recent stages o f subarctic and boreal vegetation as w ell as the structures o f the investigated soil profiles were described in another paper [K ow alkow ski 1995b]. A survey physiographic documentation o f the investigated soils is shown in the Table 1.

The continental glacier o f the last Scandinavian glaciation Salpausselkä rece­ ded from the discussed area som e 9 00 0 [Lundquist 1986] to 6 0 0 0 [Hinneri 1974] years BP.

The developm ent o f the investigated soils could have thus been initiated in eo- to m ezoh olocen e, from the boreal period to the third phase o f the Atlantic period A T 3 according to Starkel’s chronology [1977]. In that period com plexes o f young

T A B L E 1. P hysiograph ic characteristics o f so ils in vestigated on the N E and E slo p es o f the Âreskutan m a ssif

Pit N o E lev a ­ tion [a.s.l. m] C lim atic-plant stage

S oil type and kind

1 1 1 8 0 -1190

nival, m ountain lich en -m o sses tundra

peaty g ley p o d z o l, cry o g en ic, thixotropic o f tundra, d e v elo p ed from h o lo cen e w eathering

2 8 5 0 -8 6 0

su bnival, m ountain shrubby tundra

rusty hum us-iron p o d zo lic so il d ev e lo p ed from h o lo cen e p eriglacial slo p e covers, on 6 0 cm depth glacial

cry o g en ic w eathering w aste 3 6 8 0 alpine-su balpine

spruce-birch tundra-taiga

g ley p o d zo lic so il d e v elo p ed from h o lo c en e alluvial deposits

4 5 8 0 su balpine northern spruce taiga

rusty p seu d o g ley p o d zo lic soil d ev elo p ed from h o lo c en e p eriglacial slo p e co v ers from 5 0 cm un derlying

glacial covers 5 5 2 0 subalpine spruce

northern taiga

rusty p seu d o g ley p o d zo lic soil d ev elo p ed from h o lo c en e periglacial slo p e covers on 4 0 cm un derlying glacial slo p e covers

6 4 1 0 subalpine spruce m iddle taiga

rusty p o d zo lic so il d ev elo p ed from h o lo c en e glacial m orainic slo p e covers

7 4 2 0 subalpine spruce m iddle taiga

rusty p seu d o g ley p o d zo lic soil d ev elo p ed from h o lo c en e glacial slo p e covers ov erly in g com pact so liflu ctio n cover; th ick n css o f the d elu vial B v -h o rizo n to several

(3)

holocen e p odzolic soils, m iddle-old h olocen e rusty p odzolic soils and old h olocen e rusty soils on the different parts o f the slope were formed.

In the laboratory o f the Department o f Soil Geography and Environm ent Protection, High School o f Education in K ielce, an analysis o f grain structure o f fraction > 0 . 1 mm was performed by the method o f water sieving, fraction < 0 . 1 m m by Casagrande’s areometric method m odified by Prószyński. From the quotient o f the sums o f dust fractions 0 .1 0 -0 .0 5 mm, and sand fractions 1 .0 -0 .1 0 mm the SP index was calculated, assum ing that in periglacial environ- ment in situ fractions < 0 . 1 0 mm are formed as a result o f cryohydrothermic processes o f desquam ation and fractions 0 .1 0-1 . 0 0 mm due to granular frost disintegration.

The exchangeable cation content Ca2+, M g2+, K+, N a+ is denoted in extract 1 M CH3CO O NH4 by pH 7. Exchangeable H+ is denoted by the K appen’ m ethod, exchangeable A l3+ - by the S okolov method, and exchangeable Fe3+- by the dipiridil method. Corg. is denoted by the Tiurin’s method, and N or„ - by the K jeldahl’s method. The acidity is measured by the potentiometric m ethod using glass and calom el electrodes.

THE CURRENT STATE

OF CHEMICAL AND PHYSICO-CHEMICAL PROPERTIES

An important role in shaping the soil cover in mountain areas is played by pedo- and lithostratigraphic equilibrum which consists in permanent interference de­ pendent on the clim atic and vegetation tiers o f the slope pedom orphogenesis. S oils on slopes can be developed only when m orphogenetic processes are not too active, so that a minimum degree o f topostabijity is obtained [Tricart 1965, K ow alkow ski 1988, Coutard 1989]. On NE slope o f Âreskutan exists h olocen e sequence o f slope glacial and glacial-periglacial covers transformed pedogenically in various degre­ es [K ow alkow ski 1995b].

Parent rocks of soils

The m orphology o f clasts and small grained waste, their grain size and strati­ graphy are indicators o f the developm ent conditions o f parent rock o f soils. The investigated soils were formed from stratified granite-gneiss glacial and perigla­ cial w aste o f very differentiated grain size (Table 2), in the investigated profiles and on different elem ents o f slope [K ow alkow ski 1995b], A similar differentiation o f grain size was found by Hinneri [1974] in the holocene tundra soils in Finland.

The stratification and m orphology o f waste within the profile o f the investigated soils points to a relatively young age o f their formation. In the low er parts o f the soils numbers 3 and 4, from the depth o f 50 cm, in the pit number 5 from 30 cm , and in the pits numbers 6 and 7 from the surface the w aste contain clasts o f different size with rounded edges, with longitudinal axes laid parallelly to their stratum roof. T hese are indicators o f the glacial environment o f their formation, and con geli- fluctional transport on slope. Only in pit N o 2, beginning with the depth o f 60 cm laminar stratified deposits o f frost granular disintegration occur in which over 70% are sharp-edged sand grains, mainly fine sand o f grain size 0 .2 5 -0 .1 0 mm (Table 2). In pits 2, 4, 5 younger series o f congelifluctional periglacial h olocen e wastes

(4)

T A B L E 2. D istribution o f grain o f different siz e in the so il o f catena

Soil H o­ D epth Percentage SP

pit N o

ri­ o f sam p­ ling [cm]

o f skeletal parts [mm] o f earth particles [mm] index zon > 1 0 1 0 -2 2 -1 1 -0 .5 0 .5 -0 .2 5 0 .2 5 -0 .1 0 0 .1 0 -0 .0 5 0 .0 5 -0 .0 2 0 .0 2 -0 .0 0 5 < 0 .0 0 5 1 Egg 2 0 - 3 0 2.5 13.3 5.4 9.7 10.1 2 2 .8 13.9 11.0 5.5 5.5 0.71 B h feg g 3 5 ^ 0 8.4 14.9 5.5 10.0 10.0 2 1 .9 9 .6 10.0 6.5 3.8 0 .6 2 2 E 1 0 -2 0 11.2 11.6 4.4 12.6 8.1 2 1 .4 10.3 7.3 5.8 7 .2 0 .5 6 B h fe 2 0 -2 5 4.3 10.7 6.0 2 1 .2 12.9 2 1 .0 15.1 3.4 0 5.5 0 .3 4 B v B fc 4 5 - 5 0 12.5 17.0 10.0 15.1 13.9 18.0 9.8 3.6 0 0 0 .2 9 D B v 7 5 - 8 0 0 1.1 8.0 2 5 .2 2 0.8 3 1 .4 7 .2 5.5 0.9 0 0.18 3 Eg 1 0 -1 5 1.9 15.9 6.1 13.7 6.7 18.2 12.9 13.0 7.6 4 .6 0.67 B h feg 2 0 - 2 5 15.6 13.8 5.5 13.8 6.1 18.9 11.0 8.4 5.2 1.3 0.63 D g g 5 0 - 5 5 23.8 10.3 2.7 7.9 6.1 17.3 10.3 8.4 7.6 5.6 0 .8 4 4 E 4 - 9 5.8 9.8 2.2 4.0 6.6 2 7 .9 2 3 .0 9.4 8.3 3.2 1.06 B hfe 9 -1 1 4.3 9.1 6.0 6.0 6.4 2 6 .9 2 2 .3 9.9 5.0 6.7 0.95 Bv 1 5 -2 0 11.8 9.1 3.0 8.5 7.9 2 5 .0 15.5 9.9 7.7 1.4 0 .8 0 C B v 4 5 - 5 0 11.4 14.1 4.2 8.3 6.9 2 5 .8 9 .6 11.2 7 .0 1.5 0.68 sol D g 7 0 - 7 5 1.5 8.0 3.9 16.5 14.9 3 0 .0 11.5 9.5 3.5 0.8 0 .4 0 5 E 1 0 -1 2 1.8 8.2 2.8 5.7 4.7 2 3 .9 2 2 .3 9.6 10.5 10.4 1.24 B h fe 1 5 -2 0 9.9 6.2 2.5 13.8 9.5 2 6 .6 12.5 10.6 7.3 1.6 0.61 B v 2 5 - 3 0 0.8 9.8 3.3 10.4 6.2 23.1 12.0 12.9 14.7 16.8 1.00 sol B v g 7 0 - 7 5 6.6 9.6 2.6 8.0 5.8 19.7 8 .6 13.0 13.8 12.1 1.06 6 A E 5 - 1 0 2.8 0.2 0.1 9.2 11.5 3 2 .2 2 3 .6 9.7 4.8 5.8 0 .7 2 B v B h fe 1 2 -2 0 7.2 1.7 0.1 10.9 13.1 3 5 .5 2 1 .5 5.5 2.7 1.8 0 .5 0 Bv 4 0 - 5 0 0.1 0 0 13.2 14.0 3 9.5 2 2 .3 8.0 3 .0 0 0.5 0 C l 1 0 -2 0 1.8 3.5 3.9 8.9 8.4 3 2 .2 2 0 .4 10.9 8.1 1.8 0.79 7 A h B v 0 - 5 3.6 11.4 6.5 9.5 8.1 18.3 16.7 10.2 10.2 5.5 1.03 Bv 5 - 1 0 30.6 6.2 1.8 9.5 7.1 15.2 8.1 6.1 6.7 8.6 0.65 B v 2 0 - 3 0 6.5 9.8 1.6 11.8 11.1 2 5 .9 9.5 6.6 7.4 9.9 0.48 C<J 4 0 - 5 0 3.7 8.0 3.6 8.4 6.8 16.6 13.1 9.4 22.9 7.6 1.43 A . K o w a lk o w s k i

(5)

occur on the surface in which clasts o f diameter > 1 0 mm have sharp edges. H olocen e fluvial sedim ents with sporadic stones o f rounded ed ges occur in pit 3 situated on a cryoplanation terrace. Furthermore, a thin layer o f sharp-edges waste on the base o f solid rocks in pit 1 is o f young holocene origin.

T he silt fraction content o f sizes from 0.10 to 0.005 mm, originated in the process o f cryogenic scalling o f sand grain surface in glacial and periglacial environm ent [K ow alkow ski, K ocoń 1998], is as a rule the highest in upper horizons Ah and E, as w ell as in parent rock Cg and in the subsoil D g. It ranges from 23.4 to 45.4% , on average it is 35% (Table 2). The content o f these fractions in cryogenic horizons B v is also very high, ranging from 20.9 to 39.6% , on average 35%. The low est content o f silt fraction was found in illuvial horizons B hfe and B vB h fe, under the elluvial ones. The content o f these fractions is from 13.4 to 30.4% , on average 27.7% , which can be the result o f cem enting o f part o f the silt grains into coarser aggregates by deposited S i-A l-F e com pounds with humus.

Therefore, it is not possible to state profile postsedim entional pedogenic differentiation o f silt fractions in their soil section, although the content o f these fractions goes towards the slope foot.

An important com ponent o f parent rock is sharp-edged sand o f diameter from 1.0 to 0 .1 0 mm. Its content in the investigated slope deposits is from 31.3 to 61.4% , on average 41.8% . There is a distinct domination o f fine sand, from 15.2 to 39.5% , o f grain diameters 0 .2 5 -0 .1 0 mm. The content o f sand fraction due to frost granular disintegration o f solid rocks and their splinters generally decreases with the profile depth and also decreases towards the slope foot, i.e. in older slope deposits and wastes. The weathering indicator SP o f rock material is as a rule higher than 0.50, and it reaches 1.43 (Table 2), which can lead to a conclusion that there are constant hydrothermic conditions o f frost granular weathering and scalling o f w aste in the area under discussion, hence domination o f a more wet and cold clim ate.

The content o f fraction < 0.005 mm is very differentiated but low and it does not reveal any distinct dependence with the horizontal structure o f the investigated soils. Only in horizons A usually the content o f these fractions is higher than in horizons Bhfe and B vB hfe, which also found by Targuljan [1971] in podzolic soils o f Northern Eurasia. This fact and also the general content o f silt and sand fractions cause the soils formed from the discussed parent rocks to be easily perm eable, which was also demonstrated by Hinneri et al. [1975] in the soils o f Scandinavian subalpine ecosystem s.

The excess o f amounts rainfall and m elting waters o f perennial snow patches in shaped relief bends in the tundra stage [K owalkowski 1995b] can be accum u­ lated for a long time on the solid plates o f subsoil rocks within active permafrost in the thixotropic horizon. Periodically, these waters are amassed over the illuvial horizons o f p odzolic soils from fragmentarily formed and hardly perm eable fragipans. A ccording to Langohr and Vermeire [1982], a periodically em erging water level over the fragipan ceiling may participate in gley bleaching o f the low er part o f horizon Eg.

Textural discontinuities in the investigated soils, characteristic o f Arctic soils [Stoner et al. 1983] are factors that regulate water migration in soil profile.

(6)

34 A. Kowalkowski

ORGANIC MATTER, C:N RATIOS AND ACIDITY

The organic matter content in all horizons o f the investigated soils, including horizons С and D is relatively high. In the ceilings o f Ofh horizons it is 4 7 .6 - 67.8% , and in floors it ranges from 32.6 to 39.2% . The organic matter content in elluvial horizons ranges w idely from 1.3 to 6.7%, depending on humidity and water perm eability o f soils, as w ell as on the clim atic and vegetational stages. In those horizons, the highest concentrations o f organic matter are found in wet tundra. Its mass decreases together with the decreasing humidity o f the investiga­ ted soils, alongside slope lowering [K owalkowski 1995b], to the stage o f m iddle taiga.

The pedogenic migration o f organic matter in the investigated soils is testified by the second m aximum o f its accumulation in the illuvial horizons B hfe and in illuvia superim posed on the ceiling part o f horizon Bv which are from 11.4 to 2.4% depending on soil humidity, and by its smaller amounts in rusty horizons B v and C B v, from 4.6 to 1.0%. A lso in horizons C, Cg and Dg, the organic matter content is high, from 0.35 to 4.30% , which points to its intensive, deep and spatially differentiated horizontal and vertical migration with rainfall and m elted snow waters.

There are known reports about the high humus content along the full depth o f profile in cryogenic podzolic soils in Central and Northern Scandinavia [Schlich- ting 1963, Hinneri et al. 1975], in the podzolic soils o f the subantarctic forest, subantarctic tundra, and Antarctic polar desert [Smith 1990, B lum e et al. 1996], in p odzolic soils o f cold and humid areas o f Eurasia and Northern A m erica [Targuljan 1971 ], in gley-p od zolic soils o f the mountain tundra o f Ireland [W ilson, Sellier 1995] or the high-mountain continental tundra in Changai Mountain [K ow alkow ski, Starkel 1984]. In the above-m entioned and other cold areas there occurs accum ulative distribution o f organic matter in the profiles o f p odzolic and rusty podzolic soils not only due to its migration with water solutions, but also thanks to cryogenic hom ogenisation in the form o f little changed organic residuals o f overground and underground parts o f plants with cell structure frequently well preserved.

This is confirm ed in the investigated soils by the С : N ratios which ranges from 15.0 to 32.5 : 1 ; it is wider in more humid horizons and narrower in drier horizons (Table 3), as w ell as soil acidity pHK C 1 which ranges from 3.00 to 5.33 (Table 5). Soil acidity in the investigated catena decreases with decreasing soil humidity from pHK C 1 3 - 4 in gley-podzol o f the tundra to pHK C 1 4 -5 in rusty podzolic soil and rusty soils o f the middle taiga.

SORPTION PROPERTIES AND EXCHANGEABLE

CATION CONTENT

The sorption capacity along the profiles in the investigated soils is relatively high (Table 4, Figs 1 and 2). Its highest values, on average 32.53 m e/100 g (from 26.10 to 51.83 m e /100 g) were found in organic material o f horizons Ofh, although it points to a low degree o f hum ification o f organic deposits in this horizon and to a small content o f organic colloids in it. In horizons E and Egg the sorption capacity

(7)

TABLE 3. Some chemical and physico-chemical properties in genetic horizons of the soil catena

Soil H o­ Depth Organic Norg. C:N Exchange­ Alca-. V Ca2+ Ca2+ Ca2+ Pit ri­ o f matter able cations lie e.c +M g2+

M g2+ N o zon sam p­ С 1.724 [m e/100 g] acidic K+

ling [%] Ca+M g H+ e.c. [%] K+ +N a+ [cm] +K +N a Al+Fe 1 T gg 0 - 1 0 46.03 1.05 25.4 6.81 29.36 0.28 18.8 0.94 0.20 0.42 E gg 2 0 -3 0 6.70 0.20 19.5 2.85 24.69 0.12 10.3 2.63 0.09 0.41 B hfegg 3 5 ^ 0 5.00 0.13 22.3 3.69 10.78 0.34 25.5 4.77 1.10 4 .4 4 2 Ofh 0 - 5 62.91 1.25 29.2 17.01 13.19 1.29 56.3 2.35 0.06 0.16 AhE 5 -1 0 32.62 0.67 28.2 5.08 21.05 0.24 19.4 2.19 0.05 0.15 E 1 0 -2 0 4.68 0.09 30.2 1.68 19.08 0.09 8.1 1.85 0.42 0 .74 Bhfe 2 0 -2 5 11.36 0.22 30.0 2.62 35.86 0.07 6.8 3.34 0.81 2.57 B vB fe 4 5 -5 0 3.64 0.07 30.1 2.59 27.46 0.09 8.6 7.69 5.19 6.43 D B v 7 5 -8 0 0.97 0.02 28.0 1.72 24.63 0.07 6.5 12.23 4.13 11.64 3 Ofh 0 - 5 61.43 1.15 31.0 12.54 13.56 0.92 48.0 2.24 0.04 0.11 Ofh 5 -1 0 66.63 1.69 22.9 7.56 27.01 0.27 21.9 1.87 0.15 0.33 Eg 10-15 1.31 0.03 25.3 1.78 20.64 0.09 7.9 2.49 0.65 1.32 B fegg 2 0 -2 5 7.21 0.09 46.4 2.53 24.07 0.11 9.5 6.03 1.36 4.31 D gg 5 0 -5 5 4.31 0.06 41.7 1.12 24.90 0.04 4.3 4.33 0.64 2.38 4 Ofh 0 - 3 4 7.65 0.88 31.4 14.84 25.49 0.58 36.8 4.82 0.06 0.27 E 4 - 9 1.60 0.08 11.6 5.22 19.13 0.27 21.4 5.69 0.39 2.45 Bhfe 9-11 3.69 0.07 30.6 3.27 28.42 0.12 10.3 5.54 0.29 1.68 Bv 1 5 -2 0 3.25 0.09 22.6 2.98 27.43 0.11 9.8 5.33 1.68 4.21 CBv 4 5 - 5 0 1.12 0.04 16.2 2.53 24.18 0.10 9.5 13.05 1.30 8.87 sol D g 7 0 -7 5 0.35 0.01 20.0 6.33 27.39 0.23 18.9 30.65 3.06 33.00 5 Ofh 0 - 5 6 7.82 1.21 32.5 17.48 34.35 0.49 33.7 5.64 0.95 2.99 OfhAh 5 -1 0 39.17 1.20 18.9 14.97 30.74 0.49 32.8 5.87 0.24 1.52 E 1 0 -1 2 2.09 0.06 20.7 3.15 16.91 0.19 15.7 10.74 0.51 11.88 Bhfe 1 5 -2 0 5.74 0.12 27.8 1.77 35.86 0.05 4.7 11.64 0.65 7.11 Bv 2 5 -3 0 2.69 0.08 19.5 1.67 29.75 0.06 5.3 14,18 1.36 11.25 solB vg 7 0 -7 5 0.67 0.02 19.5 1.18 21.36 0.05 5.2 12.11 0.85 16.67 6 AhE 5 -1 0 4.72 0.18 26.8 12.65 13.11* 8.03 2.59 9.22 B vB h fe 1 2 -2 0 2.41 0.12 20.4 11.86 5.12* 33.56 1.48 34.59 Bv 4 0 -5 0 0.98 0.06 17.2 1.31 4.69* 17.71 2.43 37.00 С 1 0 -2 0 0.80 0.04 19.5 3.37 3.11* 13.04 2.77 10.95 7 A hB v 0 - 5 9.19 0.42 21.7 6.36 17.70* 47.92 1.99 37.72 Bv 5 -1 0 4.57 0.28 16.2 2.59 8.40* 24.90 0.49 10.25 Bv 2 0 -3 0 2.36 0.13 18.5 0.85 1.97* 11.14 0.56 5.60 C g 4 0 -5 0 0.34 0.01 24.0 1.00 0.66* 8.09 0.78 4.87 * - H++A13+

is considerably lower, on average it is 23.6 m e /100 g and varies a little from 2 0 .6 0 to 2 7 .5 4 m e/1 00 g. In horizons B hfe and B vB h fe it grow s to an average 32.8 9 m e/ 1 0 0 g with fluctuation from 26.60 m e/ 1 0 0 g in the dry rusty p odzolic soil in the taiga to 38 .48 m e /100 g in the wet tundra rusty p odzolic soil. In horizons B v and C B v the sorption capacity is relatively high, on average 2 7 .54 m e /100 g and

(8)

36 A. Kowalkowski

F IG U R E 1. R elation sh ip b etw een floatable parts (< 0 .0 2 m m ) and the e x ch a n g ea b le cation content in the so il horizon s

it increases on average to 29.89 m e/100 g in the materials o f subsoil and parent rock o f glacigen origin.

The fraction content < 0.02 mm, with the exception o f Bv horizons, which are under the horizon B hfe (Fig. 1) does not influence the value o f the sorption capacity. H ow ever, there is a distinct dependence between sorption capacity and the organic matter content, which is particularly marked in horizons AhE that have the character o f organic overlay and in the horizons Ofh (Table 2). The main factor o f high and little differentiated values o f sorption capacity is strong weathered surface o f mineral grains [K ow alkow ski, Kocoń 1998], due to which their ion exchange surface along the w hole depth o f soil profile, including horizons С and D, increases many times.

Cations A l3+ + Fe3+ + H+ o f acidic character dominate over cations Ca2+ + + M g2+ + K+ + N a+ o f basic character. This prevalence, which is in horizon Ofh 66.5% (it ranges from 43.5 to 81.2% ), increases in the su ccessiv e horizons laid lo w e r - E and E g g - t o mean 87.3%, in B hfe and B vB h fe to 89.1 %, in Bv and CBv to 92.5% and in horizons Cg and D g it is 90.6% . The expression o f this situation are the ratios o f both groups o f exchangeable cations which decrease from 1.29 to 0.28% in upper horizons Ofh to 0 .27 -0.09% in horizons E and to 0 .2 4 -0 .0 4 in horizons Cg and D g at depths 5 0 -8 0 cm (Table 3). With the decreasing absolute heights o f slope surface in the investigated soils in all horizons, the prevalence o f acidic cations increases several times in relation to basic cations.

(9)

F IG U R E 2. R elation sh ip b etw een the organic matter and the ex ch a n g ea b le cation con ten ts in the so il h orizon s

O ne can observe low concentrations o f exchangeable H+which reach 0.8 8 -4 .5 5 m e/100 g in organic horizons. H ow ever, they decrease rapidly in mineral horizons from 0.53 to 0.09 m e/100 g o f soil material. In quantitative ratios o f the investigated exchangeable cations H+ occupies 3 -5 th place in horizons Ofh, in horizons E and E gg the 4 -7 th place, in horizons B hfeg and B vB h fe the 6 -7 th place (Table 5). It follo w s from the quantitative arrangement o f the investigated cations in Table 5 that in horizons Ofh, beside dominant Fe3+-there occurs M g2+in the second place, and in horizons E and E gg exchangeable cations M g2+ occupies the third place after dominant F e3+ and A l3+. In horizons B hfeg and B vB h fe dom inate cations F e3+ and A l3+, as a rule Ca2+ and M g2+ occupy the third and fourth places. In horizons B v and C B v dominate F e3+ with Ca2+, A l3+ and M g3+ that occur alter­ natively in the 2—4th places.

L ow concentrations o f exchangeable H+in com parison with F e3+ and A l3+, also known from currently developing arctic and subarctic soils o f Eurasia [Targuljan 1971], can be caused by use o f protons H+ during a relatively intensive cryohy- drothermic weathering o f silicate rocks and minerals. This is undoubtedly perm it­ ted by low pH, presence o f aggressive hum ic acids in soil solutions, and an ever increasing ion exchangeable surface o f cryogenic origin [K ow alkow ski, K ocoń

(10)

38 A. Kowalkowski

T A B L E 4. P rofile distribution o f e x ch a n g ea b le cation s in the so il catena S o il pit N o S o il h ori­ zon D epth o f sam p ­ lin g [cm]

E xch an geab le cation s [m e/1 0 0 g] T [m e/ /1 0 0 g] C a2+ M g 2+ K+ N a + H* A l3+ F e 3+ 1 T g g 0 - 1 0 0.6 5 3.29 1.34 1.53 0 .8 8 11.37 17.11 3 6 .1 7 E g g 2 0 - 3 0 0 .1 7 1.97 0 .3 0 0.41 0 .18 4 .4 6 2 0 .0 5 2 7 .5 4 B h fe g g 3 5 - 4 0 1.60 1.45 0.28 0 .3 6 0 .0 9 3 .0 6 7.6 3 14.47 2 O fh 0 - 5 0 .6 5 11.28 1,09 3 .99 4 .2 0 4 .2 0 4 .7 9 3 0 .2 0 A h E 5 - 1 0 0 .1 7 3.3 2 0.43 1.16 0 .88 7 .8 7 12.30 2 6 .1 3 E 1 0 -2 0 0 .3 2 0 .7 7 0 .1 6 0.43 0 .7 0 7 .7 0 10.68 2 0 .7 6 B h fe 2 0 - 2 5 0.95 1.17 0.13 0 .3 7 0 .35 8.15 2 7 .3 6 3 8 .4 8 B v B h fe 4 5 - 5 0 1.87 0 .3 6 0 .0 7 0.2 9 0 .18 1.92 2 5 .3 6 3 0 .0 5 D B v 7 5 - 8 0 1.28 0.31 0 .0 2 0.11 0 .1 8 0 .8 7 2 3 .5 8 2 6 .3 5 3 O fh 0 - 5 0.35 8 .3 2 0 .65 3 .2 2 4 .5 5 3.85 5 .1 6 2 6 .1 0 Ofh 5 - 1 0 0.65 4.21 0.73 1.97 1.58 9.95 15.48 3 4 .5 7 Eg 1 0 -1 5 0 .5 0 0 .7 7 0.13 0 .38 0.18 1.05 19.41 2 2 .4 2 B fe g g 2 0 - 2 5 1.25 0 .9 2 0 .0 7 0 .28 0.18 3 .3 2 2 0 .5 7 2 6 .6 0 D g g 5 0 - 5 5 0 .38 0.53 0.05 0 .1 6 0.18 7 .3 4 17.43 2 6 .0 7 4 Ofh 0 - 3 0 .65 11.64 0 .1 7 2.38 1.75 2 .1 0 2 1 .6 4 4 0 .3 3 E 4 - 9 1.25 3 .19 0 .2 7 0.51 0.53 4 .1 9 14.41 2 4 .3 5 B h fe 9 -1 1 0 .6 2 2.15 0.13 0 .3 7 0.35 3 .2 4 2 4 .8 3 3 1 .6 9 B v 1 5 -2 0 1.60 0.95 0 .0 9 0 .3 4 0.18 0 .9 6 2 6 .2 9 30.41 C B v 4 5 - 5 0 1.33 1.02 0.03 0 .15 0 .0 9 0 .1 7 2 3 .9 2 26.71 sol D g 7 0 - 7 5 4 .6 2 1.51 0 .0 6 0 .1 4 0 .0 9 0 .0 9 27.21 3 3 .7 2 5 O fh 0 - 5 1.15 12.14 0.35 3 .8 4 4 .5 5 1.75 2 8 .0 5 5 1 .8 3 O A h 5 - 1 0 2 .4 9 10.30 0 .5 4 1.64 2 .45 2 .97 2 5 .3 2 4 5.71 E 1 0 -1 2 0 .95 1.97 0 .15 0.08 0 .2 6 7 .6 2 9.03 2 0 .0 6 B h fe 1 5 -2 0 0 .6 9 0 .9 9 0 .05 0 .0 9 0 .7 0 8 .9 2 2 6 .2 4 3 7 .6 3 B v 2 5 - 3 0 0 .9 0 0 .6 6 0.03 0.08 0 .18 3 .0 9 2 6 .4 8 3 1 .4 2 sol B v g 7 0 - 7 5 0 .5 0 0 .5 9 0 .0 6 0.03 0 .0 9 0 .5 2 2 1 .0 2 22.81 6 A h E 5 - 1 0 8 .1 2 3.13 0 .88 0 .5 2 2.19 B v B h fe 1 2 -2 0 0 .7 4 0 .5 0 0 .0 2 0.05 3.28 B v 4 0 - 5 0 7.61 3.13 0 .2 2 0 .1 0 2 .85 С 1 0 -2 0 2 .3 0 0.83 0.21 0.03 2 .19 7 A h B v 0 - 5 14.15 2.08 0.11 0 .0 2 6.78 B v 5 - 1 0 0 .8 2 1.67 0.08 0 .0 2 6 .5 6 B v 2 0 - 3 0 0 .28 0 .5 0 0.05 0 .0 2 1.97 C g 4 0 - 5 0 0 .3 9 0 .5 0 0.08 0.03 0 .6 6

The actual course o f this process can be inferred on the basis o f relatively high concentrations o f exchangeable M g2+ from 0.6 to .2.1 m e/100 g in mineral soil horizons, particularly in horizons E. A lso in horizons Ofh high concentration o f exchangeable M g2+ occurs from 3.3 to 12.6 m e /100 g which com es from biogenic accum ulation and the second or first place in the quantitative series o f exchan ge­ able cations before or after Fe3+ (Table 5). In horizons E and Egg, M g2+ occupies the third place, in horizons B hfeg and B vB hfe - the second or third places, in horizons Bv and CBv - the second to the fourth places, and in horizons Cg and D g - the third place (Tab)e 5).

(11)

TABLE 5. Quantitative arrangement o f exchangeable cations in soil horizons

S o il pit N o

S o il horizon Cation arrangem ent p H

H 20 K C l 1 T g g

lFe''

> A T > M g 2' > K' > N a ’

>

H “ > C a 2 3 ,5 6 3 ,2 6

о

Ofh M g 2’ > Fe' > А Г = H > K > N a > C a 2‘ 4 ,0 8 3 ,0 3 3

M

fT

* > Fe' > Н > А Г > К ‘ > N a ’ > C a2’ 3 ,9 9 3 ,0 0 3 F e ; > А Г > M g 2' > K ■ > H ' > N a' > C a2’ 4 ,2 9 3 ,5 0 4 F e v

>

M g 2

Ж >

A l''

>

H'

>

C a2*

>

N a ’ 4 ,4 7 3,71 5 Fe'

>

M g 2

> Н

Г >

К*

>

А Г

>

C a2'

>

N a' 6 ,0 8 5 ,2 6 5 F e v > M g 2

>

А Г

>

C a2 > H * > K > N a ~ 4 ,0 4 3 ,1 0 1 E g, E F e3"

>

A T

>

M g : - > K

>

N a ’

>

C a2

>

H' 3 ,8 8 3 ,0 4 F e ? - А Г > M g 2' > K ' > H ' > N a ’ > C a 2' 3 ,5 8 2 ,7 3

2

Fe' > АГ' > M g 2' > H > К > C a2’ > N a 3 ,9 2 3 ,5 0 3 Fe' > Al ' > M g 2’ > K ' > C a2 > H ' > N a 4 ,6 5 4 ,1 2 4 F e' > А Г > M g 2- > C a2' > H' > K ’ > Na" 4,51 3 ,6 0 5 F e 3’

>

AT*

>

M g 2-

>

C a2’

>

H >Na~

>

K~ 4 ,2 7 3 ,1 9

I

B h fe g : B v B h fe Fe'"

>

АГ' > |C a ’

>

M g ^ > K'

>

Na"

>

H' 4 ,1 4 3 .7 8

n

Fe'"

>

А Г > |M g : '

>

C a2"|>

K' > H‘ >

Na" 4 ,5 8 4 ,2 3

о

F e ;

>

АГ' >ICa2

i

> M g 2 l> K ' > H

I

>

N a' 4 ,9 4 4 ,7 0 3 Fe"

>

Al'5’

>k

> M g 2’ j > K ' > H ’

>

N a' 4 ,8 3 4 ,5 4 4 F e:" А Г

:>i|M

g:'>

C a j > K ‘

>

H '

>

N a ’ 4 ,5 4 4 ,1 7

5

Fe'

>

АГ'

>|M

g-1>H' >

Ca

>K >

Na" 4 ,8 3 4 ,5 0

г- —

-,

1

о

B v Fe' > |С а-

.A

j- >

M g -’

>

H'

>

K ’

>

N a ’ 5,81 5,33 4 Fe' >1Са2 « > А Г > M g 2'j> К > H' > N a ’ 5,01 4 ,7 0

5

Fe'

Д

1

а

Г

> C a2' > M g 2 l> H* > K ’ > Na 5 ,9 6 4 ,9 2 4 C B v Fe' > С а - > M g 2* > A l' |> К > К > Na' 5 ,6 4 4 ,7 8

5

Fe'

>|M

g2

' > A T > C a2

J>

H > N a > К 5 ,5 6 4 .4 5 3 Cg, D g F e'

> А

Г'>

M g 2

>

C a“

>

К

>

H

>

N a 4 ,3 0 4 ,0 4 4 Fe'

>

C a3'

>

M g 2’

>

К'

>

А Г

=

H'

>

N a ’ 6 ,13 5 ,2 3

J

(12)

40 A. Kowalkowski

R elease o f M g as w ell as Al and Fe in the environm ent o f pH KC12 .7 -4 .1 in the horizons E o f the investigated soils from weathering w aste is dependent not only on the influx o f m obile organic acids o f the fulvic acid type from horizons Ofh under the tundra-taiga and northern taiga vegetation cover. Processes o f frost w eathering o f primary silica minerals are an important factor w hich stim ulates this process in tim e not only in horizons E but also in deeper horizons. T hese processes are lim ited not only to the external surfaces o f grains and rock splinters, but they are d evelop ed along the w alls o f the nets o f cryohydrothermic microcracks and gaps, w hich reach their internal surfaces [K ow alkow ski, B rogow ski 1983; K ow al­ k ow ski, Starkel 1984; K ow alkow ski, K ocoń 1 9 9 1 ,1 9 9 8 ]. In equivalent utilization o f H+ protons, lam elles o f tiny mineral chips o f diameters < 0.0 2 mm originating during scalling process are chem ically decom posed especially rapidly in those conditions. The low er pH values fall, the higher amounts o f H+ are used to release ions o f A l3+ w hich easily migrates with waters in the soil profile.

T he rate o f cryohydrothermic weathering is lim ited, how ever, by deposition o f thin alum inium -silica crusts on grain surfaces, which is marked distinctly in horizons B hfeg and B vB h fe o f the investigated soils [K ow alkow ski, Kocoń 1998]. L ow concentrations o f exchangeable H+ in all the investigated soils [Tables 4 and 5] under dom ination o f exchangeable A l3+ and F e3+ and considerable concentra­ tions in aqueous solutions o f organic acids, which are a protective colloid for stim ulation o f migration ability o f those cations in solutes with pHK C 1 3 .9 -4 .9 , show that along the w hole depth o f the investigated soils the cryohydrothermic processes o f weathering are intensive.

Certain buffering to those processes is m anifested by horizon B v developed in the earlier stage o f incisions o f the investigated soils in the conditions o f a more continental clim ate with low rainfall. In recent conditions permitting the p odzoli- zing processes in Central Sw eden poorly developed Bhs horizons [K ow alkow ski 1995a, b] have small but grow ing in time ability to neutralise leached substances, and acid com pounds and the possibilities o f originate o f clay minerals are small (Table 2). In the phase o f intensive podzolizing and related ion migration as w ell as the displacem ent o f organic matter, increasing with depth, through all soil horizons, it is not p ossible to assum e that there is a relative stability in any part o f profiles o f the investigated soils. What has formed there is association o f the m ezo- and m icrocom pounds, which are in different concentration state, in time in unstable cryohydrochem ical equilibria.

DISCUSSION

In the light o f thejpresented data about currently developing podzolic and rusty p odzolic soil in the Areskutan m assif and the cited literature, it is only p ossib le to accept with reservation the statements repeatedly present in the literature that p aleosoils defined as soils formed in old landscapes are a perfect record o f the bygone conditions o f their environment [Arnold et al. 1990]. The reservation concerns first o f all the contemporary processes in such a currently functioning soil. In the past bioclim atic conditions, particularly in subarctic and boreal en v i­ ronment, the soil developm ent had a different character in relation to the contem ­ porary state. It is thus possible to assume that the old-holocene (recent) profiles o f cryogenic rusty soil in the considered holocene soils has been preserved from the

(13)

old bioclim atic conditions. It has becom e a kind o f scaffolding-environm ent for you ng-holocene (recent) rebuilding processes o f p odzolizing, su ccessin g in con ­ sequence o f the changes o f clim ate and vegetation [K ow alkow ski 1993].

It seem s that Stremme [1926] was correct when he stated that the „developm ent o f forest soils rusty coloured, frequently with podzolization features near the surface, with horizon В o f illuvial features, depends rather on clim ate than flora” . A ccording to Ramann [1911] part o f brown soils formed from loam s and sands on the postglacial area is „the outcom e o f geological youth o f glacial soils”. He stated that those soils are connected with low annual temperatures, cold winters, and m edium strong leaching, with dominant chem ical weathering. T hese soils often have a little volum e o f bleached horizon which is the indicator o f the rebuilding o f the decaying brown soil from surface into young podzolic soils due to clim atic change. T hose soils with m orphological features and structures originating in glacial and periglacial environm ent in profile [Kopp 1965, 1970; K ow alkow ski 1988, K onecka-B etley 1982, 1991] are currently referred to as rusty and rusty p od zolic soils. In the System atics o f Poland’s soils [1989] they were incorrectly lim ited to sand substrates and included in the division o f podzol-earths. T hose soils are also formed from loam y substrates, and podzolizing o f those soils in a younger su ccessiv e process w h ose effects are superimposed on the original features o f the older rusting process.

CONCLUSIONS

The previously cited and discussed factographic data allow to formulate the follo w in g conclusions:

1. The investigated peaty gleypodzol and rusty p odzolic soils o f the tundra and the northern taiga are at present in the phase o f intensive processes to set going aggressive organic acids in horizons Ofh, which contribute in horizons E to the pedochem ical decom position o f the fresh cryogenic surface o f minerals and rock chips.

2. The investigated soils due to prevalence in the sorption com plex o f cations A l3+ and Fe + as w ell as elluvial and cryoturbation conditioned migration o f organic matter can be referred to, after Targuljan [1971], as rusty p odzolized A l-Fe-hu- m ous or peaty p odzolic Al-Fe-hum ous soils.

3. The features o f the recent process o f p odzolizing with éluviation and illuviation along the w h ole depth o f profile are superimposed on stable features o f pedocryogenic rusty horizons В v, hom ogeneous with regard to colour and grain size.

4. Rusty horizons were shaped from water perm eable cryogenic w aste in the oxygen environm ent o f active permafrost, in the introductory phase o f extra­ glacial and periglacial cryopedogenesis.

5. The main controlling pedom orphogenetic factors in the su ccessiv e phases o f the old-holocen e process o f rusting and follow in g the young h olocen e podzo- lisin g were changing in the time, clim ate, vegetation and water conditions. 6 . The factors w hich determine the developm ent o f soil cover m osaics were parent

(14)

42 A. Kowalkowski

features o f polygenetic zonal soils o f mountain stages, and their inclusion in authogenic soils is justified.

7. Rusty and rusty podzolic soils which occur outside the range o f the contem po­ rary tundra and taiga on considerable areas o f Central Europe are relic p leisto­ ce n e -o ld h o lo c en e so ils w h ich have p reserved the p rofile o f the past environm ent, and the ongoing recent young-holocene processes are controlled by the conditions o f subboreal clim ate and the corresponding vegetation.

REFERENCES

A R N O L D R .W ., S Z A B O L C S J., T A R G U L JA N V .O ., 1990: G lob al so il ch an ge. Rep. o f H A S A - I S S S -U N E P Task F orce o f the R o le o f S oil G lobal C hange. Inst, for A p p lied S y stem s A n a ly sis. L axenburg, Austria: 1 -1 1 0 .

B E D N A R E K R., 1991 : A g e, g e n e sis and system atical stand o f rusty so ils in the ligh t o f p aleo p ed o - lo g ica l in v estig a tio n in the envirou s o f O sia. (in P o lish ).U M K Toruń: 1 -1 0 2 .

B L U M E H .P., S C H N E ID E R D ., B Ö L T E R M ., 1996: O rganic matter accu m u lation and p o d zo li- zation o f antarctic so ils. J. P la n t Nutr. a n d S o il Sei. 159, 4: 4 1 1 - 4 1 2 .

C O U T A R D J.P., 1989: Experim ental G eom orp h ology. (In:) R ecent A d v a n c es in French G eom or p h o lo g y . S eco n d Int. C onf. on G eom orp h ology. Frankfurt: 9 7 -1 0 2 .

H IN N E R I S., 1974: P o d zo lic p ro cesses and bio elem en t p o o ls in subarctic forest so ils at the K ev o Station. F in nish Lappland. Rep. K e v o S u b a rc tic Res. Sta. 11: 2 6 - 3 4 .

H IN N E R I S., S O N E S S O N M ., V E U M A. K., 1975: S o ils o f F en noscand ian IB P Tundra E c o s y ­ stem s, F en noscand ian Tundra E co sy stem s. Part I. E co lo g ic a l Stu dies, Springer V erlag, B erlin, H eid elb erg, N e w York: 3 1 - 4 0 .

K O N E C K A -B E T L E Y K., 1982: F o ssil so ils on the dunes o f the W arsaw environ m en t, (ih P olish ).

R ocz. G leb o zn . 33, 3/4: 9 1 -1 1 2 .

K O N E C K A -B E T L E Y K., 1991: Late V istu lian and h o lo cen e fo ssil so ils d e v e lo p ed from aeolian and allu vial sed im en ts o f the W arsaw B asin. Z. G eom ., NE. Suppl. Bd. 90: 9 9 - 1 0 5 .

K O N E C K A -B E T L E Y K., J A N O W S K A E., 1996: A g e and origin o f sed im en ts and selected soil form in g p ro cesses, (in P olish ). R o c z . G leb o zn . 41, Supl.: 1 1 3 -1 2 3 .

K O PP D ., 1965: D ie periglaziäre D eck zo n e (G esch ieb ed eck sa n d ) im N ord ost-d eu tsch en T ieflan d und ihre bod en k u n d lich e B edeutun g. Ber. G eol. G es. D D R 10: 7 3 9 - 7 7 1 .

K O PP D ., 1970: P eriglaziäre U m lageru n gs- (P erstruktion s-)zonen im N ord ost- deu tsch en T ieflan d und ihre b o d eg en etisch e B edeutun g. T agu n gsberich t. D t. A k a d . Lcindw. W iss. B e rlin : 5 5 - 8 1 . K O W A L K O W S K I A ., 1973: G en esis and foundation o f cla ssifica tio n o f so ils d ev elo p ed from

periglacial sedim en ts. (In:) S cien tific C onf. G uide „ G en esis o f so ils d ev elo p ed from the sed im en ts periglacially perstructed on the P olish L ow lan d ” , (in P olish ). 2 0 - 2 6 sierpnia 1973. Su pl., W arszaw a.

K O W A L K O W S K I A ., 1988: A g e and g e n e sis o f so ils. (In:) L. Starkei (ed.). C h an ges o f the g eograp h ical environ m en t in Poland, (in P olish ) W szech n ica P A N , O sso lin eu m , W rocław : 4 5 - 8 5 .

K O W A L K O W S K I A ., 1993: N om enclatu re and notion problem s o f the recent p e d o lo g y in p aleo g eo g ra p h ica l in vestigation , (in P olish ). Stud. K iel. 2/78: 1 3 3 -1 6 4 .

K O W A L K O W S K I A ., 1995a: P ed om orp h ogen etisch e P rozesse in P o d so lb o d en der n ivalen Z o n e in A reskutan G eb irgsm assiv. M itt. d e r D B G . B d 76, 2: 1 1 0 5 -1 1 0 8 .

K O W A L K O W S K I A ., 1995b: C atena o f p o d zo lic so ils on the northern slo p e o f V ästerskutan in the M a ssif o f Areskutan, Jämtland. Q u a e stio n e s G e o g r a p h ic a e , S p ecial Issu e 4: 1 8 5 -1 9 3 . K O W A L K O W S K I A ., B R O G O W S K I Z., 1983: Features o f cry o g en ic en viron m en t in so ils o f

continental tundra and arid steppe on the southern Khangai S lo p e under electron m icro sco p e. Catena, V. 10, B raunsch w eig: 1 9 9 -2 0 5 .

K O W A L K O W S K I A ., S T A R K E L L., 1984: A ltitudinal belts o f geom orp h ic p ro cesses in the southern K hangai M ts. (M o n g o lia ). S tu dia G e o m o rp h o lo g ic a C a rp a th o -B a lc a n ic a 18: 9 5 -1 16.

(15)

K O W A L K O W S K I A ., K O C O Ń J., 1991: W eathering p ro cesses in Sp itsbergen on the ground o f the scan n in g electron m icro sco p e in vestigation .. (In:). K ostrzew sk i A. (ed.). G en esis, L ith o lo g y and Stratigraphy o f Quaternary S edim ents, (in P olish ). A d am M ic k ie w icz U n iversity P ozn an,

G e o g ra fia 50: 7 7 - 1 0 4 .

K O W A L K O W S K I A ., K O C O Ń J., 1998: M icrotextures o f cry o p ed o g en ic w eatherin g in so ils o f m ountain tundra o f m id d le S w ed en . R o c z• G leb o zn . 48, 1/2: 5 3 - 6 0 .

L A N G O H R R ., V E R M E IR E R., 1982: W ell drained so ils w ith a "degraded" B t h orizon in lo ess d ep o sits in B elg iu m . R elation sh ip w ith p aleop eriglacial process. B iu l P e r yg la c. 29: 2 0 3 - 2 1 2 . L U N D Q U IS T J., 1986: Late W eich selia n glaciation and d e glaciation in Scand inavia. Q uat. Sei.

R ev. 5.

M A N IK O W S K A В ., 1985:O n the fo ssil so ils, stratigraphy and lith o lo g y o f du nes in Central Polan d., (in P olish ). A c ta G eo g r. L o d z 52, 1, 137.

M E L K E J., 1997: S o m e regularities in the ch em ical co m p o sitio n o f brow n so ils in different geograp h ical regions, (in P o lish ). UM CS, D issert. 56: 1 -1 1 3 .

M O K M A D . L., 1983: N e w ch em ical criteria for d efinin g the sp od ic horizon. S o il Sei. Soc. A m er.

J. 47: 9 7 2 - 9 7 6 .

P R U S IN K IE W IC Z Z., B E D N A R E K R., 1985: T he origin, age and stratigraphie sig n ific a n ce o f so m e rusty (sid eric) so ils in Poland. IN Q U A /ISSS. P a le o p e d o lo g y C om m . 5: 1 3 -1 4 .

R A M A N N E., 1911: B odenk un de. 3 A ufl. J. Springer, Berlin: pp. 6 19.

S C H A R P E N S E E L H .W ., S O M B R O E K W .G ., 1990: P a leo so ls in the con text o f environ m en tal ch an ges. (In:) R. W . A rnold, I. S za b o lcs, V .O . Targuljan (E ds.). G lob al so il ch an ges. Rep. IIA S A , IS S S , U N E P , Laxenburg: 6 3 -6 8 .

S C H L IC H T IN G E ., 1963: Z. P flan zen ern . B d k d e 100: 1 2 1 -1 2 6 . SM IT H R. J., 1990: Proc. N IPR Sym p . Polar B io l. 3: 2 2 9 -2 4 4 .

S T A R K E L L ., 1977: P a leo g eo g ra fia holocen u. P W N , W arszaw a ss. 361.

S T O N E R M .G ., U G O L IN I F. C., M A R R E T T D .J., 1983: M oisture and temperature ch an ges in the a ctiv e layer o f arctic A lasca. Perm afrost. Fourth Int. C onf. Proc. W ash in gton DC : 1 1 9 4 -1 1 9 9 . S T R E M M E H ., 1926: G rundzüge der praktischen B odenkun de. B erlin pp. 332.

T A R G U L J A N V . O., 1971: S o il form ation and w eathering in cold hum id regions, (in R u ssian )

N au ka, M o sc o w pp. 267.

T A V E R N IE R R., SM IT H G .D ., 1957: The con cep t o f „Braunerde” (brow n forest so il) in E urope and the U n ited States. (In:) A .G . N orm an (E d.). A d v a n ces in A gron om y V . IX . A cad. P ress IN C , N e w York: 2 1 7 - 2 8 9 .

T R IC A R T J., 1965: P rinciples o f m eth ods de la g éo m o rp h o lo g ie.

W IL S O N P., SE L L IE R D ., 1995: A c tiv e patterned ground and cryoturbation on M u ck ish M ountain. C o. D o n eg a l Ireland, P e r m a fr o st a n d P e r ig la c ia l P r o c e s s e s 6: 1 5 -2 5 .

(16)

44 A. Kowalkowski

A. Kowalkowski

HOLOCEŃSKIE GLEBY RDZAWE I RDZAWE BIELICOWA-

NE W TUNDRZE I TAJDZE ŚRODKOWEJ SZWECJI

Europejski Instytut Kształcenia Podyplomowego w Kielcach

STRESZCZENIE

W opracowaniu przedstawiono charakterystykę niektórych fizyczn ych i fiz y ­ ko-chem icznych w łaściw ości kateny gleb glejobielicow ycłr, rdzawych b ielicow a- nych i rdzawych na północno-w schodnim stoku góry Areskutan, w tundrze m szystej i krzewinkowej oraz w świerkowej tajdze północnej od w ysokości 1190 do 41 0 m n.p.m. w środkowej Szw ecji (tab. 1). G leby te pow stały z holoceńskich zw ietrzelin i osadów środowiska proglacjalnego i peryglacjalnego w okresie ostatnich 9 0 0 0 -6 0 0 0 lat. W sp ółcześn ie znajdują się one w fazie intensyw nych procesów uruchamiania w poziom ach Ofh agresywnych kw asów organicznych, które w poziom ach E i Egg powodują pedochem iczny rozkład św ieżych krioge­ nicznych odłam ków m inerałów i skał. Produkty tego rozkładu w obecności kw asów organicznych w roli koloidów ochronnych migrują w głąb profilów i cz ęścio w o są osadzane w poziom ach B hfe i B hfegg o niew ielkich m iąższościach (tab. 2 i 3). Ze w zględu na dominację w kom pleksie sorpcyjnym kationów A l3+ i F e3+(tab. 4 i 5) oraz eluwialną i krioturbacyjną migrację materii organicznej, gleby te m ożna określić jako A l-Fe-próchniczne [Targuljan 1971].

Cechy w sp ółczesn ego hum idow ego procesu bielicow ania z eluw iacją i iluw ia- cją nakładają się na całej głębokości profilu na reliktowe, stabilnie cechy pedo- kriogenicznych p oziom ów rdzawych Bv, hom ogenicznych pod w zględem barwy i uziarnienia (tab. 1 i 2). Te poziom y ukształtowały się z w odoprzepuszczalnych holoceńskich kriogenicznych i lodow cow ych zw ietrzelin i osadów w tlenow ym sem iaridow ym środowisku, we wstępnej fazie kriopedogenezy ekstraglacjalnej i peryglacjalnej. Kolejne fazy - najpierw procesu rdzawienia w warunkach such­ szego klimatu, a następnie procesu bielicow ania po zw ilgotnieniu klimatu - pow stały pod w pływ em zm ieniających się w czasie czynników pedom orfogenety- cznych klimatu, roślinności i gospodarki wodnej. M ozaikow atość pokrywy g le ­ bowej w tym terenie warunkowały sprzężenie skały macierzystej i reliefu. Są to gleby poligenetyczne, stosunkow o bogate w próchnicę na całej głębokości profilu z intensywną wym ianą i migracją jonow ą, wskazującym i na niestabilność krio- hydrochem icznej rów nowagi jonow ej w e w szystkich poziom ach. G leby rdzawe i rdzawe bielicow e, poza zasięgiem w spółczesnej tundry i tajgi północnej na znacznych obszarach Europy Środkowej, są glebami reliktowym i. Zachowany został w nich profil dawnych środowisk, a w sp ółczesne procesy p edogeniczne są sterowane przez zupełnie inne, nieporów nyw alne warunki klimatu subborealnego i odpowiadającą roślinność tajgi południowej oraz lasów liściastych.

Prof. d r hab. A lo jz y K o w a lk o w sk i 2 5 -9 0 0 K ielce, N a Stoku 63 m. 6, P o la n d

Cytaty

Powiązane dokumenty

Oceniając zawartość potasu przyswajalnego według liczb granicznych [IUNG 1990] moż- na stwierdzić niską zawartość tego pierwiastka w profilach badanych gleb nie- zależnie

T ak ą była zem sta G rzym alitów za udział sędziego kaliskiego w konfederacji pyzdrskiej. P rzyszedł na to czas jednak do­ piero po upływ ie rozejm u, kiedy i

В структурі технології сільськогосподарського машинобудування важливе місце посідає дослідження та розроблення прогресивних технологічних

Być może, uda się przy dalszych badaniach obrazów Jana Massysa ujaw nić autoportrety, które mogą być ukryte w jego twórczości.. Wiele powtarzających się ty

The carried out analysis of this synanthropization process was based on the example of stations of 31 anthropophytes of Poaceae family located in railway grounds

1 A. Karpiński sees fiscal, monetary, customs, price, employment, social, regional, and investment policies as traditional macroeconomic policies.

[r]

In this essey, I reserve the notion o f the ’ ’avant-garde” for that artistic position as shaped in that time and place, namely, in Soviet Russia from the October Revolution to