• Nie Znaleziono Wyników

Tables of finite commutative local rings of small orders

N/A
N/A
Protected

Academic year: 2021

Share "Tables of finite commutative local rings of small orders"

Copied!
11
0
0

Pełen tekst

(1)

of small orders

Andrzej Nowicki 08.08.2018, tab-05

All rings are assumed to be commutative with unity. It is well known that every finite ring is a finite product of finite local rings, and the orders of finite local rings are powers of primes. We present some descriptions, up to isomorphism, of finite local rings of orders pn, for p ∈ {2, 3, 5, 7} and n ∈ {1, 2, 3, 4, 5}. Sources: papers [1] - [13].

Local rings of order 2

n

|R| = 21 A1 = Z2

|R| = 22 B1 = F4

B2 = Z2[x]/(x2) B3 = Z4

|R| = 23 C1 = F8

C2 = Z2[x]/(x3)

C3 = Z2[x, y]/(x2, xy, y2) C4 = Z4[x]/(2x, x2) C5 = Z4[x]/(2x, x2− 2) C6 = Z8

There are, up to isomorphism, exactly 21 commutative local rings R of order 16.

|R| = 24, char (R) = 2 D1 = F16,

D2 = F4[x]/(x2), D3 = Z2[x]/(x4), D4 = Z2[x, y]/(x2, y2), D5 = Z2[x, y]/(x2, y2− xy), D6 = Z2[x, y]/(x3, xy, y2), D7 = Z2[x, y, z]/(x, y, z)2.

|R| = 24, char (R) = 23 D19= Z8[x]/(2x, x2), D20= Z8[x]/(2x, x2+ 4).

|R| = 24, char (R) = 24 D21= Z16.

|R| = 24, char (R) = 22 D8 = Z4[x]/(x2),

D9 = Z4[x]/(x2+ 2), D10 = Z4[x]/(x2+ 1), D11 = Z4[x]/(x2+ 3), D12 = Z4[x]/(x2+ x + 1), D13 = Z4[x]/(x3, 2x), D14 = Z4[x]/(x3− 2, 2x),

D15 = Z4[x, y]/(x2, y2, xy, 2x, 2y), D16 = Z4[x, y]/(x2− 2, y2, xy, 2x, 2y), D17 = Z4[x, y]/(x2, y2, xy − 2, 2x, 2y), D18 = Z4[x, y]/(x2− 2, y2− 2, xy, 2x, 2y).

(2)

There are, up to isomorphism, exactly 55 commutative local rings R of order 32.

|R| = 25, char (R) = 21 E1 = F32,

E2 = Z2[x]/(x5),

E3 = Z2[x, y]/(x4, xy, y2− x3), E4 = Z2[x, y]/(x4, xy, y2), E5 = Z2[x, y, z, t]/(x, y, z, t)2.

E6 = Z2[x, y]/(x3, x2y, y2), E7 = Z2[x, y]/(x3, x2y, y2− xy), E8 = Z2[x, y]/(x3, x2y, y2− x2− xy), E9 = Z2[x, y, z]/(x3, y2, z2, xy, xz, yz), E10 = Z2[x, y, z]/(x3, y2− x2, z2, xy, xz, yz), E11 = Z2[x, y, z]/(x3, y2− x2, z2− x2, xy, xz, yz), E12 = Z2[x, y, z]/(x3, y2, z2, xy, yz).

|R| = 25, char (R) = 22 E13= Z4[x]/(2x, x4− 2), E14= Z4[x]/(2x2, x3− 2),

E15= Z4[x, y]/(x3, y2, xy + 2, 2x, 2y), E16= Z4[x, y]/(x3, x2+ y2, xy + 2, 2x, 2y), E17= Z4[x, y]/(x3, x2+ y2+ 2, xy + 2, 2x, 2y), E18= Z4[x, y]/(x3, y2 + 2, xy, 2x, 2y),

E19= Z4[x, y]/(xy2, x2, y2+ 2, xy, 2x, 2y), E20= Z4[x, y]/(x3, x2+ xy, y2+ 2, xy, 2x, 2y), E21= Z4[x, y]/(x3− 2, y2, xy, 2x, 2y)

E22= Z4[x, y]/(x3− 2, y2− 2, xy, 2x, 2y), E23= Z4[x, y]/(x2− 2, y2, xy, 2y);

E24= Z4[x, y]/(x2− 2, y2− 2x, xy, 2y), E25= Z4[x, y]/(x2− 2x − 2, y2, xy, 2y),

E26= Z4[x]/(x4, 2x), E27= Z4[x]/(x3, 2x2), E28= Z4[x]/(x3− 2x, 2x2),

E29= Z4[x, y, z]/(x2− 2, y2, z2, xy, xz, yz, 2x, 2y, 2z), E30= Z4[x, y, z]/(x2− 2, y2− 2, z2, xy, xz, yz, 2x, 2y, 2z), E31= Z4[x, y, z]/(x2− 2, y2− 2, z2− 2, xy, xz, yz, 2x, 2y, 2z), E32= Z4[x, y, z]/(x2, y2, z2, xy, xz, yz − 2, 2x, 2y, 2z),

E33= Z4[x, y, z]/(x2− z, y2, z2, xy, xz − 2, yz, 2x, 2y, 2z), E34= Z4[x, y, z]/(x2− z, y2− 2, z2, xy, xz − 2, yz, 2x, 2y, 2z), E35= Z4[x, y, z]/(x2, y2, z2, xy − z, xz, yz, 2x, 2y, 2z),

E36= Z4[x, y]/(x2, y2, xy, 2y), E37= Z4[x, y]/(x2, y2− 2x, xy, 2y), E38= Z4[x, y]/(x2− 2x, y2, xy, 2y), E39= Z4[x, y, z]/(2, x, y, z)2.

(3)

|R| = 25, char (R) = 23 E40= Z8[x]/(2x, x3), E41= Z8[x]/(4x, x2− 2), E42= Z8[x]/(4x, x2− 2x − 2), E43= Z8[x]/(4x, x2− 2x + 2), E44= Z8[x]/(2x, x3− 4), E45= Z8[x]/(2x, x3),

E46= Z8[x]/(4x, x2), E47= Z8[x]/(4x, x2− 2x), E48= Z8[x]/(4x, x2− 2x − 4), E49= Z8[x, y]/(x2, y2, xy, 2x, 2y), E50= Z8[x, y]/(x2− 4, y2, xy, 2x, 2y), E51= Z8[x, y]/(x2− 4, y2− 4, xy, 2x, 2y), E52= Z8[x, y]/(x2, y2, xy − 4, 2x, 2y).

|R| = 25, char (R) = 24 E53= Z16[x]/(2x, x2), E54= Z16[x]/(2x, x2− 8).

|R| = 25, char (R) = 22 E55 = Z32.

Local rings of order 3

n

|R| = 31 A1 = Z3

|R| = 32 B1 = F9

B2 = Z3[x]/(x2) B3 = Z9

|R| = 33 C1 = F27

C2 = Z3[x]/(x3)

C3 = Z3[x, y]/(x2, xy, y2) C4 = Z9[x]/(3x, x2) C5 = Z9[x]/(3x, x2− 3) C6 = Z9[x]/(3x, x2− 6) C7 = Z27

There are, up to isomorphism, exactly 22 commutative local rings R of order 34.

|R| = 34, char (R) = 3 D1 = F81,

D2 = F9[x]/(x2), D3 = Z3[x]/(x4),

D4 = Z3[x, y]/(x2− y2, xy), D5 = Z3[x, y]/(x2− 2y2, xy), D6 = Z3[x, y]/(x3, xy, y2), D7 = Z3[x, y, z]/(x, y, z)2.

|R| = 34, char (R) = 32 D8 = Z9[x]/(x2),

D9 = Z9[x]/(x2− 2), D10= Z9[x]/(x2− 3), D11= Z9[x]/(x2− 6), D12= Z9[x]/(3x, x3), D13= Z9[x]/(3x, x3− 3),

D14= Z9[x, y]/(x2, y2, xy, 3x, 3y), D15= Z9[x, y]/(x2− 3, y2, xy, 3x, 3y), D16= Z9[x, y]/(x2− 6, y2, xy, 3x, 3y), D17= Z9[x, y]/(x2− 3, y2− 3, xy, 3x, 3y), D18= Z9[x, y]/(x2− 3, y2− 6, xy, 3x, 3y).

|R| = 34, char (R) = 33 D19 = Z27[x]/(3x, x2), D20 = Z27[x]/(3x, x2− 9), D21 = Z27[x]/(3x, x2− 18).

|R| = 34, char (R) = 34 D22= Z81.

(4)

There are, up to isomorphism, exactly 66 commutative local rings R of order 35.

|R| = 35, char (R) = 31 E1 = F35,

E2 = Z3[x]/(x5),

E3 = Z3[x, y]/(x4, xy, y2− x3), E4 = Z3[x, y]/(x4, xy, y2), E5 = Z3[x, y, z, t]/(x, y, z, t)2,

E6 = Z3[x, y]/(x3, y2, x2y), E7 = Z3[x, y]/(x3, x2− y2, x2y), E8 = Z3[x, y]/(x3, x2− 2y2, x2y),

E9 = Z3[x, y, z]/(x3, y2, z2, xy, xz, yz), E10= Z3[x, y, z]/(x3, x2− y2, z2, xy, xz, yz), E11= Z3[x, y, z]/(x3, x2− 2y2, z2, xy, xz, yz), E12= Z3[x, y, z]/(x3, y2 − x2, z2− x2, xy, xz, yz).

|R| = 35, char (R) = 32 E13 = Z9[x]/(3x, x4− 3), E14 = Z9[x]/(3x, x4− 6),

E15= Z9[x]/(3x2, x3− 3), E16= Z9[x]/(3x2, x3+ 3x − 3), E17= Z9[x]/(3x2, x3− 3x − 3), E18 = Z9[x, y]/(x3, xy, y2+ 3, 3x, 3y),

E19 = Z9[x, y]/(x3, xy, y2+ 6, 3x, 3y), E20 = Z9[x, y]/(x3, xy, y2− x2+ 3, 3x, 3y), E21 = Z9[x, y]/(x3, xy, y2− 2x2+ 3, 3x, 3y), E22 = Z9[x, y]/(x3, xy, y2− 2x2+ 6, 3x, 3y), E23 = Z9[x, y]/(x3, xy + 3, y2, 3x, 3y),

E24 = Z9[x, y]/(x3, xy + 3, y2− x2+ 3, 3x, 3y), E25 = Z9[x, y]/(x3, xy + 3, y2− 2x2, 3x, 3y), E26 = Z9[x, y]/(x3, xy + 3, y2− 2x2+ 3, 3x, 3y), E27 = Z9[x, y]/(x3, xy + 3, y2− 2x2+ 6, 3x, 3y).

E28= Z9[x, y, z]/(x2− z, y2, z2, xy, xz − 3, yz, 3x, 3y, 3z), E29= Z9[x, y, z]/(x2− z, y2− 3, z2, xy, xz − 3, yz, 3x, 3y, 3z), E30= Z9[x, y, z]/(x2− z, y2− 6, z2, xy, xz − 3, yz, 3x, 3y, 3z), E31 = Z9[x, y]/(x3− 3, y2, xy, 3y);

E32 = Z9[x, y]/(x2− 6, y2, xy, 3y);

E33 = Z9[x, y]/(x2− 3, y2 − 3x, xy, 3y), E34 = Z9[x, y]/(x2− 6, y2 − 3x, xy, 3y).

E35 = Z9[x]/(x4, 3x), E36 = Z9[x]/(x3, 3x2), E37 = Z9[x]/(x3− 3x, 3x2), E38 = Z9[x]/(x3− 6x, 3x2), E39= Z9[x, y, z]/(x2− 3, y2, z2, zy, xz, yz, 3x, 3y, 3z),

E40= Z9[x, y, z]/(x2− 6, y2, z2, xy, xz, yz, 3x, 3y, 3z);

E41= Z9[x, y, z]/(x2− 3, y2− 3, z2, zy, xz, yz, 3x, 3y, 3z), E42= Z9[x, y, z]/(x2− 3, y2− 6, z2, xy, xz, yz, 3x, 3y, 3z), E43= Z9[x, y, z]/(x2− 3, y2− 3, z2− 3, zy, xz, yz, 3x, 3y, 3z), E44= Z9[x, y, z]/(x2− 3, y2− 3, z2− 6, xy, xz, yz, 3x, 3y, 3z),

(5)

E45= Z9[x, y, z]/(x2− z, y2, z2, xy, xz, yz, 3x, 3y, 3z), E46= Z9[x, y, z]/(x2− z, y2− z, z2, xy, xz, yz, 3x, 3y, 3z), E47= Z9[x, y, z]/(x2− z, y2− 2z, z2, xy, xz, yz, 3x, 3y, 3z),

E48= Z9[x, y]/(x2, y2, xy, 3y), E49= Z9[x, y]/(x2, y2− 3x, xy, 3y), E50= Z9[x, y, z]/(3, x, y, z)2.

|R| = 35, char (R) = 33 E51= Z33[x]/(32x, x2− 3), E52= Z33[x]/(32x, x2− 6), E53= Z33[x]/(3x, x3− 32), E54= Z33[x]/(3x, x3),

E55 = Z33[x]/(32x, x2), E56 = Z33[x]/(32x, x2− 32), E57 = Z33[x]/(32x, x2− 2 · 32),

|R| = 35, char (R) = 34

E58= Z33[x, y]/(x2, y2, xy, 3x, 3y), E59= Z33[x, y]/(x2 − 32, y2, xy, 3x, 3y), E60= Z33[x, y]/(x2 − 2 · 32, y2, xy, 3x, 3y), E61= Z33[x, y]/(x2 − 32, y2− 32, xy, 3x, 3y), E62= Z33[x, y]/(x2 − 32, y2− 2 · 32, xy, 3x, 3y),

E63= Z34[x]/(3x, x2), E64= Z34[x]/(3x, x2− 33), E65= Z34[x]/(3x, x2− 2 · 33).

|R| = 35, char (R) = 35 E66= Z35.

Local rings of order 5

n

|R| = 51 A1 = Z5

|R| = 52 B1 = F52

B2 = Z5[x]/(x2) B3 = Z52

|R| = 53 C1 = F53

C2 = Z5[x]/(x3)

C3 = Z5[x, y]/(x2, xy, y2) C4 = Z52[x]/(5x, x2) C5 = Z52[x]/(5x, x2− 5) C6 = Z52[x]/(5x, x2− 10) C7 = Z53

There are, up to isomorphism, exactly 22 commutative local rings R of order 54.

|R| = 54, char (R) = 5 D1 = F54,

D2 = F52[x]/(x2), D3 = Z5[x]/(x4),

D4 = Z5[x, y, z]/(x, y, z)2, D5 = Z5[x, y]/(x3, y2, xy), D6 = Z5[x, y]/(x2− y2, xy), D7 = Z5[x, y]/(x2− 2y2, xy).

(6)

|R| = 54, char (R) = 52 D8 = Z52[x]/(x2),

D9 = Z52[x]/(x2− 2), D10= Z52[x]/(x2− 5), D11= Z52[x]/(x2− 10), D12= Z52[x]/(5x, x3), D13= Z52[x]/(5x, x3− 5),

D14= Z52[x, y]/(x2, y2, xy, 5x, 5y), D15= Z52[x, y]/(x2− 5, y2, xy, 5x, 5y), D16= Z52[x, y]/(x2− 10, y2, xy, 5x, 5y), D17= Z52[x, y]/(x2− 5, y2− 5, xy, 5x, 5y), D18= Z52[x, y]/(x2− 5, y2− 10, xy, 5x, 5y),

|R| = 54, char (R) = 53 D19 = Z53[x]/(5x, x2), D20 = Z53[x]/(5x, x2− 52), D21 = Z53[x]/(5x, x2− 2 · 52).

|R| = 54, char (R) = 54 D22= Z54.

There are, up to isomorphism, exactly 68 commutative local rings R of order 55.

|R| = 55, char (R) = 51 E1 = F55,

E2 = Z5[x]/(x5,

E3 = Z5[x, y]/(x4, xy, y2− x3), E4 = Z5[x, y]/(x4, xy, y2), E5 = Z5[x, y, z, t]/(x, y, z, t)2,

E6 = Z5[x, y]/(x3, y2, x2y) E7 = Z5[x, y]/(x3, x2 − y2, x2y) E8 = Z5[x, y]/(x3, x2 − 2y2, x2y), E9 = Z5[x, y, z]/(x3, y2, z2, xy, xz, yz), E10 = Z5[x, y, z]/(x3, x2− y2, z2, xy, xz, yz), E11 = Z5[x, y, z]/(x3, x2− 2y2, z2, xy, xz, yz), E12 = Z5[x, y, z]/(x3, y2− x2, z2− x2, xy, xz, yz).

|R| = 55, char (R) = 52 E13= Z52[x]/(5x, x4− 5), E14= Z52[x]/(5x, x4− 10), E15= Z52[x]/(5x, x4− 15), E16= Z52[x]/(5x, x4− 20), E17= Z52[x]/(5x2, x3− 5).

E18= Z52[x, y]/(x3, xy, y2+ 5, 5x, 5y), E19= Z52[x, y]/(x3, xy, y2+ 10, 5x, 5y), E20= Z52[x, y]/(x3, xy, y2− x2+ 5, 5x, 5y), E21= Z52[x, y]/(x3, xy, y2− x2+ 10, 5x, 5y), E22= Z52[x, y]/(x3, xy, y2− 2x2+ 5, 5x, 5y), E23= Z52[x, y]/(x3, xy + 5, y2, 5x, 5y),

E24= Z52[x, y]/(x5, xy + 5, y2− x2+ 5, 5x, 5y), E25= Z52[x, y]/(x3, xy + 5, y2− x2+ 10, 5x, 5y), E26= Z52[x, y]/(x3, xy + 5, y2− 2x2, 5x, 5y), E27= Z52[x, y]/(x3, xy + 3, y2− 4x2+ 10, 5x, 5y).

E28 = Z52[x, y, z]/(x2− z, y2, z2, xy, xz − 5, yz, 5x, 5y, 5z);

E29 = Z52[x, y, z]/(x2− z, y2− 5, z2, xy, xz − 5, yz, 5x, 5y, 5z);

E30 = Z52[x, y, z]/(x2− z, y2− 10, z2, xy, xz − 5, yz, 5x, 5y, 5z);

(7)

E31 = Z52[x, y]/(x2− 5, y2, xy, 5y);

E32 = Z52[x, y]/(x2− 10, y2, xy, 5y);

E33 = Z52[x, y]/(x2− 5, y2− 5x, xy, 5y), E34 = Z52[x, y]/(x2− 10, y2 − 5x, xy, 5y), E35 = Z52[x, y]/(x2− 15, y2 − 5x, xy, 5y), E36 = Z52[x, y]/(x2− 20, y2 − 5x, xy, 5y).

E37 = Z52[x]/(x4, 5x), E38 = Z52[x]/(x3, 5x2), E39 = Z52[x]/(x3− 5x, 5x2), E40 = Z52[x]/(x3− 10x, 5x2).

E41= Z52[x, y, z]/(x2− 5, y2, z2, zy, xz, yz, 5x, 5y, 5z);

E42= Z52[x, y, z]/(x2− 10, y2, z2, xy, xz, yz, 5x, 5y, 5z);

E43= Z52[x, y, z]/(x2− 5, y2 − 5, z2, zy, xz, yz, 5x, 5y, 5z);

E44= Z52[x, y, z]/(x2− 5, y2 − 10, z2, xy, xz, yz, 5x, 5y, 5z);

E45= Z52[x, y, z]/(x2− 5, y2 − 5, z2− 5, zy, xz, yz, 5x, 5y, 5z);

E46= Z52[x, y, z]/(x2− 5, y2 − 5, z2− 105, xy, xz, yz, 5x, 5y, 5z);

E47= Z52[x, y, z]/(x2− z, y2, z2, xy, xz, yz, 5x, 5y, 5z);

E48= Z52[x, y, z]/(x2− z, y2− z, z2, xy, xz, yz, , 5x, 5y, 5z);

E49= Z52[x, y, z]/(x2− z, y2− 2z, z2, xy, xz, yz, , 5x, 5y, 5z).

E50 = Z52[x, y]/(x2, y2, xy, 5y), E51 = Z52[x, y]/(x2, y2− 5x, xy, 5y), E52 = Z52[x, y, z]/(5, x, y, z)2.

|R| = 55, char (R) = 53 E53 = Z53[x]/(52x, x2− 5), E54 = Z53[x]/(52x, x2− 10), E55 = Z53[x]/(5x, x3 − 52), E56 = Z53[x]/(5x, x3), E57 = Z53[x]/(52x, x2), E58 = Z53[x]/(52x, x2− 52), E59 = Z53[x]/(52x, x2− 2 · 52).

E60 = Z53[x, y]/(x2, y2, xy, 5x, 5y), E61 = Z53[x, y]/(x2− 52, y2, xy, 5x, 5y), E62 = Z53[x, y]/(x2− 2 · 52, y2, xy, 5x, 5y), E63 = Z53[x, y]/(x2− 52, y2− 52, xy, 5x, 5y), E64 = Z53[x, y]/(x2− 52, y2− 2 · 52, xy, 5x, 5y).

|R| = 55, char (R) = 54 E65 = Z54[x]/(5x, x2), E66 = Z54[x]/(5x, x2− 53), E67 = Z54[x]/(5x, x2− 2 · 53).

|R| = 55, char (R) = 55 E68= Z55.

(8)

Local rings of order 7

n

|R| = 71 A1 = Z7

|R| = 72 B1 = F72

B2 = Z7[x]/(x2) B3 = Z72

|R| = 73 C1 = F73

C2 = Z7[x]/(x3)

C3 = Z7[x, y]/(x2, xy, y2) C4 = Z72[x]/(7x, x2) C5 = Z72[x]/(7x, x2− 7) C6 = Z72[x]/(7x, x2− 21) C7 = Z73

There are, up to isomorphism, exactly 24 commutative local rings R of order 74.

|R| = 74, char (R) = 7 D1 = F74,

D2 = F72[x]/(x2), D3 = Z7[x]/(x4),

D4 = Z7[x, y, z]/(x, y, z)2, D5 = Z7[x, y]/(x3, y2, xy), D6 = Z7[x, y]/(x2− y2, xy), D7 = Z7[x, y]/(x2− 3y2, xy).

|R| = 74, char (R) = 72 D8 = Z72[x]/(x2),

D9 = Z72[x]/(x2− 3), D10 = Z72[x]/(x2− 7), D11 = Z72[x]/(x2− 21), D12 = Z72[x]/(7x, x3), D13 = Z72[x]/(7x, x3− 7), D14 = Z72[x]/(7x, x3− 14), D15 = Z72[x]/(7x, x3− 21),

D16= Z72[x, y]/(x2, y2, xy, 7x, 7y), D17= Z72[x, y]/(x2− 7, y2, xy, 7x, 7y), D18= Z72[x, y]/(x2− 21, y2, xy, 7x, 7y), D19= Z72[x, y]/(x2− 7, y2− 7, xy, 7x, 7y), D20= Z72[x, y]/(x2− 7, y2− 21, xy, 7x, 7y),

|R| = 74, char (R) = 73 D21 = Z73[x]/(7x, x2), D22 = Z73[x]/(7x, x2− 72), D23 = Z73[x]/(7x, x2− 3 · 72).

|R| = 74, char (R) = 74 D24= Z74.

There are, up to isomorphism, exactly 74 commutative local rings R of order 75.

|R| = 75, char (R) = 71 E1 = F75,

E2 = Z7[x]/(x5,

E3 = Z7[x, y]/(x4, xy, y2− x3), E4 = Z7[x, y]/(x4, xy, y2), E5 = Z7[x, y, z, t]/(x, y, z, t)2,

E6 = Z7[x, y]/(x3, y2, x2y) E7 = Z7[x, y]/(x3, x2 − y2, x2y) E8 = Z7[x, y]/(x3, x2 − 3y2, x2y), E9 = Z7[x, y, z]/(x3, y2, z2, xy, xz, yz), E10 = Z7[x, y, z]/(x3, x2− y2, z2, xy, xz, yz), E11 = Z7[x, y, z]/(x3, x2− 3y2, z2, xy, xz, yz), E12 = Z7[x, y, z]/(x3, y2− x2, z2− x2, xy, xz, yz).

(9)

|R| = 55, char (R) = 52 E13 = Z72[x]/(7x, x4 − 7), E14 = Z72[x]/(7x, x4 − 21), E15 = Z72[x]/(7x2, x3− 7), E16 = Z72[x]/(7x2, x3− 14), E17 = Z72[x]/(7x2, x3− 21).

E18 = Z72[x, y]/(x3, xy, y2+ 7, 7x, 7y), E19 = Z72[x, y]/(x3, xy, y2+ 21, 7x, 7y), E20 = Z72[x, y]/(x3, xy, y2− x2+ 7, 7x, 7y), E21 = Z72[x, y]/(x3, xy, y2− 3x2+ 7, 7x, 7y), E22 = Z72[x, y]/(x3, xy, y2− 3x2+ 21, 7x, 7y), E23 = Z72[x, y]/(x3, xy + 7, y2, 7x, 7y),

E24 = Z72[x, y]/(x3, xy + 7, y2− x2+ 7, 7x, 7y), E25 = Z72[x, y]/(x3, xy + 7, y2− 3x2, 7x, 7y), E26 = Z72[x, y]/(x3, xy + 7, y2− 3x2 + 21, 7x, 7y), E27 = Z72[x, y]/(x3, xy + 7, y2− 3x2 + 28, 7x, 7y).

E28= Z72[x, y, z]/(x2 − z, y2, z2, xy, xz − 7, yz, 7x, 7y, 7z), E29= Z72[x, y, z]/(x2 − 2z, y2, z2, xy, xz − 7, yz, 7x, 7y, 7z), E30= Z72[x, y, z]/(x2 − 3z, y2, z2, xy, xz − 7, yz, 7x, 7y, 7z), E31= Z72[x, y, z]/(x2 − z, y2− 7, z2, xy, xz − 7, yz, 7x, 7y, 7z), E32= Z72[x, y, z]/(x2 − 2z, y2− 7, z2, xy, xz − 7, yz, 7x, 7y, 7z), E33= Z72[x, y, z]/(x2 − 3z, y2− 7, z2, xy, xz − 7, yz, 7x, 7y, 7z), E34= Z72[x, y, z]/(x2 − z, y2− 21, z2, xy, xz − 7, yz, 7x, 7y, 7z), E35= Z72[x, y, z]/(x2 − 2z, y2− 21, z2, xy, xz − 7, yz, 7x, 7y, 7z), E36= Z72[x, y, z]/(x2 − 3z, y2− 21, z2, xy, xz − 7, yz, 7x, 7y, 7z), E37 = Z72[x, y]/(x2− 7, y2, xy, 7y);

E38 = Z72[x, y]/(x2− 21, y2, xy, 7y);

E39 = Z72[x, y]/(x2− 7, y2− 7x, xy, 7y), E40 = Z72[x, y]/(x2− 21, y2 − 7x, xy, 7y),

E41 = Z72[x]/(x4, 7x), E42 = Z72[x]/(x3, 7x2), E43 = Z72[x]/(x3− 7x, 7x2), E44 = Z72[x]/(x3− 21x, 7x2).

E45 = Z72[x, y, z]/(x2− 7, y2, z2, zy, xz, yz, 7x, 7y, 7z), E46 = Z72[x, y, z]/(x2− 21, y2, z2, xy, xz, yz, 7x, 7y, 7z), E47 = Z72[x, y, z]/(x2− 7, y2− 7, z2, zy, xz, yz, 7x, 7y, 7z), E48 = Z72[x, y, z]/(x2− 7, y2− 21, z2, xy, xz, yz, 7x, 7y, 7z), E49 = Z72[x, y, z]/(x2− 7, y2− 7, z2 − 7, zy, xz, yz, 7x, 7y, 7z), E50 = Z72[x, y, z]/(x2− 7, y2− 7, z2 − 21, xy, xz, yz, 7x, 7y, 7z),

E51= Z72[x, y, z]/(x2− z, y2, z2, xy, xz, yz, 7x, 7y, 7z);

E52= Z72[x, y, z]/(x2− z, y2− z, z2, xy, xz, yz, , 7x, 7y, 7z);

E53= Z72[x, y, z]/(x2− z, y2− 3z, z2, xy, xz, yz, 7x, 7y, 7z).

E54 = Z72[x, y]/(x2, y2, xy, 7y), E55 = Z72[x, y]/(x2, y2− 7x, xy, 7y), E56 = Z72[x, y, z]/(7, x, y, z)2.

(10)

|R| = 75, char (R) = 73 E57 = Z73[x]/(72x, x2− 7), E58 = Z73[x]/(72x, x2− 21), E59 = Z73[x]/(7x, x3 − 72), E60 = Z73[x]/(7x, x3 − 2 · 72), E61 = Z73[x]/(7x, x3 − 3 · 72), E62 = Z73[x]/(7x, x3),

E63 = Z73[x]/(72x, x2), E64 = Z73[x]/(72x, x2− 72), E65 = Z73[x]/(72x, x2− 3 · 72),

E66 = Z73[x, y]/(x2, y2, xy, 7x, 7y), E67 = Z73[x, y]/(x2− 72, y2, xy, 7x, 7y), E68 = Z73[x, y]/(x2− 3 · 72, y2, xy, 7x, 7y), E69 = Z73[x, y]/(x2− 72, y2− 72, xy, 7x, 7y), E70 = Z73[x, y]/(x2− 72, y2− 3 · 72, xy, 7x, 7y).

|R| = 75, char (R) = 74 E71 = Z74[x]/(7x, x2), E72 = Z74[x]/(7x, x2− 73), E73 = Z74[x]/(7x, x2− 3 · 73).

|R| = 75, char (R) = 75 E74= Z75.

References

[1] V. G. Antipkin and V. P. Elizarov, Rings of order p3, Sibirsk. Matt. Zh. 23(4) (1982), 9-18.

[2] B. Corbas and G. D. Williams, Rings of order p5. Part I. Nonlocal rings, J. Algebra 231(2000), 677-690.

[3] B. Corbas and G. D. Williams, Rings of order p5. Part II. Local rings, J. Algebra 231(2000), 691-704.

[4] B. Fine, Classification of finite rings of order p2, Mathematics Magazine, 66(4) (1993), 248-252.

[5] C. R. Fletcher, Rings of small order, Math. Gazette, 64 (427) (1980), 9-22.

[6] R. Gilmer and J. Mott, Associative rings of order p3, Proc. Japan Acad. 49(1973), 795-799.

[7] B. R. McDonald, Finite Rings with Identity, Marcell Dekker, New York 1974.

[8] A. Nowicki, On a class of commutative local rings of order p5, UMK, Toru´n, 2018.

[9] R. E. Peinado, On finite rings, Mathematics Magazine, 40(2) (1967), 83-85; Ad- denum: 40(4)(1967), 216.

[10] R. Raghavendran, Finite associative rings, Compositio Mathematica 21(2) (1969), 195-229.

(11)

[11] D. Singmaster and D. M. Bloom, Rings of order four, Amer. Math. Monthly, 71(8) (1964), 918-920.

[12] G. D. Williams, On a class of finite rings of characteristic p2, Result. Math., 38(2000), 377-390.

[13] R. S. Wilson, Representations of finite rings, Pacific J. Math. 53(1974), 643-649.

Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, 87-100 Toru´n, Poland, (e-mail: anow@mat.uni.torun.pl).

Cytaty

Powiązane dokumenty

In this paper, specifically, we look at the preservation of the diameter and girth of the zero-divisor graph with respect to an ideal of a commutative ring when extending to a

Similarly, a system of differential ideals with respect to a higher derivation is special... Notice at first that Theorem is satisfied for primary

simple and Artinian if and only if every finitely generated JR -module is quasi- injective, and that R is semi-local if and only if every finitely generated Jacobson

We follow Cohn [1] and describe an amalgam of sub- rings in terms of reduced iterated tensor products of the rings forming the amalgam and prove a result on embeddability of

The space of maximal ideals is studied on semiprimitive rings and reduced rings, and the relation between topological properties of Max(R) and algebric properties of the ring R

Zieli´ nski, Local derivations in polynomial and power series rings, Colloq..

A full description of specific rings is based on some, rather extensive, matrix descriptions given by Graham D.. We are interested only in

We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations