• Nie Znaleziono Wyników

Constructions of Lipschitzian Mappings with Non Zero Minimal Displacement in Spaces L1(0,1) and L2(0,1)

N/A
N/A
Protected

Academic year: 2021

Share "Constructions of Lipschitzian Mappings with Non Zero Minimal Displacement in Spaces L1(0,1) and L2(0,1)"

Copied!
8
0
0

Pełen tekst

(1)

U NIV E R S IT A TIS MARIAE C U RI E - S K Ł 0 D O W S K A LUBLIN - POLONIA

VOL. L, 3 SECTIOA. 1996

KRZYSZTOF BOLIBOK (Lublin)

Constructions of Lipschitzian Mappings with Non Zero Minimal Displacement

in Spaces

Ll(0,

1) and I2(0,l)

Abstract. The study of minimal displacement problem was initiated by Goe- bel in 1973 [3] and, while some further results have been obtained by Franchetti [1], Furi and Martelli [2], Reich [6] and [7], several major questions remain open. The aim of this paper is to show constructions of lipschitzian mappings with positive minimal displacement in spaces L1 (0,1) and £2 (0,1) which can be used as the first estimates from below of minimal displacement characteristic of X in those spaces.

Introduction. Let B,S be respectively, the unit ball and sphere in an infinitely dimensional Banach space X with norm ||-||. For any k > 0, let L(fc) denote the class of Lipschitz mappings T : B —> B with constant k.

By V’x (&) we will denote the minimal displacement characteristic of X

(k) = sup inf Ik - 7*||

where supremum is taken over all mappings T belonging to L (A:). It is known that for any space X

ÿx (A:) < 1 - t for k > 1.

(2)

In the case of space Z1 we know only that V’x (&) < 1 — 1//? and that V’i1 (fc) < V’L1(o,i) (&) but it is still unknown if V’L’to.i) (&) = 1 — 1 //? or not. Since 1973 [3] evaluation for Hilbert space H

Mk)<(l-l/k)y/k/(k+r>

has not been improved neither its exactness was shown. Our construction in the Hilbert space L2 (0,1) which can be used as the estimate from below of V’H (&) is far from the above and probably far from the real value of V’H (k) .

Construction in Z1 (0,1) . Let us consider the unit ball B in L1 (0,1) . For any f € B and k > 1 define t j as the solution of the equation

t

y (1 + k\f(s)\)ds = 1 o

with respect to t. Set

(r/)(0 =

1 +*1/(01 o

for t < tj for t > tf.

Obviously T : B —► B (more precisely T : B —> 5). Suppose f,g € B with tf < tg. Then

\\Tf-Tg\\ = J \(Tf)(t)-(Tg)(t)\dt 0

t/ tg

= y

\k

1/(01 -

k

|ff(OII

dt

+ y (1 +

k |5(t)|)dt

o

</

< * y 1/ (0 -

a

(01

dt

+1 - y (i +

k

|p

(z)|)dt 0 0

< A: 11/ - ffll + y (fc 1/ (01 - k \g (t)|) dt < 2k \\f - g||

o

which shows that T € L (2k). Now we can calculate minimal displacement of T.

(3)

1 1

nr/ -fw=j\(.rn (i) - / (¡»I <<«=y ii+* 7 (ci - / (oh!+y 7 (oi <;<

0 0 ty

</ t/

> I (1 + (A: — 1) |/(i)|) di = iy + (A: — 1)I\f(t)\dt.

o o

Because

1 = J (l + A:|/(Z)|)d/

o so we obtain

tj

I= (1 - tf)/k.

o Finally we get

\\Tf - /|| > i/ + (* - 1) y 1/ (Cl di = ty + (A: - 1) (1 - tf)/k o

= t//k +(k — 1)/A:> 1 — l/k.

Which means

V’lho.x) (2fc) > 1 - l/k so

V’LHo.i) (*0 >1 — 2/*.

This result can be slightly improved, by taking a tangent line to the graph from 1, because function V’x is concave with respect to 1 (see [3]). After easy calculations we get

(3 - 2\/2) (k - 1)

V>L>(o,i) (A:) > <

for 1 < k < 2 + \/2 for k > 2 + \/2 .

Now, we show what happens with a construction similar to the above in the space L2 (0,1) .

(4)

ball and sphere in the Hilbert space L2 (0,1) with standard norm and inner product. As in the previous construction, for f € B and k > 1 define tj as the solution of the equation

t

y (l + fc|/(s)|)2<k= 1 o

with respect to t and set

(r/)(0 = i1 + t|/wl

V M ’ lo for t > tj.

Obviously T : B —> B (more precisely T :B-+S). Suppose that f,g € B with tj < tg . Then

l

\\Tf-Tg\\2 = J |(T/) (Z) — (T</) (t)|2 d/

o

</

= J (fc|/(Z)|-fc|5(Z)|)2dZ + J (l + k\g(t)tfdt

o t,

t, t,

<k2 J (/(/)-5(i))2 dt +1 — J (1 + *|<7(*)|)2 dt 0 0

0

< fc 2 ll/-»ll 2 + 1

((l +

fc|/(i)l) 2-(l + *l!l(«)l)2)*

0

< k21|/ - g\\2 + 2k J\f (t) - g (t)| dt + k2 J ((/ (i))2 - (g (Z))2) dt.

o o

Because

0

y l/(<) - g(f)\dt <

0

< vW- pH < 11/-»II

(5)

and

ty tj

I ((/(I))2 - (9(C)2) dl< J (/(() - 9 (I))2 ¿1 J (f(t) + S(())2 <¡1

\o

V

<11/-»1111/ +ill <211/-ill-

So we finally get

\\Tf - Tg||2 < k2 \\f - g\\2 + 2k \\f - 9|| + 2fc2 \\f - g||

= k21|/ - g||2 + 2& (A: + 1) \\f - £r||.

This shows that T is uniformly continuous. However (as my be checked) T is not lipschitzian. Nerveless, T may be used to produce a lipschitzian mapping but let us first calculate the minimal displacement of T.

dt 0

*/ i

= I

(i + fc|/(i)|-/(f))2<fc +

1

(/(C)2dt

> I (l+(t-l)l/(l)l)2»i 0

ty ty ty

= I dt + 2 (A: - 1) J |/ (/)| dt + (k - l)2 J (f (0)2 dt.

Because

iy ty ty

1 = I (l + fc|/(f)|)2 dt = tf + 2k J\f(t)\dt + k2 J (/(f))2dt

so

ty ty

p 1117 ’zl1’ - ¡r“T7!i + rn/lzwl‘ft+*7(/(1)) dt

if if

>tf + 2k I\f(f)\dt + k2 J (/(f))2 dt = l.

(*-1/ (*-i)

(6)

\\Tf-f\\> 1-1/k.

Now we can modify the mapping T to obtain a lipschitzian mapping. Let us take £ > 0 and choose a set W C B with the following properties (i) Vf,geW f/g \\f-g\\>£

(ii) V/ € B dist (/, IV) < £, where dist (/, W) = inf \\f - <7||.

Let T\ = T|iy. We claim 1\ is lipschitzian on IV.

Indeed for any f,g € W we have

l|r,/-ti!(|| < v't’||/-9||2 + s||

< ^ f + 2*(* + >) ||/ - 9||.

By Kirzbraun’s theorem 1\ : W —> S may be extended to a mapping I2 : B —► B with the same Lipschitz constant. It is possible to calculate minimal displacement of T2

11/ - 22/11 > ||/i - TiAH - (11/ - A || + \\T2f, - T2/||)

where /1 G W and ||/ — /i|| < £■ We obtain that V»L’(O,1) V F + 2k (fc + 1)

1 +

\ k2 + 2fc(fc + 1) which implies

V’£.2(o,i) (k) > 1 - 2 + e

^/l + £ (£ + 2) fc2 — 1 £ (k + 1) for sufficiently large k .

This estimate strongly depends on the choice of £ 50 almost optimal value of £ is £ = 0.005 and then

. For instance for k = V’L^fo.i) (50) > 0.25.

References

[1] Franchetti, C., Lipschitz maps and the geometry of the unit ball in normed spaces, Arch. Math. 46 (1986), 76-84.

[2] Furi, M. and M. Martelli, On the minimal displacement of points under alpha- Lipschitz maps in normed spaces, Boll. Un. Mat. Ital. 9 (1975), 791-799.

(7)

[3] Goebel, K., On the minimal displacement of points under lipschitzian mappings, Pacific J. Math. 48 (1973), 151-163.

[4] Goebel, K. and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press.

[5] Kirzbraun, M. D., Uber die Zusamenziehende und Lipschitzsche Transformationen, Fund. Math. 22, 77-108.

[6] Reich, S., Minimal displacement of points under weakly inward pseudolipschitzian mappings I, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 59 (1975), 40-44.

[7] Reich, S., Minimal displacement of points under weakly inward pseudolipschitzian mappings II, Atti. Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 60 (1976), 95-96.

Instytut Matematyki UMCS received December 6, 1995 Plac Marii Curie-Skłodowskiej 1

20-031 Lublin, Poland

(8)

Cytaty

Powiązane dokumenty

6–57: Liczby różnorodności porostów (LDV) taksonów referencyjnych i wskaźników eutrofizacji oraz suma częstości występowania taksonów na wybranych forofitach

In particular, we show that all positive additive functions on the stable translation quivers of Euclidean type (respectively, of wild type) are periodic, and hence

Przyjrzyj się uważnie kulom śniegowym, a następnie uporządkuj od najmniejszej do największej wpisując w okienka odpowiednie cyfry rozpoczynając

The orange is then cut into slices of

This result generalizes Sullivan’s classical theorem on the formality of symmetric spaces, but the proof is of a different nature, since for generalized symmetric spaces

The present paper deals with both real and complex quasi- Banach spaces, and the operators acting between such spaces are assumed to be linear.. Its topology is generated by

We start by stating the basic property of the metric projection in uniformly convex Banach spaces. Below we give an elementary proof.. Fixed point sets of multivalued

Note that some ergodic statistic theorems were used in fact before, in connection with the investigation o f a minimal projection (cf... Evaluation of norm of