• Nie Znaleziono Wyników

Some Remarks on Bi-univalent Functions

N/A
N/A
Protected

Academic year: 2021

Share "Some Remarks on Bi-univalent Functions"

Copied!
6
0
0

Pełen tekst

(1)

ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VQL.XXXIX.10______________SECTIOA________________________1985 Instytut Matematyki

Uniwersytet Marii Curie-Sklodowskiej

A.W.KĘDZIERA WSK1

Some Remarks on Bl-unlvalent Functlons

Kilka uwag o funkcjach bi-jednoiistnych Несколько замечании о би-однолистных функциях

1. Introduction. Let S be theclass offunctions:

\-

j/(z) = Z + 6jZ2 d-bgZ3 + ••• (1.1)

which are regular and univalent in the opendisc:

D = {zEC :!«!< !}.

The inverse function §(w) of g E S has the power series expansion:

j(w) — w+ B2W2 + B3W3 +•••, |w| < | (1.2)

It can happen that the inverse function $(w) admits analytic continuation on D whichisunivalent in D. Therefore we mayconsider the class o of functions:

/(z) = z + a2z2 + •■• = z+ a2/(z2)+ •• • , |x] < 1. (1.3) such thatboth /(z) and its inverse /(w) belongto the class S. Such function« are called bi-univalent. There are many open problems concerning the c'tass cr. among them the classical problem of finding:

«2 = sup |a2(/)i- l&>

I ,

(1.4)

(2)

78 A.W. Kediierawaki

Accordingto a conjecture due to D.A Brannan ([l] p. 561) a2 = V2.

M. L ew i n[7] using Grunsky’s inequalities and the properties of Jabotinsky’s /-sequences has proved thata2 < 1.51. D.Styerand D.Wright[9] by considering aspecial bi-univalent function g have showed that aj > 4/3+ 0.02. In this paper we apply well-known estimates of the functional |a3 (<j)- Aa|(0)l for g ranging over S and some subclasses in order to obtain estimates ofa* in a and its subclasses.

The estimate for a2 in a obtained in [7] is slightly better then (2.2) but our proof has the advantage of great simplicity. The estimates ofa2 for the subclasses seem to be new and permit us to eliminate some subclassesfrom the competitionso far as theprecise estimate of a? in a is concerned.

D.A Brannan ((lj p. 559) has also statedthe following problem:

Let V„ denote the class of polynomials:

P,(z) = z +a2z4 + ••• + a.z" (1.5) bi-univalent in D. Determine max|a2| and max|a„|. The above stated problem

^R ^R

was solved by H.V.Smith [8] for polynomialsof degreethree with real coefficients.

Weobtain estimates of |a2| inF, for n=4,5,6,7.The author wishes to express his sincere gratitude to Prof. J.G.Krzyz for the valuable adviceand encouragement.

2.Estimates of |a2|. To this end we need following lemmas, some of them being well-knownclassical results.

Lemma 1 (8]. If

j(z) = z +62zJ+63*3 + •••, 1*1 < 1 , (2.1) belong» to the da»» S then the following inequality hold»:

|63-tiH<F(t) = l + 2exp , 0<t<l.

Lemma 2 (5]. For each »tarlikefunction g of the form (2.1) we have:

|63 - tb221< G(t)= max(l,|4t - 3|), 0 < t< 1 . i

Lemma 8 [5]. For each convex function g of theform (2.1) we have:

|63 - t62| < H(t) — max -t

In the above lemmas the estimates are sharp for all t G (0,1). The class of starlike functions willbe denoted be ST and the class of convex functions bv CV (cf.[4)).

Theorem 1. Let f{z) = z +a2z2 + a3/(z3) + ••• be a bi-univalent function.

Then:

ja21 < 1.5894 . Proof. The inverse function of /(z) is given by:

/(w) =w +A2w3 + A3w3 + •••

(2.2)

(3)

SomeRemark» on Bi-unival*gtFunction» 79

where

A» — — fli, A3= 2<it — >23 . (2.3) The function f and / both belong to the class S and therefore, by Lemma 1. we

have: J

)<X3 -xtijl < F(x), 0 < 1 < 1 . (2.4)

|A3 -J/A2! < Hy), 0<y<l. (2.5) Adding the inequalities (2.4) and (2.5) and taking into account (2.3) we obtain:

(2 - x - y)|a2j2 < F(x)-J- F(y), 0 < x.y < 1 .

Then (2.2) followsby putting x= y = 0.46. We used computer to establish x and y in order to obtain possibly sharp estimateof |ojj.

Theorem 2. Let the functions f(s) = z + a^x2 and f{w) be starlike. Then

|«*aj < v2.

Proof. Using Lemma 2 we obtain analogously:

(2 — x— y)|a2j2 < <7(x)+ G(y), 0 < x.y< 1 . and putting x — y —0.5 we obtain our result.

Now, we are goingtopresentestimatesof|a2|forsome subclassesof bi-uni valent functions.

Theorem 3. Let f(z) = z + a2x2 + ••• be such that f £ ST, and its inverse f £ S. Then ja2j < 1.507.

Proof. By Lemmas 1 and 2 we have:

(2 - x-y)|a2|2 < F(x) + G(y), 0<x,y<l.

We obtainour inequality by putting x = 0.49, y = 0.5.

Theorem 4. Let f{z) — za<yg2 + ••• be such that f £ CV, andits inverse f eS. Then |a2| < 1.224.

Proof. By Lemmas 1 and 3 we have:

(2 — z —y)la2j2 < F(x)+ H(y), 0 < x.y < 1 . Taking x =0.57, y = 0.we get the stated result.

Remark 1. Ifthe functions f and / are convex then the analogous problem is trivial. The function —y is extremal in the class 6V with respect to the modulus ofcoefficients and it simultaneously belongs to the class a. But it seems to be interesting that a sharp estimate also followsfromLemma 3.

We have (2 - x -y)|a2j2 < Hix)+H(y), 0 < x,y < 1.

1 2

Putting x = y = - we obtain la2| < 1.

We shall now give an estimate of ja2| in the case whenoneof the functions f, / is bounded.

(4)

80 A.W. Keckier&wski

LetS(M) denote the set of ail functions f belonging to the class S, such that

\f(z) (■ < M for all z G D. Then we have the following

Lemma 4 (6). Let h(z) = z + e2z2 +cyz3 +••• belong» to S(M), b = IQ [-2,2]. Then:

Re (as -a| + 2ta2) < J(t,6) where

{

1 -b2 - <2 log 6, 0 < |t| < 26 1 - 62 - t2 log jt|/2 + 1.5t2 - 4|t|6, 26 < |t| < 2

J(t,0) = lim J(t, 6) = 1 - t2 log jtj/2 + 1.5t2.

k-»O+

Hence we can obtain:

Theorem 5. Let f(z) — z+ aiz2 + ••• belong« to S, and let f G S(M) with M = 4. Then |a2| < 1.32.

Proof. Makinguse of(2.3) and Lemma 4for the functionsf, f with t= x and t = —y and 6 equal 0 and — respectively we have:

M

Re (as -a2 +2xa2) < J(x, 0) Re (a2 - a3 + 2ya2) <J(-j/,6).

Adding these inequalities we have:

2(x + y)Re a2 < J(x,0) + J(-y,6). (2.5) By putting 7 = 0.25,x = 0.6,y— 1.2 we obtain ourassertion.

0

Corollary. The estimate of |a21 given in Theorem 1 can be obtained also by making use of (2.5)with 6=0,x = y = 0.88.

Remark 2. Itfollows from Theorems 4 and 5, that the extremal function for

|a21 in a can not be a convex function,or a function from 5(A/) where M < 4.

By theconsiderationsentirely analogous to those in Theorem 5 and Lemma 5 we can estimate the modulusof the second coefficient for bi univalent polynomials of degree 4, 5, 6, 7.

Lemma 5 (2). Let W(z) be a univalent polynomial of degree n. Then there exists M = A/„ such that IV G S(M). For n — 4,5,6,7 we can take M — 3.61, 5.64, 7.73, 10.49 respectively.

Theorem 6. Let P„(z) = z+ a?z2 + ■ • •+ anzn GV, and A* = sup ja2(PB)| . Then we have AJ < 1.29, AJ < 1.4, A£ < 1.46, AJ < 1.5. v.

(5)

Some Remarks on Bi-unlvalent Functions SI .

Proof. We obtain our estimates by putting in (2.5):

= 3.61 х- 0.56 У = 1.24 for n = 4

= 5.64 х — 0.68 у - 1.08 for n = 5

= 7.73 х - 0.72 у = 1.04 for n — 6

= 10.49 х = 0.76 i/= 1 for n =7

REFERENCES

1, Brnnnnn,D. A., Aspects of Contemporary Complex Analysis, (ed. Brannan D.A., Clunie J.G.), Aca­

demic Press, New York-San Francisco, 1980.

2| ôerednUen ko,V.G.,/fenuive procedure for impniiny necessery condition! 0/ univalence for polynomiale (Russian), Sibirsk.Mat.Zh., 23(1983), 150-156.

3, Fekete,M.Szegô,G.,£ïne Bemerkeny Her enyerade schlichle Eenktionen, J.London Math.Soc.

8(1933), 86-98.

4| Goodman, A. Univalent Emotion», Mariner Publishing Company, Tampa (19S3).

6, Keogh, F.R., Merkes, EJP., A coefficient ineyeality for certain dance of analytic fendions, Proc. Amer.

Math. Soc. 30(1969), 1, 8-13.

6| Leeman,G.B., A new proof for <a ineyeality of Jenkin», Proc. Amer. Math. Soc. 64(1970), 114-116.

7| Levr\n,M.,On e coefficient problem for bi-enivalent fendions, Broc. Amer. Math. Soc. 18(1967), 63-68.

8, Smith,H.V.,Bi-enivalent polynomials, Simon Stevia 60(1976-77), 116-122.

9| Steyer,B., Wright,B.L,Resells on bi-enivalcnt fendions, Proc. Amer. Math. Soc. 82(1961), 343-248.

STRESZCZENIE

Niech S będzie klasa funkcji f(z) = Z + O2 Z2 + ••• regularnych i jednolistnych w kole

Iz] < 1. Mówimy, że funkcja / z klasy S jest funkcja bl-jednolistna, jeśli funkcja odwrotna / także należy do S, W pracy tej podąję oszacowania [aj | w pewnych podklasach funkcji bi- jednolistnych.

РЕЗЮМЕ

Пусть S будет классом функций /(z) = z + a2z2 + • ■ • регулярных и однолистных в круге |z| < 1. Функцию / с класса S назовем би-однолнстной , если обратная функция / тоже принадлежит к классу S. Данная работа дает оценку |а2| в некоторых подклассах функций би-однолистных.

(6)

'• ‘ I

I .

Cytaty

Powiązane dokumenty

pings in the mean are closely related to the extremal problems for quasiconformal mappings with a prescribed dilatation bound which is a oounded function of a complex

O sumach częściowych pewnej klasy funkcji jednolistnych Об отрезках ряда Тейлора одного класса однолистных функций.. Subsequently the

It follows at onoe from relation (2.1) that inequality (1.2) holds, then So C So- In particular, the class So contains known subclasses ctf the class of univalent

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

The problem of the continuity of convex (in the Jensen’s sense) and additive functions is very important in the theory of such functions... By induction’s assumption, /

In this note we shall consider a modification of the so-called secretary problem. We shall namely analyse the policies aimed at finding either the best or the second

c) spatial: the safety of local, regional and global 9. Subjective criterion refers to the social life of people, groups, organizations and countries. In