• Nie Znaleziono Wyników

On the Partial Sums of a Class of Univalent Functions

N/A
N/A
Protected

Academic year: 2021

Share "On the Partial Sums of a Class of Univalent Functions"

Copied!
7
0
0

Pełen tekst

(1)

ANNALES

UNIVERSITATIS MARIAE C U ß I E-S К Ł O D O WS К A LUBLIN - POLONIA

VOL. XIX, 3 SECTIO A 1965

Z Katedry Funkcji Analitycznych Wydziału Mat. Fiz. Chem.

Kierownik: prof. dr Jan Krzyż

RAM MURTI GOEL

On the Partial Sums of a Class of Univalent Functions

O sumach częściowych pewnej klasy funkcji jednolistnych Об отрезках ряда Тейлора одного класса однолистных функций

1. Introduction

Let W denote the class of functions:

/(«) = z+ £ amzm

m=2

regular and analytic in E = {z: |«| < 1} which satisfy the condition

(1) Ee['^7(l^]>0 fOT kl<1’

where

?(«) = 2+ 2bmzm

m^2

is regular, univalent and starlike in |«| < 1.

K. Sakaguchi [1] showed that if f(z)e W, then f(z) is close-to-convex in E. Subsequently the class IF was studied by M. F. Kocur [2]. He obtained several properties for functions belonging to the class IF and proved that if f(z)e IF, then:

(2) |an| < 2n/3 + l/(3n) for all n>2.

The behaviour of the partial sums

fn(z) = z+ £ amzm m=2

of functions /(«) in W seems to have escaped the notice of Mr. Kocur.

Annales 2

(2)

In this paper we shall determine the radius r of the largest circle such that:

1*1 < r, where

gn{z) = »+ 2 bmzm.

m^2 2. Auxiliary lemmas

Lemma 1. Let f(z) belong to IT, then then following equalities hold:

(3) 2a2 = ^2+^1,

(4) 9«3 = 3fts+ 4fc2<5x+26t, |dx| 1, |<52| < 1.

Proof. Since f(z) belongs to IT,

Hence, by Carathéodory-Toeplitz’s theorem, we can write (*/'(*))'/?'(*) = (l+4o2«+9as2,+ ...)/(l+2i2»+36s«i!+...)

= 1+2M+2<M2+..., I<5»l <1.

On equating coefficients of z, z2, we obtain the relations (3) and (4).

Lemma 2. Let

g(z) = z+ 2 bmzm m=2

be regular, univalent and starlike in |s| < 1, then the following equalities hold:

(5) 62 = 2b,

(6) fts = 26«+ex, l&Kl, W<1.

The proof is similar to that of Lemma 1.

3. Partial Sums Theorem. Let f(z) belong to IT, then every section

fn(z) = z+aizt+... + anzn (n>2) satisfies

Be[(«/»(*))'/»»(*)] > 0 for |«| < 1/6,

(3)

On the partial sums of a class of univalent functions 19 where

0»(«)

= z+btz* + ... + bnzn.

The result is sharp.

Proof. Since /(z) belongs to W, therefore

Re[(zf(*))W)]>0 for |«|<1.

Hence

(7) Re[(z/'(z))7ff'(z)]>(l-r)/(l + r), (8) \^f'^))'lg'(z)\^(l + r)l(l-r), and

(9) l3'(z)| > (1—r)/(l + r)3, r = |«|.

Taking

r„(z) = an+lzn+1 + an+2zn+2 + ..., and using (2), we get

IK«I < (»+!)■ + _L_] r-+ (»+2). [2("-±2->

= 4-^[6 + (6»-6)(l-r)+

+

3 (1-r)4 (10) +(3n2—3»+l)(l-r)*+

+n3(l-r)3] + 4r „„ [l +w(l-r)], r=|z|.

3 (1-r)2 Again taking

sn(z) — bn+izn+1 bn+2zn+2 +..., and using the well known estimates [3, p. 422]

|6n| < n for all » > 2, (11)

we get

(12) |.<(z)|^(n+l)2rn + (»+2)2rn+1 + ...,

(1-r)’ [2 + (2«-l)(l-r) + n2(l-r)2],r = |z|.

(4)

Now

+ Re( [(g/'(g))'/g' (g)]^»(g)~ (^n(^))' |

g'(z)-f>n(z) > Re[(»/'(«))7sf'(«)]- 1

_ W(z)}'lg'(z)\ ls»(z)l+ |(z<(*))'l llflf'(»)|- l#»(«)ll

On using (7), (8), (10) and (12) we obtain Re[(zf'nW)' Ig'nW] (l—r)l(l + r) —

(1 + r rn

~ T “ • 77----7712 + (2^-!) (!-»•) + n* 1 ~ rW +(1 — r (1 — r)3 + i 7/...v* [6+(6^—e) a - r)+(3n2-3»+i) (i- r)«+

3 (1 — r)

1 rn i/| 1-r

+n3(l-r)3H---[l + »(l-r)]}/{--- v ' J 3 (l-r)z

1/ I

(1 + r)3

-p/br [2+(2»-1)(1-r)+n2(1-r)z]}

For r = 1/6

Ke[(«/;(«))7<z;(2)] > 5/7- ^43-(250n3+1425№2+3145n+2381 15

]78125 • 6n-2 -343 (25nz+60w+42) | >

for » > 4.

Be[(^(z))7^(z)] is a harmonic function for |«| < 1/6, and, therefore by the principle of minimum we have

Fe[(»/^(«))'/?»(«)]> 0 for |«| < 1/6 and »>4.

This proves the theorem for n + 4. We shall now prove the theorem for n = 2 and 3.

Case I. n = 2

Be[(a£(z))7?a(z)] = Ee[(l+4a2«)/(l+26a«)]

= l + Ee[2(2aa-6a)z/(l+26a«)] > 1- 2 |2aa— 62| |z|

l-2|fc2| |«|

(5)

On the partial sums of a class of univalent functions 21 By (3) |2«2— b2| < 1, and by (11)

IM<2.

Hence

Be [(«/2 («))'/&(«)] > 0 for |a| <1/6.

To see that the result is sharp we consider the function whose deri­

vative is given by

/'(«) = (3+ «2)/3(l-«)3 = l+3«+^«2+...,

where

0(г) = «/(1 —«)*.

For this function we have

(«7» (»))'/?'(«) = (1+6«)/(1+4«) = 0, when « = —1/6, which shows that the result obtained is sharp.

Case II. n = 3

Ее[(«/з(«))'/з3(г)] = Re [(l+4a2«+9a3«z)/(l+2ft2«+363«2)]

= Ее{[1 + (262+2й1)« + (363+462«5]+2й2)«2]/(1+262«+363«2)}

(By (3) and (4))

= 1 + Ee{[2«51« + (4Z><51+2<52)«2]/(l+2&2«+368«2)}

= 1 + Ее{[2<5г«Н (8M1+2d2]/[l+4&«+3(2&2+e1)«2]} (By (5) and (6))

> 1 —|[251«+2(46i51+52)«а]/[1+4Ь«+3(2^2+е1)г2]|

Ее1(г/з(г))'Ыг)] > 0, if

(13) |[2<51«+2(4М1+<52)«а]/[1+46«+3(2Ь2 + е1)«2]| < 1.

Since Ве[(г/з(«))'/<7з(г)] is harmonic for |«| < 1/6, it will suffice to prove that

He[(«/3(«))'/&,(«)] > 0 for « = 1/6.

By considering ef(ez) instead of /(«) with a suitable e, |e| = 1, the proof is reduced to the case « = 1/6. Thus by (13) it is sufficient to show that

|[4(3+2&)<51+2<52]/[(36+24&+6&2)+3e1]| < 1, or

6|6 + 46 + fe2| —4I3 + 2&I —6 > 0, |b| = 1, Putting Ее b = x, we have

(14) P(x) = 6(41 + 56ж + 24ж2)1/2-4(13 +12ж)1/2 — б >0, -1<а>^1.

(6)

Differentiating (14) we get

(15) P'(x) = 3 (56 + 48®)/(41 + 56®+24®2)1/2 —24/(13+ 12®)I/2, and

(16) P"(x) = 1200/(41+56®+24®2)3/2+144/(13+12®)3/2 > 0.

It is easy to see that P'(x) > 0 for —3/4<®<l and P'(®)<0 for

—1<®<—7/8. Consequently we have the minimum value of P(x) for — 1 < ® < 1 in the interval — 7/8<®<—3/4. From (14) we have

P( —3/4) = 6(25/2)1/2-13 = 8,21, and from (15)

P'(—3/4) = 12 ^2-12 = 4,97

For — 7/8 < x < —3/4, noticing P"(x) > 0, we have by Taylor’s theorem (17) P(®) >P(-3/4)-(-3/4)-®)P'(-3/4).

Taking x = —7/8 in (17) we get

Min P(®) > P(-3/4)--=- P'(-3/4) = 8,21-^4,97 >0.

-i<x<i 8 8

This completes the proof of the theorem.

Acknowledgement. I wish to thank Professor Vikramaditya Singh for his kind help and guidance.

REFERENCES

[1] Sakaguchi, K., On a Certain Univalent Happing, 3. Math, Soc. Japan, vol. II (1959), 72-75.

[2] Kocur, M. F., On a Class of Univalent Functions in the Unit Circle, Uspechi Mat.

Nauk 27 (1962), No. 4 (106), 153-156.

[3] Nehari, Z., Conformal Happing, New York 1952.

DEPARTMENT OF MATHEMATICS PUNJABI UNIVERSITY, PATIALA

INDIA

Streszczenie

W pracy tej badam pewną klasę funkcji prawie-wypukłych wpro­

wadzonych przez K. Sakaguchi. Znajduję promień r największego koła, w którym zachodzi nierówność:

BeK^ńGOf/yńCs)] > 0 <Wa |z| < r

gdzie fn(z) jest n-tym odcinkiem szeregu Taylora funkcji rozważanej klasy, a gn(z) «-tym odcinkiem szeregu Taylora funkcji gwiaździstej.

(7)

Об отрезках ряда Тейпора одного класса однолистных функций 23 Резюме

В работе находится радиус г наибольшего круга, в котором выполняется неравенство:

> 0 для 1«1 < г»

где/п(г)-н-ый отрезок ряда Тейлора почти выпуклых функций, исследованных К. Сакагучи, //п(з)-н-ый отрезок ряда Тейлора звездообразной функции.

Cytaty

Powiązane dokumenty

We want now to show that upper bounds for initial Taylor coefficients of f can be obtained directly from the definition of the class F(oC,.

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

It follows at onoe from relation (2.1) that inequality (1.2) holds, then So C So- In particular, the class So contains known subclasses ctf the class of univalent

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

The determination of the region D(z1,zi) of variability of the ratio /(г1)//(гг)&gt; where Zj,z2 are fixed points of К different from 0 and from each other and f ranges over 8,

In Sections 2 and 3 we were using Lemma A or Lemma B, respectively, with the well-known estimate of the modulus of the coefficient A 2 in the classes S (M) being taken into

Jahangiri, Coefficient bounds and univalent criteria for harmonic functions with negative coefficients, Ann.. Marie-Curie