• Nie Znaleziono Wyników

Stability analysis and prediction of performance for a hydrofoil sailing boat, Part 2: Dynamic stability analysis

N/A
N/A
Protected

Academic year: 2021

Share "Stability analysis and prediction of performance for a hydrofoil sailing boat, Part 2: Dynamic stability analysis"

Copied!
10
0
0

Pełen tekst

(1)

S T A B I L I T Y A N A L Y S I S A N D P R E D I C T I O N O F P E R F O R M A N C E F O R A H Y D R O F O I L S A I L I N G B O A T Part 2: D Y N A M I C S T A B I L I T Y A N A L Y S I S by Y u t a k a Masuyama* S u m m a r y

A d y n a m i c stability analysis f o r a h y d r o f o i l sailing b o a t has been carried o u t o n the boat w i t h t w o surface-piercing dihedral f r o n t f o i l s and an inverted ' T ' rear f o i l . The small-disturbance t h e o r y was applied t o the ana-lysis w i t h accounting f o r the i n t e r a c t i o n between the l o n g i t u d i n a l and lateral m o t i o n s . S t a b i h t y derivatives were calculated f o r the h y d r o f o i l s and the sail. As a result o f the analysis, i t was c l a r i f i e d that there was a critical s a ü i n g state f o r the m a x i m u m attainable b o a t v e l o c i t y w h i c h was l o w e r t h a n t h a t o f the conventional predictions f o r the h y d r o f o i l sailing boat. When the v e l o c i t y exceeded the m a x i m u m v e l o c i t y determined as the critical sailing state, the boat f e l l i n t o statie i n s t a b i l i t y or divergence.

1. Introduction

T o p r e d i c t the sailing p e r f o r m a n c e o f the h y d r o f o i l b o a t , i t is essential t o conduct a d y n a m i c s t a b i l i t y analysis, because the boat is balancing w i t h d y n a m i c H f t f o r c e on the h y d r o f o i l s . A l t h o u g h the d y n a m i c s t a b i h t y analysis has already been c o n d u c t e d b y K a p -lan et al. [ 1 ] f o r a powered h y d r o f o i l c r a f t , there is l i t t l e i n f o r m a t i o n about the analysis available f o r the case o f sailing boat. The m o t i o n o f the powered c r a f t can be analyzed t h r o u g h classifying i n t o long-i t u d long-i n a l and lateral dlong-irectlong-ions because the c r a f t long-is sym-m e t r i c a l w i t h respect t o the centerline w i t h advancing s t r a i g h t f o r w a r d at e q u i l i b r i u m state. However, f o r the case o f the sailing boat the d y n a m i c s t a b i l i t y analysis m u s t be conducted w i t h accounting f o r the i n t e r a c t i o n o f the m o t i o n s i n a l o n g i t u d i n a l and lateral d i r e c t i o n .

I n t h e present paper as a succession o f the Part 1 [ 2 ] w h i c h presented an estimation m e t h o d o f the e q u i l i b r i u m state and the h i g h v e l o c i t y sailing charac-teristics w i t h f o i l - b o r n m o d e , the d y n a m i c s t a b i l i t y f o r a h y d r o f o i l sailing boat is examined. F o r the ex-a m i n ex-a t i o n , the stex-ability derivex-atives f o r sex-ail were ob-tained b y partially d i f f e r e n t i a t i n g the aerodynamic forces acting o n i t , and those f o r the h y d r o f o i l s were calculated using the procedure proposed b y K a p l a n et al. [ 1 ] . The results o f analysis were t h e n c o n f i r m e d b y the numerical s i m u l a t i o n conducted using nonhnear equations o f m o t i o n .

2 . Linearized equations of motion and characteris-tic equation

The m o t i o n o f h y d r o f o i l sailing boat r e f e r r i n g t o the b o d y axes is described b y the Ruler's e q u a t i o n as f o l l o w s :

m{Ü + QW ^ RV) = X , miV + RU-PW)=Y ,

*) Kanazawa Institute of Technology, Ishikawa, Japan.

m{W + PV-QU) = Z ,

I j - I ^ i P - Q R ) ~ PQil,, -Iyy)=N . (1)

The Euler angle rates are also given b y * = - f + ( Q s i n * + i ? c o s * ) t a n G ,

0 = ö c o s ^ - i ï s i n ï ' , (2) * = ( ö s i n * - l - i ? c o s # ) see© .

F r o m the results o f e q u i l i b r i u m saihng state analysis, i t was indicated that the angles o f p i t c h , heel and lee-w a y lee-were relatively small, especially i n p i t c h . Thus the p e r t u r b e d equations o f m o t i o n can be reduced f r o m the Euler's equation as f o l l o w s :

m ( M + Wp — /• V Q ) = A Z — mg 6 cos0g , miv + r UQ - p WQ) = A Y + mg 4> C O S 0 Q , m ( w + p - <7 M Q ) = A Z - 0 sin^^ ,

( 3 )

I n the equation the symbols w i t h zero s u f f i x indicate the values i n e q u i l i b r i u m state, and the symbols w i t h -o u t s u f f i x f -o r vel-ocities (u, v and w), angular vel-ocities

ip,q and r) and angles (0 and Ö) indicate the

deviat-ions f r o m their e q u i l i b r i u m values. The AX ~ AZ and

AK ~ A A ^ are p e r t u r b e d forces and m o m e n t s ,

respect-ively.

Since the sailing boat runs usuaUy accommodating w i t h sideslip and heel, causing t h a t aerodynamic f o r c e o n sail directs d i f f e r e n t l y t o the advancing course, the deviations i n any directions a f f e c t simultaneously o n b o t h m o t i o n s i n l o n g i t u d i n a l and lateral directions. F r o m this aspect, i t is r e q u i r e d t o carry o u t the stab-i h t y analysstab-is usstab-ing a l l o f the f o r m u l a e stab-i n e q u a t stab-i o n ( 3 ) .

(2)

The m o t i o n around z axis, however, w o u l d n o t a f f e c t f o r t h e dynamic stability analysis, although i t should be treated i n the directional stability analysis. Thus the last f o r m u l a i n equation ( 3 ) and the terms of r and /• are eliminated. As consequence, the linearized equat-ions o f m o t i o n can be expressed b y t h e f o l l o w i n g equation (4).

m{i(+qwQ) = AX-mge , miv W Q ) = AY + mg<l, ,

miw+pvQ -quQ)= AZ-mg<l>,pQ , ( 4 )

Iyyq = AM .

The angular velocities are also reduced t o 0 = p and e = ^ . The velocity o f t h e C.G. i n the true vertical direction is t h e n expressed as f o l l o w s :

h = w - U Q e + V Q 0 . ( 5 )

The perturbed force along x axis is . expressed i n terms o f derivatives as

AX = X^^u+X.v+X.v+X^w+ X.^ w + 0 + Z 0

+ Z . 0 + Z , 9 + Z , ( 6 ) A y , A Z , AK and AM are also expressed by similar

f o r m u l a e as equation ( 6 ) . Subsrituting these expres-sions i n t o equations ( 4 ) and ( 5 ) , we can rewrite the linearized equations o f m o t i o n as f o h o w s :

mii+mw^é +mge -X^,u-X^v-X.v-X^^w ^X-^w -^^1>~^p<P-Xp$-X,e-Xj^X.ë-X,h = 0 ,

mv-mWf^4,-mg<l>-Y^^u~Y^v-Y.v-Y^^w-Y.^w

- Y,1> -

Yp<P - Y.'^'- Y^e-Y^e-

Y.ë- Y,h = 0 ,

mw + m 0 - m w g e +mg4>Q ^-Z^u-Zy-Z.v-Z^^ w -z.w-z^<p-zJ-z.:p-z^e-zJ-z.e-z,h=o, 4 v ''P'-K^y-Xv-K,v^K^^ w -K. w^K^rf -K^4>-K.4-K^e-Kj-K.e-K,Ji = Q , lyyd -M^^u-M^v-M.,v-M^^ w -7W,. v i ' - M ^ 0 -M^i-M.,p-Mg6 -M^Ö ~M.é-MjJi = O , h-w+u^e -1^00 = O . ( 7 ) Since t h e equations Of m o t i o n are linear, their

solu-tions can be expressed as f o l l o w s :

u =u^e^', v = e^' , vv = vv^e^' •

0 = 0 J e ^ ^ e =e^e^', h = h^e^' .

Substituting these expressions i n t o equation ( 7 ) and cancelling t h r o u g h o u t b y e'^^ w e obtain the six

simul-taneous equations: (mx - X , , ) - ( Z , X + ) - ( Z . X+XJ vvj - ( Z . x 2 + Z p A + Z ^ ) 0 j + { - Z . x 2 + ( m W o - Z ^ ) X + img-X^)}9^-X,Ji^ = 0 , -Y^^u^+{(m^,)X-Yyv^-(Y^X + YJw^ -{Y.X^+imwQ+Yp)X + {mg+Y^) }<p^ -iY.X^+Y^X + Y^)B,-Y,^h,=0 , -Z,u, ~ ( Z ; , X + Z ^ ) ) . j + { ( m - 4 J X ~ Z , J v V j + {-Z.X^ + {mvQ-Z^)X + img^Q~Z^)}^^ -{Z.X^+imu^ +Z^)X+Z^ - Z , / z j = 0 , -K^y,-iK,X+K^)v,^{K.X+KJw^ + {(I^-K.)X^ -K^X-K^}<p^-(K^X^ +K^X -M^u^~(M.X+M^)v^- (M^. X+MJ - (M. X^ X )0^+{(I^^-M^)X^-M^X -Me }Öi -M,^h, = 0 , - v v ^ - v ^ ^ ^ + u ^ e ^ + X h ^ = 0 . ( 9 ) N o w we have the stability determinant as,

- A - . X = + ( „ n . . „ - A r )X Hmg-xJ ->„ ( » i - r ; ) X - r - 5 ; , -z.x-z. - Z ^ X ^ ( „ „ . „ - Z )X - Z , x ' - ( m » „ + Z )X - 4 + ( » . f « „ - Z , ) -z. + ( » . f « „ - Z , ) -A-.x2-A-_,X-A-„ -'''/, - M . x 2 - / l / ^ x 4 / , " A / , ; ) X ' - A / , X -"'/, 0 0 - 1 « 0 X = 0 (10)

The characteristic equation is then obtained b y ex-panding the above equation.

fs^^+fj^^ + fe^^ + f.x'+f^X^ + f^x'+f^X^

+ / i ^ + / o = 0 ( 1 1 ) The necessary and s u f f i c i e n t c o n d i t i o n t o make t h e

solutions stable is determined b y either applying t h e R o u t h ' s discriminant m e t h o d t o t h e c o e f f i c i e n t s o f equation ( 1 1 ) , o r solving equation ( 1 1 ) t o f i n d direct-l y the r o o t s w i t h o u t positive readirect-l parts.

3 . Stability derivatives

3.1. Derivatives of hydrofoil

The results o f e q u i l i b r i u m sailing state analysis i n -dicated that t h e leeway angle was relatively smaU. Hence we m a y f o l l o w t h e calculation procedure o f K a p l a n et al. [ 1 ] f o r t h e stability derivatives o f each

(3)

h y d r o f o i l . Formulae f o r the derivatives are described i n the A p p e n d i x using the h y d r o d y n a m i c forces. The derivatives o f the f o r c e acting i n n o r m a l d i r e c t i o n t o the h y d r o f o i l panel, F.., are resolved i n t o y and z direc-t i o n s as

Y.. = F..smV. ,

" " ( i = \ - 4 ) ( 1 2 ) Z.. = ^;..cosr,. ,

where P is a dihedral angle o f the f o i l and ƒ = u, v, w, p,

q, <p, e, h, V, w, p and q. Consequently, the derivatives

o f f o i l system f o r the forces X , 7 and Z are obtained as. (13) The derivatives f o r the moments K and M w i t h respect t o u, v, w, p, q, v, w, p and q are calculated as

K , = 2 ( Z , y , - Y..Z.)

/ = l ƒ!•'/ n I'

(14) M , = S ( A ^ , z . - Z , . , V

and considering the difference o f a p p l i c a t i o n p o i n t o f p e r t u r b e d forces w h i c h are caused b y the change o f b o t h submerged area and d e p t h o f submergence, the moments w i t h respect t o 0 , Ö and h are also calculated as

(15)

3.2. Derivatives of sail

Since we may take b o t h * and e t o be zero i n the equation f o r the v e l o c i t y components o f the apparent w i n d f o r the sail w h i c h is described i n Part 1, the e q u a t i o n can be s i m p h f i e d as f o l l o w s :

= U + Ugj.cosjj. ,

V^=V + f/5j,sinT7,cos$ , ( 1 6 ) W^=W - L f y j . s i n T j . s i n * .

A m o n g these components we m a y neglect the value o f , because o f its relative smallness and its i r -relevancy w i t h the sail performance. T h e n the apparent w i n d v e l o c i t y , U^^ , and apparent w i n d d i r e c t i o n , jS^ , are expressed respectively as f o l l o w s :

= (U+Ugj,cosyj.r+(V+Ugj.smyj.cos'S>y , = s i n - l ( K / C / , . ) I tan - 1 V+ [ / ^ j . s i n 7 j , c o s * C/+C/^j.cos7^ (18)

The aerodynamic forces, and Y^, are calculated b y the f o l l o w i n g relationships:

where

Cxs ^-Cj^s'^^^h +^isSin/^.4 ' CYS =-^DS'^^'I^A - ^LS^^^^A • The derivative of X^ w i t h respect t o u is

J X , _ 5 X , _ ÖX, öU,^_^bX,

U p o n partially d i f f e r e n t i a t i n g b o t h sides o f equations (17) and (18) b y U, we have (22) (23) (19) (20) (21) dU . UA UsA cosfl^ sin (3^ UIA UsA

S u b s t i t u t i o n o f equations ( 2 2 ) and ( 2 3 ) i n t o equation (21) yields 3 C xs sin/3. F u r t h e r m o r e , f r o m equation ( 2 0 ) we have 3 C y „ 3 C , . 3 ^ 5 (24) + QjC0S/3^ 3

a

^ ^ s i n , 3 ^ - C ^ , c o s ^ ^ - ^ W ^ (25) 3|3_4 3^^ + CisSin/3^ •

F i n a l l y substituting equations ( 2 0 ) and ( 2 5 ) i n t o equation ( 2 4 ) , we o b t a i n \s-\PaUsA^s'^-'^<^DS^''''-h 3C, + ^ + Cis]cos(3^sin'5.4 3C 3/3 (26)

Similariy, the derivatives o f Y^ w i t h respect t o u is given as

1

3C LS 9/3.

(4)

'DS

(27)

The derivatives o f and 7^ w i t h respect to v are obtained i n a similar w a y as f o l l o w s : 'SA ^ 5 { -3C. 'DS 9/3. cos^fi^ bC 'LS 9/3. cos/3^ sinj3_4 + 2 q 5 s i n 2 / 3 ^ } , (28) 3C, 'Ö5 9/3.

+ c

C0s2/3, •2q,5sin2;3^ } (29)

The (3Cp5/3)3^) and (3C^_5,/3|34 ) i n the above equat-ions correspond t o the slope o f the lines representing the relationships o f and Q versus attack angle o f the sail i n d i c a t e d i n Figure 6 o f Part 1.

The derivatives o f X^ and w i t h respect to p and q are obtained as f o l l o w s : YpS ^ S " ^ 5 X YqS ^ ( S ^ 5 (30) ' Y^s = Y , s h ( 3 1 ) where (negative value) is coordinate f o r C E . o f the

sail. I n the same manner the derivatives o f m o m e n t s and My are given as f o l l o w s :

Ks = - Y u s h • K s - \ s h ' (32) ^ s = - \ s h >

"^vS^S ' (33)

\ s ' l • % s ~ ^ v s ^ i ' (34)

-Yus^l . (35)

The derivatives o f are assumed t o zero because o f negligible i n f l u e n c e o f the sail f o r c e o n the m o t i o n i n the d h e c t i o n . Consequently, summing up the deri-vatives o f h y d r o f o i l s and sail, we o b t a i n the t o t a l stab-i l stab-i t y derstab-ivatstab-ives o f the boat, where the derstab-ivatstab-ives o f aerodynamic f o r c ë on the h u l l were n o t taken i n t o ac-count because they are considerably smaller than those f o r the sail.

4. Results o f stabihty analysis

The d y n a m i c stabihty analysis was p e r f o r m e d i n all o f the possible e q u i l i b r i u m sailing state as a f u n c t i o n o f sail t r i m angle, e. Table 1 shows an example o f the calculated derivatives f o r the h y d r o f o i l and the sail i n the dimensional value f o r th6 case o f f/^^ = l O m / s , T j , = 9 0 ° and e = 2 5 ° . The submerged l e n g t h o f f r o n t starboard and p o r t f o i l s are 0.30 and 0.79 m ,

respec-Tablc 1

Example or stability derivatives of hytjrofoils a n d s a i l f o r t h e c a s e o f ü s r " 1 0 m / s , 7 r = 9 0 ° a n d e . 2 5 ° (dimensional value) S t . P o r t R e a r R u d d e r S a i l T o t a l D i m e n s i o n ( i - l ) ( i = 21 ( i = 31 [ i = 4t ( i - 5 1 D i m e n s i o n u -1 . 5 9 - 4 . 8 9 - 4 . 2 3 -1 . 2 0 - 9 . 4 8 - 2 1 . 3 9 k q £ - s V 0 . 2 0 - 4 . 0 9 0 . 0 0 . 7 4 2 9 . 0 8 2 5 . 9 3 m VJ 0 . 2 3 4 . 8 8 - 0 . 5 7 0 . 0 -- 4 . 5 4 p 0 . 1 6 - 4 . 9 6 0 . 0 -1 .31 5 5 . 2 6 4 9 . 1 5 k g f • s q - 3 . 2 1 - 1 2 . 4 8 - 9 , 2 5 - 2 . 1 1 1 8 . 0 2 - 9 . 0 3 r a d i- -1 0 3 . <5 1 3 1 , 4 0 . 0 0 . 0 2 8 . 0 k g f e 4 2 . 1 4 8 . 6 0 . 0 -81 . 7 9 . 0 r a d h - 5 2 . 0 - 6 0 . 0 0 . 0 - 3 5 . 2 - 1 4 7 . 2 k g f / m V 0 . 0 0 . 0 0 . 0 0 . 0 -- 0 . 0 k g f • s 2 w 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 m p 0 . 0 0 . 0 0 . 0 0 . 0 -- 0 . 0 k g f - s ^ a 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 r a d u - 6 . 6 3 6 . 3 0 . 0 6 . 4 5 . 7 4 1 . 8 k g f - 5 V - 2 6 . 7 - 1 4 9 . 7 0 . 0 - 5 6 . 7 -4 1.9 - 2 7 5 . 0 m w - 3 1 . 8 1 7 6 . 4 0 . 0 0 . 0 1 4 6 . 6 p - 2 2 . 1 - 1 8 1 . 6 0 . 0 9 9 . 9 - 7 9 . 7 - 1 8 3 . 5 k g f - 5 q 1 3 . 1 - 8 1 .2 0 . 0 1 1 . 2 - 1 0 . 9 - 6 7 . S r a d - 5 0 5 . - 1 1 7 2 . 0 . 0 . - 1 6 7 7 . k g f Ö 1 9 6 . - 4 1 2 . 0 . 5 9 9 . 383 . r a d h - 2 4 1 . 5 0 3 . 0 . 2 5 8 . 5 2 5 . k q f / m V - 0 . 4 6 - 1 . 2 5 0 . 0 - 0 . 8 8 - 2 . 5 9 k g £ - s 5 w - 0 . 5 6 1 . 4 9 0 . 0 0 . 0 -- 0 . 9 3 m p - 0 . 3 9 -1 .51 0 . 0 1 . 5 5 - 0 . 3 5 k g f • q 0 . 4 5 -1 . 2 0 0 . 0 0 . 0 - 0 . 7 5 r a d i; - 7 . 9 - 4 3 . 2 -1 . 4 0 . 0 - - - 5 2 . 5 k g f - 5 V - 3 1 . 8 1 7 8 . 4 0 . 0 0 . 0 1 4 6 . 6 w - 3 7 . 9 - 2 1 2 . 7 - 5 1 5 . 9 0 . 0 - 7 6 6 . 5 P - 2 6 . 4 2 1 6 . 5 0 . 0 0 . 0 -- 1 9 0 . 1 k g f - s q 1 6 . 9 7 . -1 1 9 9 . 0 . -- -1 0 8 6 . r a d i' - 6 0 1 . 1 3 9 7 . 0 . 0 . 7 9 6 . k g f Q 2 3 3 . 4 9 0 . - 6 7 . 0 . 6 5 6 . r a d h - 2 6 8 . - 6 0 5 . - 2 9 . 0 . -- - 9 2 2 . k q f / m v - 0 . 56 1 . 4 9 0 . 0 0 , 0 -- 0 . 9 3 k g f - 3 2 w - 0 . 6 6 - 1 . 7 7 - 4 . 1 6 0 , 0 - - - 6 . 5 9 m P - 0 . 4 6 1 . 6 0 0 . 0 0 . 0 1 . 3 4 k g f - s ? Ó 0 . 5 4 1 . 4 3 - 9 . 6 4 0 . 0 __ - 7 . 6 7 r a d u - 5 . 5 4 4 . 0 0 , 0 - 1 1 . 2 1 0 . 9 3 8 . 2 k g £ - s V - 2 2 . 1 - 1 8 1 . 6 0 . 0 9 9 . 9 - 7 9 . 7 - 1 8 3 . 5 k g £ - s w - 2 6 . 4 2 1 6 , 5 0 . 0 0 . 0 -- 1 9 0 . 1 p - 1 8 . 3 - 2 2 0 , 3 0 - 0 - 1 7 6 . 3 - 1 5 1 . 4 - 5 6 6 . 3 k g f • s - m q 1 0 . 9 - 9 8 . 5 0 . 0 - 1 9 . 8 - 2 0 . 7 - 1 2 8 .1 r a d - 5 1 8 . - 2 0 2 2 . 0 . 0 , -- - 2 5 4 0 . k g f - m 2 0 3 . - 7 2 1 . 0 . 0 . -- - 5 1 8 . r a d h - 2 5 0 . 8 9 0 . 0 . 0 . 6 4 0 . k g f V - 0 . 3 9 - 1 . 5 1 0 . 0 1 , 5 5 -- - 0 . 3 5 k g f • s 2 w - 0 . 4 6 1 . 8 0 0 . 0 0 . 0 1 . 3 4 k g f • s 2 p - 0 . 3 2 -1 . 8 3 0 . 0 - 2 , 7 4 -- -4 . 8 9 k g f . s?m 0 . 3 7 -1 . 4 6 0 . 0 0 , 0 -1 . 0 9 r a d U 3 . 4 2 6 , 5 - 1 1 . 2 - 2 . 1 1 Ü . 0 3 4 . 6 k g f . 5 V 2 6 . 1 - 1 5 1 . 7 0 . 0 1 . 3 - 5 5 . 3 - 1 7 9 . 6 k g f . 5 w 31 . 181 . - 1 1 9 8 . 0 . - 9 8 6 . • P 22 . - 1 8 4 . 0 . - 2 , - 1 0 5 . - 2 6 9 . kg f - s • m •"1 - 1 9 . - 1 0 0 . - 2 8 0 0 . - 4 . -3-5 . - 2 9 5 7 . r a d 3 0 0 . - 9 3 6 . 0 . 0 . -- - 6 3 6 , k g f • m e - 1 1 3 . - 3 2 5 . - 1 5 5 . 0 , - 5 9 3 . r a d h 1 3 9 . 401 . - 6 7 . 0 , -- 473 . k q f V 0 . 4 5 -1 . 2 0 0 . 0 0 , 0 - 0 . 7 5 k g f -w 0 . 5 4 1 . 4 3 - 9 . 5 4 0 , 0 -- - 7 . 6 7 k g f -p 0 . 3 7 - 1 . 4 6 0 . 0 0 . 0 -- -1 . 0 9 k g f . s ? m q - 0 . 4 4 - 1 . 1 6 - 2 2 . 3 6 0 . 0 - - - 2 3 . 9 6 r a d

l i v e l y . The derivatives o f the f r o n t p o r t and rear f o i l are d o m i n a n t among those o f h y d r o f o i l s , because these f o i l s have larger submerged area then the others. I t also can be seen that the derivatives o f the sail oc-c u p y the large p o r t i o n t o those f o r the f o r oc-c e X and the m o m e n t K. U5T= 10 V T = 9 0 ° e X 5 0 ° -0 2 5 ° G 2 0 ° Imaginar y axi : - 2 0 - 1 5 , > i - i ; 1 (1 ^ 1 1 1 ' 1 „. - 1 0 b R e a l a;ii - - 5

Figure L Root locus diagram for the case ofU^j.= 10 m/s and f j = 90° (dimensional value).

The e q u a t i o n ( 1 1 ) is solved using Bairstow's m e t h o d . The examples o f the r o o t locus diagrams f o r the cases o f U^j,= 10, 14 and 18 m/s at e = 9 0 ° are s h o w n i n Figures 1, 2 and 3 respectively. The simultaneous movements o f the eight roots are represented w i t h decreasing the e, and the corresponding variations o f sailing state parameters have already been i l l u s t r a t e d i n Figures-8, 9 and 10 o f Part 1. F o r large e w h i c h

(5)

VT = 9 0 ° X 50 0 3 5°

- 3 0 - 2 5 - 2 0 -15

Figure 2. Root locus diagram for the case of f / j j . = 14 m/s and 7jn = 90° (dimensional value). Usi = 1 6 " H V , = 9 0 ° X 5 0 ° 0 i O ° O 3 8 ° ^ 4 J J U s r

stable sailing limit (including sail derivatives)

do.

(excluding sail derivatives) highest velocity by the equilibrium equations

Figure 3. Root locus diagram for the case of U^j, = 18 m/s and

yj. = 90° (dimensional value).

makes boat velocity l o w , the real parts o f all roots are negative and the movements o f t h e m are relatively small. W i t h decreasing the e the movements o f the r o o t s become large gradually, and t h e n one o f t h e m o n the real axis becomes positive at 2 0 ° , 3 0 ° and 3 8 ° f o r

U^j, = 10, 14 and 18 m/s, respectively. This means

t h a t , regardless o f w i n d v e l o c i t y , the boat falls i n t o a static i n s t a b i l i t y or divergence at small e w h i c h yields h i g h v e l o c i t y . As m e n t i o n e d i n Part 1, i t should be n o t e d that the boat becomes unstable w h e n the sub-merged length o f starboard ( w i n d w a r d ) f o i l , / ^ j , be-comes smaller than about 0.1 m , a l t h o u g h the equi-h b r i u m equations can be solved u n t i l /^^ becomes t o zero, i.e. taking o f f f r o m water surface.

Figure 4 is polar diagram w h i c h compares the boat v e l o c i t y at the Umit f o r stable sailing determined b y the present analysis (sohd curve) w i t h the highest v e l o c i t y derived b y the e q u i l i b r i u m equations (dot-dash-curve) f o r Ugj= 10, 14 and 18 m/s. Each s h i f t o f the solid curve f r o m the dot-dash-one is shown b y the shaded zone where the boat is actually unstable a l t h o u g h the e q u i h b r i u m equations give some solu-t i o n s . I solu-t appears solu-thasolu-t solu-the convensolu-tional performance p r e d i c t i o n t h r o u g h the e q u i l i b r i u m equations results i n the over-estimation by 5 t o 10% f o r the m a x i m u m attainable v e l o c i t y . D o t t e d curve i n the f i g u r e shows the stabihty l i m i t derived b y the calculation excluding saü derivatives f o r each w i n d v e l o c i t y . C o m p a r i n g the curve w i t h t h a t f o r i n c l u d i n g sail derivatives (solid cui-ve), the latter is s h i f t e d t o higher v e l o c i t y side t h a n the f o r m e r b y about 5% f o r the cases o f (7^^ = 14 and

150

Figure 4. Polar diagram comparing the boat velocity at the limit for stable sailing with the highest velocity derived by the equili-brium equations.

18 m/s although b o t h curves almost coincide f o r

Ugj, = 10 m/s. A c c o r d i n g to the result o f analysis

pre-sented i n Figure 4, the sail has the roles n o t o n l y as the thrusting device b u t as a stabilizer at high w i n d v e l o c i t y .

5. Numerical simulation using non-linear equations of motion

I n order t o c o n f i r m t h e v a h d i t y o f b o t h Hnearization o f equations o f m o t i o n and calculation o f the deriva-tives described i n the previous sections, the m o t i o n o f the boat was simulated n u m e r i c a l l y using non-linear equations at the same c o n d i t i o n i n w h i c h the d y n a m i c stability analysis was c o n d u c t e d . The s i m u l a t i o n was carried out under the five-degree-of-freedom ( w i t h * = 0 ) w i t h f i x i n g the rudder angle t o the e q u i l i b r i u m state value b y a p p l y i n g the Runge-Kutta-GiU m e t h o d . T h e forces and m o m e n t s f o r e q u a t i o n ( I ) are calculat-ed b y the f o U o w i n g proccalculat-edure. First, the length and d e p t h o f submerged p a r t o f h y d r o f o i l s at any m o m e n t are determined f r o m the c o n t e m p o r a r y a t t i t u d e o f the boat. T h e n , v e l o c i t y components f o r the center o f submerged part o f each f o i l and C E . o f the sail are calculated as

U. =U+Qz.-Ry.

(6)

W. =W + Py.-Qx; .

Since attack angle o f each part can be obtained f r o m these velocity components, we have the forces and m o m e n t s using the f o r m u l a e described i n Part 1. Where, the added mass e f f e c t o f the f o i l was also i n -cluded f o r the m o t i o n n o r m a l to the f o i l panel. The appUcabihty o f the calculation m e t h o d f o r the h y d r o -f o i l system was c o n -f i r m e d t h r o u g h t o w i n g tank test [ 3 ] i n c l u d i n g regular wave conditions.

The simulation results f o r e = 3 0 ° , 2 5 ° and 2 0 ° under the w i n d c o n d i t i o n o f Ugj,= 10 m/s and 7^, = 9 0 ° are shown i n Figures 5, 6 and 7 respectively. F o r r o h disturbance o f = - 0 . 5 rad/s at t = 5s, the t i m e dependent f l u c t u a t i o n s o f # , 0 and f o f the boat were illustrated i n the figures. I n accordance w i t h the re-sults o f dynamic s t a b i l i t y analysis, these parameters representing the m o t i o n s o f the boat f l u c t u a t e d w i t h -o u t divergence f -o r e = 3 0 ° and 2 5 ° , whereas f -o r e = 2 0 ° they varied a b r u p t l y , f o l l o w e d by the. immediate capsize o f the boat.

I n Figure 5, f o r e = 3 0 ° , the f l u c t u a t i o n s damped r a p i d l y and the boat exhibits h i g h stabihty. Since the nearest complex eigen-values t o the imaginary axis indicated i n Figure 1 are - 0 . 8 8 7 + 2 . 6 7 2 j , the period and the t i m e to h a l f a m p h t u d e o f the f l u c t u a t i o n are 2.35s and 0.78s respectively. These values agree well w i t h the simulation results.

"'/s ^ deg 1 0 Us, = 1 0 " t / s V , = 9 0 E = 3 0 initial r o l l d i s t u r b a n c e p = - 0 - 5 r a d / g ^ ^ { a t 5 s e c ) 35 4G

Figure 5. Numerical simulation result showing the fluctuations of roll, pitch and velocity for roll disturbance (e = 30°).

/s . deg UsT = 1 0 m/s V T = 9 0 ° E = 2 5 ' initial r o l l d i s t u r b a n c e p = - 0 - 5 ^^'^/ssc ( d l 5 s e c )

W\AMAAyVvWv.wvvV\A/Wv'

\ / V W W W W V \ A A / \ / \ / v W \ / \ A A A ' - 1Ö l i i'B 25 30 35 46

Figure 6. Numerical simulation result showing the fluctuations of roll, pitch and velocity for roll disturbance (e = 25°).

Figure 6, f o r e = 2 5 ° , indicates that the i n i t i a l f l u c -t u a -t i o n damps modera-tely, b u -t -the f l u c -t u a -t i o n con-tinues w i t h constant a m p l i t u d e . Since i t is apparent

"Vs ^ deg "r

UsT=10 "i/s V , = 9 D ' • E = 2 0 "

i n i t i a l roll d i s t u r b a n c e p = - 0 5 r a d / g g j . ( a t 5 s e c )

28 25 35

Figure 7. Numerical simulation result showing the fluctuations of roll, pitch and velocity for roll disturbance (e = 20°).

m / s d e g 40-20¬ -20-U s T = 1 0 m / s Y , = 9 0 ° e = 2 0 ' w i t h o u t i n i t i a l d i s t u r b a n c e 0 10 12 16 8

Figure 8. Numerical simulation result showing the fluctuations of roll, pitch, velocity and leeway angle without initial dis-turbance (e = 20°).

f r o m the simulations w i t h various values o f r u d d e r angle t h a t the amphtude o f the f l u c t u a t i o n is sensitiv-ely a f f e c t e d whereas the period o f the fluctuation is u n a f f e c t e d b y the angle, the c o n t i n u e d fluctuation observed i n Figure 6 can be considered as so-cahed self-excited v i b r a t i o n due to the deviation o f the value o f r u d d e r angle f r o m its e q u i l i b r i u m one. The occur-rence o f the self-excited-vibration-hke fluctuation is a signal o f approaching the critical sailing state. T h e nearest complex eigenvalues t o the imaginary axis f o r this case are - 0 . 4 9 6 ± 2 . 8 9 0 j , giving the p e r i o d o f fluctuation o f 2.17s, although the period derived b y the s i m u l a t i o n is 1.4s. This discrepancy seems t o be caused b y the enlarged non4inear e f f e c t due t o de-crease i n the f o ü submerged length w h i c h is used f o r the calculation o f h y d r o d y n a m i c f o r c e .

T h e s i m u l a t i o n was also conducted at the c o n d i t i o n w i t h o u t i n i t i a l disturbance t o c l a r i f y the i n s t a b i h t y o f the boat f o r e = 2 0 ° as shown i n Figure 8. A t this value o f e, the boat tends t o heel t o leeward side and capsizes w i t h o u t disturbance as same as the case o f Figure 7. The $ and 0 change m o n o t o n e o u s l y i n ' F i -gure 8, w h i c h apparently corresponds t o the static i n s t a b i l i t y determined b y the dynamic stabihty analy-sis. The eigenvalue on the real axis is 0.767 i n this case, giving the t i m e t o double amphtude o f 0.90 s, w h i c h agrees w e l l w i t h the s i m u l a t i o n result i n Figure 8.

(7)

non-linear equations resulted i n the c o n f h m a t i o n o f the v a h d i t y o f d y n a m i c s t a b i l i t y analysis. T h r o u g h the calculation and the numerical s i m u l a t i o n conducted i n the present s t u d y , an u s e f u l m e t h o d t o design the h i g h p e r f o r m a n c e h y d r o f o i l saihng boat was developed.

6, Conclusion

As a succession o f Part 1, the m e t h o d o f d y n a m i c s t a b i l i t y analysis f o r a h y d r o f o i l saihng boat was pre-sented. Since the m o t i o n s o f the boat i n l o n g i t u d i n a l and lateral dnections a f f e c t e d each other f o r the sail-ing boat, the d y n a m i c stabihty was examined w i t h ac-c o u n t i n g f o r their i n t e r a ac-c t i o n . S t a b i h t y derivatives f o r saü were calculated b y p a r t i a l l y d i f f e r e n t i a t i n g the aerodynamic forces acting o n i t , } a l t h o u g h those f o r the h y d r o f o i l s were calculated using the procedure p r o -posed b y K a p l a n et al.

T h e d y n a m i c stability analysis was p e r f o r m e d i n ah o f the p o s s i b l é e q u i h b r i u m sailing state w h i c h had been presented i n Part 1. The results o f analysis i n d i c a t e d t h a t , at higher v e l o c i t y the boat f e l l i n t o a static i n -s t a b i l i t y or divergence w i t h l i m i t i n g the m a x i m u m at-tainable boat v e l o c i t y . I t was c l a r i f i e d t h a t the unstable state has occurred w h e n the submerged l e n g t h o f w i n d w a r d f o i l became smaUer than about 0.1 m , al-t h o u g h al-the e q u i h b r i u m sal-taal-te c o u l d be o b al-t a i n e d u n al-t i l the l e n g t h becomes t o zero, i.e. t a k i n g o f f f r o m water surface, f o r the conventional p e r f o r m a n c e p r e d i c t i o n w i t h o u t i n c l u d i n g the stability analysis. T h u s i t be-canie apparent t h a t the conventional p r e d i c t i o n gave the over-estimated value f o r the m a x i m u m v e l o c i t y . I t was also c l a r i f i e d that the sail w o r k e d as the stabihzer o f the boat at higher w i n d v e l o c i t y i n c o n j u n c -t i o n w i -t h i-ts original r o l e as -the -t h r u s -t i n g device. T h e v a h d i t y o f the results o f dynamic stability analysis was c o n f i r m e d b y the numerical s i m u l a t i o n using non hnear equations. T h r o u g h o u t the present study one o f the u s e f u l methods f o r designing the h i g h p e r f o r m a n c e h y d r o f o i l saihng boat was p r o v i d e d w i t h adequateness o f the calculation i n the stability ana-lysis. N o m e n c l a t u r e c F 8 H area o f sah

drag c o e f f i c i e n t s o f h y d r o f o i l and sail l i f t c o e f f i c i e n t s o f h y d r o f o i l and sail c h o r d length o f h y d r o f o i l

drag forces acting o n h y d r o f o i l and sail h y d r o d y n a m i c f o r c e acting i n n o r m a l d i r e c t i o n t o the f o i l panel

acceleration due t o gravity

v e r t i c a l height o f C.G. f r o m water surface level I K.M.N L.L, m P.Q.R

u,v,w

UA-VA.WA X , Y , Z r 6 e X Pa' Pw

moments o f inertia about x, y and z axes p r o d u c t o f i n e r t i a about z and x axes u n i t o f complex n u m b e r (= V — 1 ) moments o f roU, p i t c h and y a w h f t forces acting o n h y d r o f o i l and sail length o f r o t a t i n g a r m o f h y d r o f o i l (see Figure A l )

length o f submerged p a r t o f h y d r o f o i l mass o f boat and crew

angular velocities i n r o l l , p i t c h and y a w perpendicular distance between C.G. and dihedral h y d r o f o i l (see Figure A l )

velocity components o f C.G. along x, y and z axes

velocity components o f apparent w i n d along X, y and z axes

true w i n d v e l o c i t y

apparent w i n d v e l o c i t y i^^Uj + Vj+Wj ) boat v e l o c i t y (= ^U^-fV^+W^ ) f o r c e components along x, y and z axes attack angle i n the plane o f i n c i d e n t f l o w o f h y d r o f o i l

attack angle o f sail angle o f leeway

angle between apparent w i n d v e l o c i t y and centerline o f boat

dihedral angle o f h y d r o f o i l

angle between true w i n d v e l o c i t y and centerline o f boat

angle o f r u d d e r

t r i m angle o f sail (angle between b o o m and centerline o f b o a t )

angle between perpendicular line t o the dihedral h y d r o f o i l and connecting hne f r o m C.G. t o the t i p o f the f o i l (see Figure A l )

angle between perpendicular line t o the dihedral h y d r o f o i l and connecting line f r o m C.G. t o the surface-piercing p o i n t o f the f o i l (see Figure A l )

r o o t o f characteristic e q u a t i o n densities o f air and water

angles o f heel, p i t c h and y a w (Euler angles) (subscripts) = 1; f r o n t starboard h y d r o f o i l = 2 ; f r o n t p o r t h y d r o f o i l = 3; rear h y d r o f o i l = 4 ; rudder = 5; sail center o f submerged p a r t o f h y d r o f o i l surface-piercing p o i n t o f h y d r o f o i l

(8)

References

1. Kaplan, P., Hu, P.N. and Tsakonas, S., 'Methods for estimat-ing the longitudinal.and lateral dynamic stability of hydro-foil craft', Stevens Institute of Technology E.T.T. Report No. 691, 1958.

2. Masuyama, Y., 'Stability analysis and prediction of perform-ance for a hydrofoil sailing boat (Part 1) Equilibrium sailing state analysis'. International Shipbuilding Progress, 1986, Vol. 33, No. 384.

3. Masuyama, Y., 'Motion of a hydrofoil system in waves', Journal of the Kansai Society of Naval Architects, Japan, No. 196, 1985 (in Japanese).

A P P E N D I X Derivatives of hydrofoils

I n the case o f a surface-piercing dihedral f o i l ( / = 1, 2 ) , the symbols such as I p., 1^., Rp, and f . are d e f i n e d as shown i n Figure A l , where the submerged length o f the f o i l , Ip^, and r o t a t i n g arm length, , are expressed as f o l l o w s :

/^,. = i ? ^ ( t a n f . - t a n f „ ) .

The values o f b o t h (9C^/3a:,^) and ( a q / a a , J are determined using the calculated values shown i n the Figures A 3 and A 4 o f Part 1. A l l o f the derivatives o f h y d r o f o i l s are hsted as f o h o w s , where the t o p o f minus-plus sign is apphed t o the f r o n t starboard f o i l and the b o t t o m t o the p o r t .

port P 1 starboard

Figure A l . Definition of symbols for surface-piercing dihedral foils (/= 1,2). hi Rp(tani. + tani^)/2 \ i = - P.VBCDihi<^i ' ( ^ - = 1 - 4 ) Pui = - P . . V s C j p f y , ( / = 1 ~ 4 ) 3 ^ \ Pw Ve-^Fi^i c, Li nl i 3 C , 1 = 0

11

- " 1

smr,. , ( ( = 1 - 4 ) sinr,. , (/ = 1 - 4 ) c o s r . , ( / = 1 ~ 4 ) c o s r . , (/ = 1 ~ 4 ) I., : then 2 '

-~P.VB<^i 93a„

a

'Li hi-i

a =

3)

a

= 4 ) 9 C 4 = 0 , 1 f^'^L Ppi = + 4 P>v ^B^^i ^ + ^ | - ( t a n 2 f , - t a n ^ f ^ ) , (r = 1,2)

a =3)

( A - 1 ) (A-2) ( A - 3 ) (A-4) (A-5) (A-6) ( A - 7 ) ( A - 8 )

(9)

2 q . z . -9 ^ 901 + Cjj. x . c o s r . , ( z = l ~ 4 ) , ( ; = 1 ~ 4 ) where

: due t o change o f submerged area

c<pi ^ 2

f

9C„\

Rp '

- i _ p vi l„.c - , — - • : due t o change o f d e p t h o f submergence + B Fi j ƒ 2cosf; t h e n - 1 r / 2

I

^Di , ^Fi f?^D\

1

R-F + — p V„c.{ +— 2 ^ ' I cosf,. 2 \bh j i \ cosr,. = 0 , , ( ^ = 1 , 2 ) ( / = 3 , 4 ) 0 ' Cu ^^Fi i^C, cosf,. 2 \ 9 / 2 / / cosf. = 0 , , ( ; - = i , 2 ) ( / = 3 , 4 ) where ^tei'^-Xcei X . tei X ctii

i „

v^C c ^ t h e n 2 ^ ' " I Isinr,.] 2 \ 9 / 2 ei Isinr^.l 2 [bit

9 q

2 /'w^i?'^-/'^/! " ^ j , ^ ; ' 2 Ismr^.l 2 \ 9 / j y , 1 9C, • hi - + J/2 X i 2"'^ •s''' isinr.l 2 \ 9/2 2 ^ ' " ^ ^ " i

9 / J /

'

1 X,..- = ^vi — »2j.sinr. ,

: due t o change o f submerged area

: due t o change o f d e p t h o f submergence

( / = 1 , 2 , 4 )

a =

3 ) (;•= 1 , 2 , 4 ) (/ = 3 ) ( i = 1 , 2 , 4 ) ( / = 3 ) ( i = 1 , 2 , 4 )

a

= 3 ) ( r = l ~ 4 ) (r = 1 - 4 ) ( A - 9 ) ( A - 1 0 ) ( A - 1 1 ) ( A - 1 2 ) ( A - 1 3 ) ( A - I 4 ) ( A - 1 5 ) ( A - 1 6 ) ( A - 1 7 ) ( A - 1 8 )

(10)

F,.,.= -m,.cosr,.

Fj,i = ^Tn.Rp{tan^.+ tan f J / 2 ,

= 0 ,

= m.z. ,

where

and k. was taken to be 0.9 f o r calculation.

( / = 1 ~ 4 ) ( 2 = 1 , 2 ) (^ = 3)

a =

4 ) ( / = 1 ~ 4 ) (/ = 1 ~ 4 ) ( A - 1 9 ) ( A - 2 0 ) ( A - 2 1 )

Cytaty

Powiązane dokumenty

Lekturę książki ułatwia uświadomienie sobie znaczenia relacji, jaka zachodzi na osi : dyskurs (i jego typy)- gatunek (realizacja dyskursu, każ- dy gatunek ilustruje jakiś

Stosunkiem głosów 389 posłów opowiadających się za przyjęciem zmian zapro- ponowanych przez „Prawo i Sprawiedliwość” wobec 180 głosów posłów sprzeci- wiających się

Znajdujemy się w przejściowym etapie, gdzie lokalne media tradycyjne są równo- ważone przez strukturę nowych mediów (zwłaszcza zaś ich egzemplifikację w posta-

the symmetry, remarkably similar. Therefore, this determination should be treated with care and only in cases in which the symmetry of the pattern can be clearly observed. 4) In

konsekwencji jest jednak przede wszystkim obrazą Boga i zamyka człowie- kowi drogę do zbawienia, niezależnie od dobra, jakie sprawca tego grzechu w swoim życiu mógł dokonać

Śląskiego, ss. książka Piotra Świercza pt. Świat, człowiek, państwo w refleksji nurtu orficko-pitagorejskiego stanowi najpoważniej- szą pozycję w polskiej bibliografii na

Konkurs miał na celu uzyskanie opracowań dotyczą­ cych wyróżniających się sylwetek adwokatów, ich po­ stawy społeczno-politycznej, etycznej i zawodowej oraz

3 Odrębnym zagadnieniem jest to, czy prokurator może złożyć zażalenie w wypadku, gdy na posiedzeniu oświadczył, że nie sprzeciwia się udzieleniu warunkowego