• Nie Znaleziono Wyników

Modelling the human operator's supervisory behavior

N/A
N/A
Protected

Academic year: 2021

Share "Modelling the human operator's supervisory behavior"

Copied!
15
0
0

Pełen tekst

(1)

MODELLING THE HUMAN OPERATOR'S SUPERVISORY BEHAVIOR Ted N. W h i t e *

D e l f t U n i v e r s i t y o f T e c h n o l o g y , Dept. o f Mech. Eng. Lab. f o r Measurement & C o n t r o l

Man-Machine Systems Group D e l f t , The N e t h e r l a n d s

ABSTRACT

The i n v e s t i g a t i o n r e p o r t e d h e r e d e a l s w i t h t h e d e s c r i p t i o n o f t h e b e h a v i o r o f t h e human O p e r a t o r p e r f o r m i n g t h e s u p e r v i s i o n o f a s e t p o i n t c o n t r o l l e d p r o c e s s under s t e a d y s t a t e c o n d i t i o n . The d e s c r i p t i o n w i l l be g i v e n i n terms o f a ma-t h e m a ma-t i c a l model.

I n v e r i f y i n g t h e model s t r u c t u r e , c e r t a i n t a s k \ r a r i a b l e s have b e e n d e f i n e d . Then, t o each o f t h e s e t a s k v a r i a b l e s , t h e p a r t i c u l a r i n f l u e n c e o f t h e v a r i a b l e on t h e p a r a m e t e r s o f t h e human O p e r a t o r model h a s b e e n p o s t u l a t e d . The d a t a a n a -l y s i s i s b a s e d on S t a t i s t i c a l and s t o c h a s t i c procédures.

I t i s s h o w n t h a t t h e model s t r u c t u r e I s a p p l i c a b l e t o t h e d e s c r i p t i o n o f t h e h u -man s u p e r v i s o r y b e h a v i o r . However, t h e p a r a m e t e r e s t i m a t i o n procédures a r e com-p l i c a t e d , t i m e consuming and t h u s e x com-p e n s i v e .

1. INTRODUCTION

The p r o p e r f u n c t i o n i n g o f t e c h n o l o g i c a l S y s t e m s , d l v e r g i n g f r o m v e r y s i m p l e t o v e r y c o m p l e x , needs t h e a b i l i t y o f human i n t e r v e n t i o n i n most c a s e s . More s p e -c i f i -c l y , I t -c a n range f r o m a d i r e -c t manual -c o n t r o l t o a s u p e r v i s o r y -c o n t r o l mode. Because o f t h e e v e r i n c r e a s i n g a u t o m a t i z a t i o n i n i n d u s t r y , new demands have b e e n p u t on now-adays O p e r a t o r s . They a r e no l o n g e r f u n c t i o n i n g as d i r e c t , manual C o n -t r o l l e r ; -t h e i r -t a s k s became more and more -t h e s u p e r v i s i o n o f m u l -t i - v a r i a b l e , s l o w l y r e s p o n d i n g , and complex S y s t e m s . As a conséquence, t h i s t a s k i s composed o f m o n i t o r i n g t h e d i s p l a y e d s y s t e m O u t p u t s , C o n t r o l l i n g t h e s e t p o i n t s o f t h e a u -t o m a -t i c C o n t r o l l e r s and p e r f o r m i n g t h e f a u l t management.

Due t o sudden p r o c e s s changes o r d i s t u r b a n c e s , t h e O u t p u t v a r i a b l e s m i g h t e x c e e d t h e b o u n d a r i e s w h i c h a r e s p e c i f i e d b y t h e management o r by s a f e t y régulations. B a s e d on t h e p e r c e i v e d déviations, t h e S u p e r v i s o r décides t o change one o r more s e t p o i n t s . M o r e o v e r , when t h e i n f o r m a t i o n needed t o s u p e r v i s e t h e p l a n t i s i n -s u f f i e i e n t , t h e O p e r a t o r m i g h t décide t o a-sk f o r a d d i t i o n a l i n f o r m a t i o n w h i c h may l e a d t o a s e t p o i n t c o r r e c t i o n . T h i s s t e a d y s t a t e c o n t r o l a s p e c t o f t h e s u p e r v i s o r y b e h a v i o r i s i n gênerai i m p o r t a n t i n p r o c e s s c o n t r o l , t h a t i s i n t h e c o n -t r o l o f c o n t i n u o u s p r o c e s s e s . I t i s c a l l e d t u n i n g . The shut down and s t a r t - u p procédure, a l s o an i m p o r t a n t c o n t r o l mode, i s m o s t l y e x e c u t e d b y s p e c i a l teams o r a u t o m a t i c C o n t r o l l e r S y s t e m s .

I n n u c l e a r power p l a n t s , however, t u n i n g i s f a r l e s s i m p o r t a n t t h a n f a u l t manage-ment. These p l a n t s -are h i g h l y a u t o m a t e d , and t h e main t a s k o f t h e O p e r a t o r i s t o s e a r c h f o r m a l f u n c t i o n s , f a u l t d i a g n o s i s and f a u l t management.

I n t h i s i n v e s t i g a t i o n t h e a t t e n t i o n i s f o c u s s e d on t h e t u n i n g t a s k o f t h e S u p e r -v i s o r .

2 . MODELLING HUMAN CONTROL BEHAVIOR

The b e h a v i o r o f an O p e r a t o r p e r f o r m i n g a s u p e r v i s o r y t a s k , o r any o t h e r manual / c o g n i t i v e t a s k , can be d e s c r i b e d i n différent ways.

F o r many y e a r s , s c i e n t i s t s t r y n o t o n l y t o d e s c r i b e t h e b e h a v i o r o f t h e s u b j e c t s

* T h i s r e s e a r c h I s p a r t l y s p o n s o r e d b y t h e N e t h e r l a n d s O r g a n i z a t i o n f o r t h e Advancement o f Pure R e s e a r c h (ZWO).

(2)

o f i n t e r e s t s after t h e e x p e r i m e n t s , b u t , t h e y a l s o t r y t o make p r e d i c t i o i . s u p o n t h e b e h a v i o r t o b e e x p e c t e d , t h u s before t h e e x p e r i m e n t s . Among t h e many t h e o r i e s w h i c h a r e a p p l i e d i n o r d e r t o p r e d i c t human o p e r a t o r b e h a v i o r d u r i n g m a n u a l c o n t r o l t a s k s , t h e c y b e r n e t i c m o d e l s a r e w e l l - k n o w n . I n t h i s p h y l o s o p h y t h e human o p e r a t o r i s r e g a r d e d as a s y s t e m , a c e n t r a l p r o c e s s o r , w i t h i n p u t s a n d o u t p u t s . S o , human o p e r a t o r s c a n b e d e s c r i b e d as i n p u t - o u t p u t r e l a t i o n s . T h i s i d e a I s n o t n e w ; b a c k i n t h e t w e n t i e s , t h e b e h a v i o r i s t s a l r e a d y d e s c r i b e d human b e i n g s as d a t a p r o c e s s o r s w i t h an u n -known c e n t r a l p r o c e s s o r , t h e s o c a l l e d " b l a c k b o x " , w h i c h t r a n s f e r r e d s t i m u l i i n t o c e r t a i n r e s p o n s e s . B y t h e a p p l i c a t i o n o f a w i d e v a r i e t y o f s t i m u l i a n d b y m e a s u r i n g a l l r e s p o n s e s , t h e i n p u t o u t p u t r e l a t i o n s h i p s c o u l d b e d e t e r -m i n e d . On t h e b a s i s o f s y s t e -m t h e o r y , f r o -m t h e i n p u t - o u t p u t r e l a t i o n s a -m o d e l , t h a t i s a m o d e l s t r u c t u r e a n d m o d e l p a r a m e t e r s , c a n be d e r i v e d . C o n s e q u e n t l y t h e " b l a c k b o x " i s w h i t e n e d . A l t h o u g h i n m a n u a l c o n t r o l s i t u a t i o n s c y b e r n e t i c m o d e l s c a n b e a p p l i e d s u c c e s s -f u l l y t o p r e d i c t human b e h a v i o r [ACMC 196k - 1 9 8 1 ] , up t o now i t i s s t i l l n o t p o s s i b l e t o d e v e l o p s u c h p r e d i c t i o n m o d e l s f o r s u p e r v i s o r y c o n t r o l s i t u a t i o n s . The m a j o r d i f f e r e n c e s b e t w e e n d i r e c t m a n u a l c o n t r o l o f v e h i c l e s a n d t h e d i s c r e t e c h a r a c t e r i s t i c s o f s u p e r v i s o r y c o n t r o l i n p r o c e s s i n d u s t r y c a n b e i l l u s -t r a -t e d b y T a b l e I . [ B e a v e r s -t o c k , S -t a s s e n , W i l l i a m s o n , 1977] D a t a P r o c e s s i n g A s p e c t s V e h i c l e C o n t r o l P r o c e s s C o n t r o l l INFORMATION T y p e D i m e n s i o n Time c o n s t a n t s A b s t r a c t n e s s O r i g i n d i s t u r b a n c e s S y s t e m p r o p e r t i e s D i r e c t A b o u t 10 F r o m s e c . t o m i n . Low Known L i n e a r C o n s t a n t I n d i c a t i v e B e t w e e n 100 a n d 1500 F r o m m i n . t o h o u r s H i g h Unknown N o n - L i n e a r T i m e - v a r y i n g PRESENTATION I n t é g r a t i o n P a r a l l e l / s e r i e s Number o f d i s p l a y s Time w i n d o w Modes O v e r v i e w I n t e g r a t e d d i s p l a y s M o s t l y p a r a l l e l s Low I n s t a n t e n e o u s a n d p r e d i c t i v e V i s u a l , a u d i t i v e , v e s t i b u l a r Good N o n - i n t e g r a t e d d i s p l a y s P a r a l l e l a n d / o r s e r i e s H i g h I n s t a n t e n e o u s a n d h i s t o r y ( t r e n d ) V i s u a l , a u d i t i v e P o o r MANIPULATION D i r e c t f e e d b a c k R e s p o n s e S t r a t é g i e s A c c u r a c y P r o p r i o c e p t i v e I m m e d i a t e E r r o r c o r r e c t i o n M o r e o r l e s s c o n s i s t e n t Q u a n t i t a t i v e No p r o p r i o c e p t i v e N e x t s h i f t B o u n d a r y c o n t r o l V a r i a b l e M o r e o r l e s s q u a l i t a t i v e CONFIGURATION P h y s l c a l s i z e P e r s o n n e l t r a i n i n g Human f a c t o r s S m a l l H i g h l y a n d c o n s i s t e n t l y W e l l d e v e l o p e d L a r g e L e s s r i g o r o u s l y V e r y l i t t l e d e v e l o p e d T A B L E 1 : COMPARISON BETWEEN V E H I C L E CONTROL AND PROCESS CONTROL

(3)

3. MODELING HUMAN SUPERVISORS BEHAVIOR

3 . 1 Definition of the system state and model description

The human o p e r a t o r ' s s u p e r v i s o r y b e h a v i o r i n a s t a t i o n a r y c o n t r o l mode, where a d y n a m i c , s l o w l y r e s p o n d i n g , and complex s y s t e m i s s e t p o i n t c o n t r o l l e d i s c h a r a c t e r i z e d b y p e r i o d s o f w a i t i n g a n d o f o b s e r v i n g o u t p u t v a r i a b l e s f o l l o w e d by p e r i o d s o f e x e c u t i n g c o n t r o l a c t i o n s . The p r o c e s s t o be s u p e r v i s e d I s d e s c r i b e d b y a l i n e a r , dynamic s y s t e m w i t h s t a t e x ( k ) . The System i s d i s t u r b e d b y a n o i s e w ( k ) . I t h a s a c o n t r o l l e d i n p u t u ( k ) whereas t h e o u t p u t y ( k ) c o n s i s t s o f a l i n e a r c o m b i n a t i o n o f t h e s t a t e v a -r i a b l e s x ( k ) ; t h e s y s t e m can be o b s e -r v e d by t h e human o p e -r a t o -r v i a a d i s p l a y . T h i s o b s e r v a t i o n can be a c o n t i n u o u s o b s e r v a t i o n o r an a d d i t i o n a l s a m p l i n g o f a p a r t i c u l a r s y s t e m o u t p u t .

System t h e o r y d e f i n e s t h e s t a t e o f a d i s c r e t e s y s t e m as "some compact

représen-tation of the past activity of the system complete enough to allow us to predict, on the basis of the inputs, exactly what the Outputs will be and also to update

the state itself" [ P a d u l o , A r b i b , 197M- "S° the future values of the state as well as the Outputs are only determined by the initial values of the state and

the following inputs" [Kok, Van W i j k , 1 9 7 8 ] . T h e r e f o r e , t h e i n p u t o u t p u t r e l a t i o n o f a dynamic s y s t e m c a n be d e s c r i b e d b y two équations : One équation y i e l -d i n g t h e p r o g r e s s i v e change i n t i m e o f t h e s y s t e m s t a t e -due t o t h e i n p u t s , a n -d a second équation a s s o c i a t i n g t h e O u t p u t s o f t h e s y s t e m t o t h e a c t u a l v a l u e o f

t h e s y s t e m s t a t e , t h u s :

x ( k + 1) = A x ( k ) + B u ( k ) + Gw(k) ; y ( k ) = C x ( k ) .

The m a t r i c e s A, B and G c a n be r e g a r d e d as s y s t e m p a r a m e t e r s , and t h e m a t r i x C i s t h e d i s p l a y p a r a m e t e r .

I n o r d e r t o d e s c r l h e human o p e r a t o r ' s s u p e r v i s o r y b e h a v i o r , t h e model s u g g e s t e d by Kok and Van W i j k [ 1 9 7 8 ] w i l l be a p p l i e d . T h i s model i s b a s e d on t h e p h y l o s o phy t h a t t h e human s u p e r v i s o r a c t s as some k i n d o f s u b o p t i m a l c o n t r o l l e r , t a k i n g i n t o a c c o u n t t h e i n h e r e n t l i m i t a t i o n t h a t h i s o b s e r v a t i o n o f t h e ouput p r o -c e s s v a r i a b l e s -c a n be i n a -c -c u r a t e . T h i s l i m i t a t i o n i s m o d e l l e d b y a n o i s e vQ( k ) ,

c a l l e d t h e o b s e r v a t i o n n o i s e . I t i s assumed t h a t t h e human s u p e r v i s o r p o s s e s s e s e x a c t knowledge o f t h e g e n e r a t e d c o n t r o l s i g n a i s u ( k ) . Hence, t h e model

con-s i con-s t con-s o f t h r e e S u b con-s y con-s t e m con-s : an observer, a controller and a décision making element,

DME, t h e l a s t one a c t i n g on each o f t h e two o t h e r Subsystems ( F i g . 1 ) .

control input system dist urbane es d(k) system dynamics system stote x(k) display

observed output ytkP «uj*™lsed system I automatic control-, control-, I 1er and interface lobserved input

uCk)

CONTROL ACTIONS OBSERVATION ACTIONS i OBSERVATIONS L J control decjTsion t

±

Idecision-making -1 part icontrollerl part x(k) I error I variance Observation

cfëcision"' Observation input

noise. state estimate idynamic|_ X observer**""" ° ,v;(k) part uTk) *ÎTk 1 observer/controlter/ décision model of the human supervisor output pt(k) observation noise

(4)

The s t r u c t u r e o f t h e observer i s d e p i c t e d i n F i g . 2; i t i s modeled as a Kalman

f i l t e r , t h u s i t c o n t a i n s a r e p l i c a o f t h e s y s t e m i n c l u d i n g t h e d i s p l a y .

Based on t h e o b s e r v e d o u t p u t v a r i a b l e s , on t h e knowledge o f t h e dynamics o f t h e s y s t e m , on t h e knowledge o f t h e s t a t i s t i c a ! p r o p e r t i e s o f t h e n o i s e a c t i n g upon t h e s y s t e m , and on t h e s e t p p i n t changes w h i c h have been made a l r e a d y t h e o b s e r -ver estimâtes t h e s t a t e o f t h e s y s t e m x ( k ) and t h e a s s o c i a t e d v a r i a n c e o f t h e e s t i m a t i o n e r r o r V^. I n t h i s p a r t o f t h e m o d e l , t h e n o i s e v e c t o r s vQ( k ) w i t h t h e

c o v a r i a n c e m a t r i x 4» I s assumed t o be w h i t e and n o r m a l l y d i s t r i b u t e d . As a c o n -o

séquence t h e m a t r i x \\> i s a d i a g o n a l m a t r i x . The q u a n t i t y \p models t h e r a t e

o o o f u n c e r t a i n t y o f t h e s u p e r v i s o r about t h e p e r c e i v e d O u t p u t s o f t h e s y s t e m . The

q u a n t i t y i s a p a r a m e t e r o f t h e o b s e r v e r s u b s y s t e m .

commanded input i^lkl

1 model of the correction of observer gain

1 system dynamics e s t i m â t e s K 1

reconstructed

1

estimoted state 1 internal model

x(k! 1 1 of the system to

1

model of the 1 be controlled i 1 display 1 innovation L _ observed output corrupted by observât ion noise

y i k l . v . l k )

'reconstructed or estimated output

y(k)

Figure 2: Structure of the observer

The s u b s y s t e m , t h e controller, can be r e g a r d e d as a v a r i a n t o f t h e optime,! c o n

-t r o l l a w . I -t i s s u p p o s e d -t h a -t -t h e human o p e r a -t o r w i l l c o n -t r o l dévia-tions, f r o m o u t s i d e t h e l i m i t s , b a c k t o t h e n o m i n a l v a l u e i n a c e r t a i n p e r i o d . Hence, when t h e p e r i o d , i n w h i c h t h e o u t p u t v a r i a b l e w i l l r e a c h t h e n o m i n a l v a l u e , i s d e t e r m i n e d , t h e n t h e a m p l i t u d e o f t h e s e t p o i n t c o r r e c t i o n I s a l s o f i x e d ; a s h o r t p e -r i o d -r e q u i -r e s a l a -r g e -r a m p l i t u d e t h a n i n a l o n g e -r p e -r i o d . T h i s t -r a d e - o f f between p e r i o d a n d a m p l i t u d e I s modeled b y t h e p a r a m e t e r "p" i n t h e s i n g l e s t e p c o n t r o l l a w w h i c h w i l l be u s e d as controller.

From t h i s c o n t r o l l a w : u ( k ) = u nom(p) - L ( p ) x ( k ) , where u nom dénotes t h e nomin a l I nomin p u t v a l u e , L dénominotes t h e g a i nomin f a c t o r anomind u ( k ) t h e magnominitude of' t h e c o r r e c -t i v e a c -t i o n , a i l -t h e q u a n -t i f i e s a r e known e x c e p -t p , -t h e model p a r a m e -t e r , w h i l e t h e g a i n f a c t o r , L , i s dépendent o f p. I t i s supposed t h a t t h e human o p e r a t o r b a -ses t h e q u a n t i t y u ( k ) on t h e e s t i m a t i o n o f t h e a c t u a l s y s t e m s t a t e , x ( k ) , a n d i s s u p p o s e d n o t t o t a k e i n t o a c c o u n t e f f e c t s o f t h e s y s t e m n o i s e d u r i n g t h e p e r i o d i n w h i c h t h e a c t i o n i s k e p t c o n s t a n t . W i t h t h e s i n g l e s t e p c o n t r o l l a w i t w i l l be p o s s i b l e t o r e a c h i n p t i m e s t e p s an o u t p u t v e c t o r y ( k + p ) w h i c h i s e q u a l t o t h e n o m i n a l o u t p u t v e c t o r , y nom, as l o n g as t h e s y s t e m n o i s e i s z e r o w i t h i n t h a t p e r i o d . Because t h e s y s t e m n o i s e i s p r o b a b l y n o t z e r o a " s u b g o a l " w i l l be r e a c h e d . The DME p r o v i d e s two f u n c t i o n s : F i r s t l y i t models t h e moments on w h i c h an a d d i

(5)

a s e t p o i n t c o r r e c t i o n has t o he p e r f o r m e d . The i n p u t s o f t h e DME a r e t h e s y s t e m s t a t e e s t i m a t e x ( k ) and i t s v a r i a n c e V^; t h e f i r s t f u n c t i o n makes use o f x ( k ) and V^, t h e l a s t one uses x ( k ) o n l y .

The a d d i t i o n a l o b s e r v a t i o n s a m p l i n g i s modeled a c c o r d i n g t o a h y p e r b o l i c d e c i s i o n r u l e ( F i g . 3 ) . Whenever the c o m b i n a t i o n o f t h e a b s o l u t e v a l u e o f t h e e s t i m a t i o n o f t h e d e v i a t i o n ! y . ( k ) - y .1 w i t h r e g a r d t o t h e nomi-X Il OBI, 1 n a l v a l u e , y ., o f an o u t p u t , y . ( k ) , and t h e u n c e r t a i n t y about t h a t p a r t i c u l a r e s t i m a t i o n , O y - ( k ) , exceeds a c r i t e r i o n v a l u e , a sample w i l l be t a k e n . The q u a n t i t i e s fj_{k) and av^ ( k ) are d e r i v e d as a l i n e a r f u n c t i o n o f

t h e s t a t e e s t i m a t e , x ^ ( k ) , and t h e a s s o c i a t e d v a r i a n c e , V^, r e s p e c t i v e l y . The m o d e l i n g p a r a m e t e r s are t h e c u r v a t u r e o f t h e h y p e r b o l i c l i n e , CE-j_, and t h e asymptot v a l u e o r m i n i m a l a c c e p t e d u n c e r t a i n t y , a ., where i

deno-t e s deno-t h e i - deno-t h o u deno-t p u deno-t v a r i a b l e . ^ min 1

The c o n t r o l l e r d e c i s i o n s a r e modeled as a s t r a i g h t l i n e ( F i g . h). Whenever,

t h e a b s o l u t e v a l u e o f t h e d e v i a t i o n between t h e e s t i m a t e d o u t p u t and t h e n o m i n a l v a l u e , |y. - y .1, exceeds t h e l i n e q., a c o r r e c t i v e a c t i o n w i l l

1 l nom l . . i .

be made. The upper o r Tower t o l e r a n c e l i m i t , q^, i s t h u s a l s o model parame-t e r .

u n c e r t a i n t y

Figure 3: The hyperbolic decision-rule Figure 4: The linear decision-rul

3.2 Separation Theorem / Model hypotheses

As p o i n t e d out a l r e a d y i n t h e p r e c e e d i n g s e c t i o n , t h e O b s e r v e r / C o n t r o l l e r / D e c i s i o n - m o d e l , 0CDmodel, i s b a s e d on t h e c o n c e p t u a l framework o f t h e O p t i -mal C o n t r o l M o d e l o f B a r o n , e t . a l [ 1 9 6 9 ] , K l e i n m a n , e t . a l [ 1 9 7 0 , 1 9 7 1 ] . The b a s i c a s s u m p t i o n o f t h i s model i s t h a t a w e l l - t r a i n e d and h i g h l y m o t i v a t e d human o p e r a t o r w i l l a c t i n a n e a r o p t i m a l way, s u b j e c t t o h i s i n t e r n a l c o n -s t r a i n t -s w h i c h l i m i t h i -s p e r f o r m a n c e , and -s u b j e c t t o t h e e x t e n d t o w h i c h he u n d e r s t a n d s t h e t a s k o b j e c t i v e s . T h i s model can a p p r o p r i a t e l y be u s e d t o p r e d i c t manual c o n t r o l b e h a v i o r ACMC,[196H - 1980]. The OCD-model i s an ex-t e n s i o n o f ex-t h e O p ex-t i m a l C o n ex-t r o l M o d e l , j u s ex-t by ex-t h e i n ex-t r o d u c ex-t i o n o f a DME.

I t i s a l s o d i f f e r e n t by t h e f a c t t h a t a s i n g l e s t e p c o n t r o l law as a m o d i f i -c a t i o n o f t h e o p t i m a l -c o n t r o l law i s p r o p o s e d , i n s t e a d o f t h e o p t i m a l , -c o n t i nuous c o n t r o l l a w . F i n a l l y i t d i f f e r s by t h e f a c t t h a t most o f t h e i n t e r n a l

c o n s t r a i n t s w h i c h were t a k e n i n t o a c c o u n t i n t h e OCM a r e assumed t o be ne-g l e c t a b l e . T h i s a s s u m p t i o n seems s e n s i b l e due t o t h e l a r ne-g e t i m e c o n s t a n t s i n v o l v e d i n t h e s t e a d y - s t a t e s u p e r v i s o r y c o n t r o l mode; hence a s p e c t s l i k e r e a c t i o n t i m e s o f 0.1 sec and n e u r o m u s c u l a r dynamics w i t h t i m e c o n s t a n t s o f 100 t o 200 m s e c , i m p o r t a n t i n the OCM, can be n e g l e c t e d i n t h e OCD-model.

(6)

I n t h e case o f the' O p t i m a l C o n t r o l Model t h e w e l l - k n o w n séparation t h e o r e m i s v a l u a b l e as a b a s i c t o o l . No arguments can he f o u n d , t o p r o o f t h a t t h e séparation p r i n c i p i e can a l s o he a p p l i e d i n t h e case o f t h e OCD-model, s i n c e w i t h t h e i n t r o d u c t i o n o f t h e DME, t h e model becomes n o n - l i n e a r , whereas l i n e a r l t y i s one o f t h e n e c e s s a r y c o n d i t i o n s i n o r d e r t o be a l l o w e d t o a p p l y t h e séparation p r i n c i p i e . The i m p o r t a n c e o f t h e séparation t h e o r e m , however, makes t h a t i t may be f r u i t f u l t o s t u d y t o what e x t e n d t h e DME I n f l u -ences t h i s i m p o r t a n t p r i n c i p i e ; t h e r e f o r e t h e f o l l o w i n g hypothèses have been s t a t e d :

. V a r i a t i o n s i n t h e i n t e n s i t y o f t h e s y s t e m d i s t u r b a n c e s a r e c h a n g i n g t h e p a -r a m e t e -r v a l u e s o f t h e o b s e -r v e -r ; t h e y a -r e n o t I n f l u e n c i n g t h e p a -r a m e t e -r s o f the c o n t r o l l e r . Changes o f t h e p a r a m e t e r v a l u e s o f t h e décision making élé-ment f o r O b s e r v a t i o n a c t i o n s w i l l a l s o t a k e p l a c e .

. V a r i a t i o n s i n t h e d i s p l a y s t r u c t u r e a r e a l s o c h a n g i n g t h e p a r a m e t e r v a l u e s o f t h e o b s e r v e r , and t h e décision making élément f o r t h e o b s e r v a t i o n a c t i o n s ; t h e y a r e n e i t h e r c h a n g i n g t h e p a r a m e t e r v a l u e s o f t h e c o n t r o l l e r , n o r t h e p a -r a m e t e -r s o f t h e décision making élément f o -r t h e c o n t -r o l l e -r a c t i o n s .

. V a r i a t i o n s i n t h e t a s k t o be p e r f o r m e d a r e c h a n g i n g t h e p a r a m e t e r v a l u e s o f t h e c o n t r o l l e r and t h e décision making élément f o r t h e c o n t r o l l e r a c t i o n s ; t h e y a r e n o t c h a n g i n g t h e p a r a m e t e r v a l u e s o f t h e o b s e r v e r and t h e décision making élément f o r t h e o b s e r v a t i o n a c t i o n s .

. V a r i a t i o n s i n t h e dynamics o f t h e s y s t e m t o be s u p e r v i s e d a r e c h a n g i n g a l l t h e p a r a m e t e r v a l u e s I n t h e model.

I n T a b l e I I t h e p o s t u l a t e d r e l a t i o n s between t h e t a s k v a r i a b l e s and t h e p a r a -meters o f t h e model a r e r e p r e s e n t e ! , where a p l u s , +, denotes a dependency and where a zéro, 0, denotes i n d e p e n d e n c y .

Table II: Postulated relations between task variables and model parameters.

P a r a m e t e r s o f : O b s e r v e r p a r t O b s e r v e r Décision p a r t C o n t r o l l e r Décision p a r t C o n t r o l l e r P a r t Task v a r i a b l e s : System D i s t u r b a n c e s + + 0 0 D i s p l a y S t r u c t u r e + + 0 0 Task R e q u i r e m e n t s 0 0 + + System Dynamics + + + + S i n c e t h e p a r a m e t e r s t h e m s e l v e s a r e d i f f i c u l t t o i n t e r p r e t , and s i n c e t h e y cannot be i d e n t i f i e d e a s i l y , a smooth way o f verificatión o f t h e s e h y p o t h e s e s cannot be f o u n d d i r e c t l y . T h e r e f o r e , i t i s w o r t h w h i l e t o t r a n s f o r m t h e hypo-t h e s e s hypo-t o d i r e c hypo-t l y m e a s u r a b l e q u a n hypo-t i hypo-t i e s . S i n c e q u a n hypo-t i hypo-t i e s l i k e hypo-t h e number o f o b s e r v a t i o n a c t i o n s , t h e number o f c o n t r o l l e r a c t i o n s and t h e a m p l i t u d e o f t h e c o n t r o l a c t i o n s can be measured, and s i n c e t h e y a r e d i r e c t l y r e l a t e d t o t h e s t r u c t u r e o f t h e s y s t e m t o be s u p e r v i s - e d , one can r e f o r m u l a t e t h e h y p o t h e s e s as f o l l o w s :

. V a r i a t i o n s i n t h e i n t e n s i t y o f t h e s y s t e m d i s t u r b a n c e s w i l l be r e f l e c t e d i n t h e number o f o b s e r v a t i o n a c t i o n s , and w i l l be r e f l e c t e d i n an a d d i t i o n a l way i n t h e number o f c o n t r o l l e r a c t i o n s . However, i t w i l l n o t be r e f l e c t e d

i n t h e mean a m p l i t u d e o f t h e c o n t r o l l e r a c t i o n s . . V a r i a t i o n s o f t h e d i s p l a y s t r u c t u r e w i l l o n l y be r e f l e c t e d i n t h e number o f o b s e r v a t i o n a c t i o n s ; t h e y w i l l n e i t h e r i n f l u e n c e t h e number o f c o n t r o l l e r a c t i o n s n o r t h e mean o f t h e a m p l i t u d e s o f t h e c o n t r o l l e r a c t i o n s . . V a r i a t i o n s i n t h e t a s k r e q u i r e m e n t s w i l l be r e f l e c t e d i n t h e number o f c o n -t r o l l e r a c -t i o n s ; -t h e y w i l l n o -t be r e f l e c -t e d i n -t h e number o f o b s e r v a -t i o n a c t i o n s ( T a b l e I I I a n d F i g . 5 ) .

Two remarks have t o be made i n r e l a t i o n t o t h e s e h y p o t h e s e s :

(7)

a c c o u n t h e r e , because t h e vérification o f h y p o t h e s i s on t h e i n f l u e n c e o f t h e s y s t e m dynamics as a t a s k v a r i a b l e w i l l i n c r e a s e e n o r m o u s l y t h e number o f ex-p e r i m e n t s .

In t h e s e c o n d p l a c e t h e s u p p l e m e n t a t i o n " i n an a d d i t i o n a l way" i n t h e f i r s t h y p o t h e s i s needs some e x p l a n a t i o n . To v e r i f y t h e séparation t h e o r e m , i t h a s t o be shown t h a t o p t i m i z a t i o n of t h e f i l t e r i n g and t h e c o n t r o l p r o b l e m , s e p a r a t e l y , w i l l l e a d t o t h e same r e s u l t s as o p t i m i z a t i o n o f t h e combined p r o blem. E e f e r i n g t o t h e model f i r s t d i s c u s s e d , a n d t a k i n g i n t o a c c o u n t t h e i n -f l u e n c e s o -f t h e t a s k v a r i a b l e s j u s t - m e n t i o n e d , a conséquence o -f t h e sépara-t i o n sépara-t h e o r e m i s sépara-t h a sépara-t sépara-t h e s u p e r - p o s i sépara-t i o n p r i n c i p l e s h o u l d h o l d . Hence, sépara-t h e t a s k v a r i a b l e s y s t e m d i s t u r b a n c e s i s t h o u g h t t o c o n t r i b u t e , i n an a d d i t i o n a l way, a number o f c o n t r o l l e r a c t i o n s w h i c h i s i n d e p e n d e n t o f t h e number o f c o n t r o l l e r a c t i o n s a t t r i h u t e d b y t h e t a s k v a r i a b l e t a s k r e q u i r e m e n t s .

Table III: Postulated relation between task variables and direct measurdble quantities. Q u a n t i t y : Number o f O b s e r v a t i o n a c t i o n s Number o f C o n t r o l l e r a c t i o n s Mean A m p l i t u d e o f C o n t r o l l e r a c t i o n s Task v a r i a b l e : System D i s t u r b a n c e s + + 0 D i s p l a y S t r u c t u r e + 0 0 Task R e q u i r e m e n t s 0 + + Number o f ob- 4 s e r v a t i o n a c -t i o n s D i s p l a y S t r u c t u r e System D i s t u r b a n c e s Task R e q u i r e m e n t s Number o f c o n t r o l l e r a c t i o n s

Figure 5: Postulated relation between task variables and direct measurable quantities

4. EXPERIMENTAL DESIGN

k.\ Description of. the research vehicle

I n t r y i n g t o v e r i f y t h e h y p o t h e s e s s t a t e d i n t h e l a s t s e c t i o n , one needs a r e s e a r c h v e h i c l e on w h i c h e x p e r i m e n t s can be p e r f o r m e d . F o r t h i s r e a s o n a s e t p o i n t c o n t r o l l e d p r o c e s s s i m u l a t i o n h a s been i m p l e m e n t e d on a PDP 11/34 computer. The p r o c e s s , a U t i l i t y P l a n t , i s c o n s i d e r e d t o be a l i n e a r s y s t e m and i t c o n s i s t s o f a B o i l e r , a Back P r e s s u r e T u r b i n e and a C o n d e n s i n g T u r -b i n e . The B o i l e r p r o d u c e s h i g h p r e s s u r e steam w h i c h i s , p r e s s u r e c o n t r o l l e d . The Back P r e s s u r e T u r b i n e consumes H.P.-steam a n d p r o d u c e s l o w p r e s s u r e steam a n d e l e c t r i c a l power; t h i s l o w p r e s s u r e steam i s f l o w c o n t r o l l e d . T h e C o n d e n s i n g T u r b i n e consumes H.P.-steam a n d p r o d u c e s o n l y e l e c t r i c a l power. The t o t a l amount o f e l e c t r i c a l power p r o d u c e d i s power c o n t r o l l e d ( F i g . 6 ) .

(8)

steam

Figure 6: Structure of the Utility Plant

h,2 Description of the task of the Supervisor

The t a s k o f t h e human O p e r a t o r i s t o keep t h e t h r e e o u t p u t v a r i a b l e s , i . e . t h e p r e s s u r e o f t h e H.P.-steam, t h e f l o w o f L.P.-steam and e l e c t r i c a l power w h i c h a r e c o r r u p t e d b y s y s t e m d i s t u r b a n c e s , w i t h i n s p e c i f i e d b o u n d a r i e s . These b o u n d a r i e s a r e s y m e t r i c a l l y l o c a t e d a r o u n d a c e r t a i n n o m i n a l v a l u e . The Outputs a r e d i s p l a y e d d i g i t a l l y ; t h e b o i l e r o u t p u t can be o b s e r v e d c o n -t i n u o u s l y whereas -t h e -two o -t h e r Ou-tpu-ts can be sampled o n l y on r e q u e s -t . The t a s k o f t h e O p e r a t o r i s t o sample as few as p o s s i b l e , and t o c o r r e c t t h e s e t - p o i n t s as few as p o s s i b l e . The c o n t r o l s h o u l d be p e r f o r m e d o n l y w i t h s m a l l c o r r e c t i v e a c t i o n s .

The O p e r a t o r s w i l l be m a s t e r s t u d e n t s o f t h e L a b . f o r Measurement & C o n t r o l o f t h e department o f M e c h a n i c a l E n g i n e e r i n g .

h.3 The expérimental set-up

Three t a s k v a r i a b l e s have been chosen f o r t h e expérimental s e t - u p , i . e . a v a r i a t i o n i n System d i s t u r b a n c e s , i n d i s p l a y s t r u c t u r e and i n t a s k r e q u i r e -ments.

V a r i a t i o n s i n t h e system disturbances: Each output v a r i a b l e i s d i s t u r b e d by

a f i r s t o r d e r n o i s e w i t h a l o w i n t e n s i t y , d e n o t e d as n , o r w i t h a h i g h i n -t e n s i -t y , d e n o -t e d as ïï.

V a r i a t i o n s i n t h e display structure: Each déviation between output and a

s p e c i f i e d b o u n d a r y can be i n d i c a t e d i n one o f t h e two f o l l o w i n g ways. By t h e l o c a l a l a r m s t r u c t u r e , d e n o t e d as d, a d i r e c t i n d i c a t i o n i s g i v e n w h i c h o u t p u t i s o u t o f t h e b o u n d a r i e s and i n what d i r e c t i o n t h e v a r i a b l e i s chan-g i n chan-g . By t h e c e n t r a l a l a r m s t r u c t u r e , d e n o t e d as D, i t i s o n l y i n d i c a t e d w h e t h e r one o f t h e o u t p u t v a r i a b l e s i s d e v i a t e d f r o m one o f t h e s p e c i f i e d

l i m i t s . The human O p e r a t o r has t o i n v e s t i g a t e w h i c h o u t p u t i s d e v i a t i n g and i n what d i r e c t i o n t h e o u t p u t i s c h a n g i n g ; he even has t o make s u r e t h a t t h e r e i s o n l y one o u t p u t d e v i a t i n g f r o m t h e s p e c i f i e d l i m i t s . More i n f o r m a t i o n can be a s k e d f o r by means o f t a k i n g a d d i t i o n a l s a m p l e s .

V a r i a ^ i o n i n t h e task requirements: The l o w e r and upper l i m i t s o f each o u t

-put v a r i a b l e a r e s p e c i f i e d . F o r t h e case t h a t l o w e r and u p p e r l i m i t a r e c l o s e t o each o t h e r t h e t a s k i s d i f f i c u l t ( B ) ; f o r t h e case t h e y a r e f a r away f r o m each o t h e r , t h e t a s k i s r a t h e r e a s i l y ( b ) .

(9)

I n t h e expérimental s e t - u p each c o n d i t i o n c o n s i s t s o f a c o m b i n a t i o n o f one o f t h e two l e v e l s o f t h e t h r e e t a s k v a r i a b l e s i n v o l v e d . T h e r e f o r e , e i g h t c o n d i t i o n s can be formed. I n t h e f i r s t vérification phase f o u r c o n d i t i o n s were c o n s i d e r e d , t h e y w e r e : n.d.b; n.D.b; N.d.b; N.D.b. I n t h e s e c o n d

véri-f i c a t i o n phase t h e c o n d i t i o n s were: n.d.B; n.D.B; N.d.B; N.D.B.

5. TESTING THE HYPOTHESES

I n t r y i n g t o v e r i f y t h e h y p o t h e s e s , one needs t o be s u r e t o base t h e véri-f i c a t i o n on a r o b u s t s e t o véri-f d a t a o véri-f w e l l - t r a i n e d o p e r a t o r s . The c r i t e r i a i n o r d e r t o c o n c l u d e w h e t h e r t h e d a t a i s o r i g i n a t i n g f r o m w e l l t r a i n e d s u b -j e c t s , a r e t w o f o l d . A t f i r s t , t h e number o f samples t a k e n and t h e number o f c o r r e c t i v e a c t i o n s p e r f o r m e d s h o u l d a p p r o a c h a c o n s t a n t l e v e l f o r e a c h c o n -d i t i o n . S e c o n -d l y , t h e compute-d a b s o l u t e v a l u e o f t h e -déviation intégrais, b a s e d on t h e t i m e t h a t t h e s i g n a l i s o u t s i d e t h e s p e e l l i e d b o u n d a r i e s , s h o u l d be as c l o s e as p o s s i b l e t o z e r o . F o r t e s t i n g t h e h y p o t h e s e s on t h e b a s i s o f t h e f i r s t f o u r c o n d i t i o n s t h e d a t a o f n i n e t r i a l s were c o n s i d e r e d . The n e c e s s a r y c o n d i t i o n s i n o r d e r t o a p p l y p a r a m e t r i c s t a t i s t i c s were c h e c k e d . T h e r e a f t e r , an i n v e s t i g a t i o n w h e t h e r t h e c o l l e c t e d d a t a were s t a t i s t i c a l l y s e e n , i n f l u e n c e d b y p o s s i b l e l e a r n i n g e f -f e c t s was p e r -f o r m e d . No l e a r n i n g e -f -f e c t s c o u l d be d e t e c t e d . As an i n d i c a t i o n , more t h a n 100 ( c a t c h ) t r i a l s p r e c e e d e d t h e a c t u a l 36 t r i a l s . F i g . 7 shows

t h e 99% c o n f i d e n c e i n t e r v a l o f a T-Student d i s t r i b u t i o n o f t h e number o f samp l e s t a k e n a n d t h e number c o n t r o l a c t i o n samp e r f o r m e d , f o r each o f t h e f o u r c o n -d i t i o n s . The f i g u r e shows t h a t a change i n t h e -d i s p l a y s t r u c t u r e e f f e c t s o n l y t h e number o f samples t a k e n and n o t t h e number o f c o n t r o l l e r a c t i o n s e x e c u t e d ; T a b l e I V r e v e a l s t h e e x a c t r e s u l t s .

Table IV: Results of a T-test

V a r i a b l e Number o f c a s e s Me an SD 2 - t a i l p r o b Sampl group n,d,b group n,D,b 9 9 0 . 7 2 1 . 7 2 . 0 3.1 0 . 0 0 0 C o n t r group n,d,b group n,D,b 9 9 7 7 . 2 7 9 . 8 3 . 6 7 A 0 . 3 5 3 Sampl group N,d,b group N,D,b 9 9 l U . 8 U T . O 6 . 5 1 1 . 0 0 . 0 0 0 C o n t r group N,d,b group N,D,b 9 9 1 1 5 . 9 1 0 8 . 2 1 6 . 6 9 . 1 0.21+2 F u r t h e r m o r e I t can be s e e n , t h a t v a r i a t i o n i n t h e i n t e n s i t y o f t h e s y s t e m d i s t u r b a n c e s I s r e f l e c t e d i n t h e number o f o b s e r v a t i o n a c t i o n s , whereas i t i s a l s o a d d i t i v e i n t h e number o f c o n t r o l l e r a c t i o n s ; T a b l e V shows t h e e x a c t r e s u l t s .

(10)

in

c

o

'•*-> o D C

o

4->

o

>

l _ <D U) - Q O .O

£

t

6 0

h

4 0

2 0

n.D,b

N.D.b

N.d,b

2 0

n.d,b

I 1 L L-| i| I I I J I I

4 0 6 0 8 0 1 0 0 1 2 0 U O

n u m b e r o f c o n t r o l a c t i o n s

160

Figure 7: Obtained results of four expérimental conditions

Table V: Results of a T-test

V a r i a b l e Number o f c a s e s Me an SD 2 - t a i l p r o b . Sampl group n,d,b group N,d,b 9 9 0 . 7 1 4 . 8 2 . 0 6 . 5 0 . 0 0 0 C o n t r group n,d,b group N,d,b 9 9 7 7 . 2 1 1 5 . 9 3 . 6 1 7 . 6 0 . 0 0 0 Sampl group n,D,b group N,D,b 9 9 2 1 . 7 U 7 . 0 3 . 1 1 1 . 0 0..000 C o n t r group n,D,b group N,D,b 9 9 7 9 - 9 1 0 8 . 2 7 . ^ 9-1 0 . 0 0 0

As l o n g as t h e t a s k r e q u i r e m e n t s have n o t been changed i n t h e f o u r c o n d i t i o n s , t h e mean a m p l i t u d e o f t h e c o n t r o l l e r a c t i o n s was s u p p o s e d t o r e m a i n c o n s t a n t . F o r vérification t h e r e s u l t s o f t h e T - t e s t showed no s i g n i f i c a n t différence between t h e f o u r c o n d i t i o n s ( F i g . 8 ) . So t h e hypothèses w i t h r e s p e c t t o t h e

t a s k v a r i a b l e s , d i s p l a y s t r u c t u r e , a n d s y s t e m d i s t u r b a n c e s , can be a c c e p t e d c o m p l e t e l y .

The t h i r d t a s k v a r i a b l e t h e " t a s k r e q u i r e m e n t " , i s s u p p o s e d t o have o n l y a e f f e c t on t h e number o f c o n t r o l l e r a c t i o n s and n o t on t h e number o f o b s e r v a -t i o n a c -t i o n s . By c o m p a r i n g F i g . 9 and F i g . 7 , i t can be seen t h a t o n l y i n one

case t h e r e s u l t s o f a v a r i a t i o n i n t h e t a s k r e q u i r e m e n t s déviâtes f r o m t h e p o s t u l a t e d e f f e c t s ; i n c o n d i t i o n n,D,B more samples a r e t a k e n t h a n i n c o n d i -t i o n n,D,b.

(11)

. 30 r

o &

° * 20

4— C

10

I

3= conditions-.n.d.b

I

n.D.b N,d.b controLLer 4 b o i t e r controLLer " back p r e s s u r e — t u r b i n e • r controLLer -TTTr.condensing t u r b i n e

Figure 8: Number of set-point corrections of three output variables in four expérimental conditions

tn

c

o

N.D.B n.D.B N.d.B n.d.B

0 20 40 60 80 100 120 140 160

n u m b e r of controL a c t i o n s

Figure 9: Obtained results of four expérimental conditions

R e s u l t s o b t a i n e d w i t h a l e s s t r a i n e d s u b j e c t were s i m i l a r w i t h r e s p e c t t o t h e t a s k v a r i a b l e s , d i s p l a y s t r u c t u r e a n d System d i s t u r b a n c e s i n t h e c o n d i t i o n s : n,d,b; n,D,b; N,d,b; N,D,b. The r e s u l t s were s l i g h t l y l e s s s i g n i f i c a n t (p<.02). The r e s u l t s w i t h r e s p e c t t o t h e t a s k v a r i a b l e t a s k r e q u i r e m e n t s do n o t agrée w i t h t h e hypothèses; even t h e r e s u l t s i n t h e c o n d i t i o n s n,d,B; n,D,B; N,d,B; N,D,B where t h e t a s k v a r i a b l e s d i s p l a y s t r u c t u r e System d i s t u r b a n c e s were v a r i e d s y s t e m a t i c a l l y , were r a t h e r p o o r , a l t h o u g h . t h e t r e n d s were i n t h e p r e d i c -t e d d i r e c -t i o n .

(12)

In t r y i n g t o u n d e r s t a n d why t h e h i g h l y s i g n i f i c a n t r e s u l t s w i t h t h e w e l l -t r a i n e d s u b j e c -t were no-t r e p l i c a -t e d by -t h e l e s s - -t r a i n e d s u b j e c -t , and i n p a r t i c u l a r f o r t h e case o f t h e t a s k v a r i a b l e t a s k r e q u i r e m e n t , an a d d i t i o -n a l i -n v e s t i g a t i o -n was made.

Due t o t h e f a c t t h a t t h e s e c o n d s u b j e c t s a m p l e d about t h r e e t i m e s more t h a n t h e w e l l - t r a i n e d s u b j e c t i n each c o n d i t i o n and due t o t h e f a c t t h a t he a l s o c o n t r o l l e d about 1.3 t i m e s more t h a n t h e f i r s t s u b j e c t , t h e i d e a o f a r o o f o r c e i l i n g e f f e c t , s p o i l i n g t h e e x p e c t e d r e s u l t s , was p r o b e d . I n a new expérimental s e t u p t h e w e l l t r a i n e d s u b j e c t was e x c l u d e d f r o m any a l a r m i n d i c a t i o n when he was s u p e r v i s i n g t h e U t i l i t y P l a n t . So t h e t a s k v a r i a b l e d i s p l a y s t r u c t u r e got a t h i r d l e v e l . Here i t s h o u l d be n o t e d t h a t no a l a r m i n d i -c a t i o n i n t h e o t h e r two l e v e l s , l o -c a l a l a r m and -c e n t r a l a l a r m , -c a r r i e s a t l e a s t t h e i n f o r m a t i o n t h a t none o f t h e o u t p u t s i s out o f t h e b o u n d a r i e s . I n t h e new, expérimental s i t u a t i o n , he even d i d n o t get t h i s i n f o r m a t i o n , so t h e s u b j e c t had t o sample much more than b e f o r e , Independent o f w h e t h e r t h e

S y s t e m d i s t u r b a n c e s were h i g h o r l o w , and w h e t h e r t h e b o u n d a r i e s were s m a l l

o r l a r g e . The number o f samples became about e q u a l t o t h e number o f samples o f t h e s e c o n d s u b j e c t . The r e s u l t s , o b t a i n e d from more t h a n 90 t r i a l s , i n d i c a t e d v e r y s t r o n g l y t h a t a r o o f e f f e c t c o u l d have been t h e cause o f t h e d i f -férences between t h e r e s u l t s o b t a i n e d w i t h t h e w e l l t r a i n e d s u b j e c t and those w i t h t h e l e s s t r a i n e d s u b j e c t .

6. PARAMETER IDENTIFICATION

In o r d e r t o v e r i f y t h e h y p o t h e s e s w i t h r e s p e c t t o t h e p a r a m e t e r s o f t h e m o d e l , no a n a l y t i c a l method f o r p a r a m e t e r e s t i m a t i o n c o u l d be d e r i v e d . T h e r e f o r e , c e r t a i n itération p r o c e d u r e s have been used. D u r i n g t h e p a r a m e t e r i d e n t i f i -c a t i o n , many d i f f i -c u l t i e s showed up. One d i f f i -c u l t y a p p e a r e d i n t h e p r o b l e m o f n o t c o n v e r g i n g t o a minimum o f one o f the a c c e p t e d c r i t e r i a , a n o t h e r d i f f i -c u l t y a p p e a r e d w i t h t h e l a r g e Computing t i m e o f 45 se-conds CPU o f a l a r g e s c i e n t i f i c o f f - l i n e computer System f o r o n l y one itération s t e p . T h e r e f o r e , much e f f o r t has been p u t i n r e d u c i n g t h e number o f itérations.

The main p a r a m e t e r o f t h e O b s e r v e r p a r t , ^ yQ, nas been chosen c o n s t a n t ; t h e

p a r a m e t e r v a l u e was chosen 1% o f t h e v a r i a n c e o f t h e a s s o c i a t e d o b s e r v e r o u t -p u t v a r i a b l e a c c o r d i n g t o r e s u l t s o b t a i n e d w i t h t h e O -p t i m a l C o n t r o l M o d e l

[ L e v i s o n , e t . a l . , 1969]- T h i s p a r a m e t e r w i l l be i d e n t i f i e d i n t h e n e a r f u t u r e . The p a r a m e t e r s f o r t h e o b s e r v a t i o n p a r t o f t h e DME, t h e c u r v a t u r e p a r a m e t e r CE^_, and t h e a s s y m p t o t Oy m^n ^ o f t h i s c u r v e , had t o be i d e n t i f i e d f o r e a c h

o f t h e o u t p u t s t o be sampled.. T h e r e f o r e , an a d a p t i v e random s e a r c h method be-ca.me t o o e x p e n s i v e . F o r t h i s r e a s o n a g r a p h i c a l method was p r o p o s e d .

Suppose t h e human o p e r a t o r s a m p l e d t h e i - t h o u t p u t v a r i a b l e a t t i m e :

t i i , ^ i k ' M n - aP P l y inS t h e o b s e r v e r p a r t , t h e a b s o l u t e v a l u e

o f t h e déviation between t h e e s t i m a t i o n o f the i - t h o u t p u t v a r i a b l e , y^, and t h e n o m i n a l v a l u e o f t h e i - t h o u t p u t v a r i a b l e , ynom i» and t h e a s s o c i a t e d

un-c e r t a i n t y about t h i s e s t i m a t i o n a •, can be d e r i v e d ; r e s p e c t i v e l y :

| y i 1 ~ Ynom i l ' I^ik ~ yn o m i t ' I^in ~ ^norn i l a n d- ay i 1 ' ••••• Gy i k s ay i n - ^n e k - t h sample i s l o c a t e d on t h e h y p e r b o l i c décision l i n e : ! i CEik '^Ik' ^nom i ' a - a y •, y • J Í K Jm m ík F o r t h e k - t h s a m p l e , t h e q u a n t i t l e s y ^ , yn 0m i and °y ík a r e c o n s t a n t s ; so t h e r e l a t i o n o f t h e s e q u a n t i t i e s w i t h the p a r a m e t e r s C E i k and c rymin ^ i s known. T h i s r e l a t i o n can be g i v e n as t h e s t r a i g h t l i n e , C Ei k = - | yi k - ynom i\ * aynom i k + | yi k - yno m ±\ * a and can be

p l o t t e d i n a ^ym^n ^ - CE^ p l a n e . T h i s r e l a t i o n can be g i v e n f o r a l l samples

o f the I - t h o u t p u t v a r i a b l e .

F i g . 10 shows the envelop l i n e s o f a l l t h e n "décision l i n e s " . In t h e a r e a o f convergence o f t h e e n v e l o p l i n e s , t h e o p t i m a l p a r a m e t e r s e t i s s u p p o s e d t o be l o c a t e d . T n i s i d e a can be e x p l a i n e d when 2 samples a r e t a k e n ; t h e c r o s s i n g o f

(13)

t h e two l i n e s , F i g . 11, shows t h e o n l y s o l u t i o n f o r two samples t o be l o c a t e d a t t h e same h y p e r b o l i c l i n e w i t h t h e a s s o c i a t e d a s y m p t o t . I n t h i s case c o n -v e r g e n c e i s n a r r o w e d down t o one p o i n t , a n d t h e -v a r i a n c e i s r e d u c e d t o zéro.

C E

' y m i n i

a.

ymm •cr, y m m

Exqure 10: Envelop Irnes %n a CE-a . Etqure 11: Two deoiston-lrnes •plane

By a p p l y i n g t h i s method, v e r y good r e s u l t s were o b t a i n e d , i . e . t h e number o f s a m p l e s , t a k e n b y t h e model b a s e d on t h e a c q u i r e d p a r a m e t e r s e t , a g r e e d w i t h t h e number o f O p e r a t o r samples t a k e n i n t h e same c o n d i t i o n . T h i s r e s u i t how-e v how-e r , dohow-es n o t g u a r a n t how-e how-e t h a t t h how-e i n s t a n t s i n t i m how-e o f O p how-e r a t o r s a m p l i n g a n d t h e I n s t a n t s i n t i m e o f s a m p l i n g o f t h e model agrée w i t h each o t h e r . T h e r e -f o r e , t h e d i s t r i b u t i o n o -f t h e s a m p l i n g i n v e r v a l s o -f t h e m o d e l , g i v e n c e r t a i n p a r a m e t e r v a l u e s o f CE^ and ay m^n j_, i s compared w i t h t h e d i s t r i b u t i o n o f

s a m p l i n g i n t e r v a i s o f t h e human O p e r a t o r . The d i s t r i b u t i o n s have t h e shape o f b i n o m i n a l d i s t r i b u t i o n s . A c l o s e r e s e m b l a n c e between t h e two d i s t r i b u t i o n s

o f O p e r a t o r s a m p l i n g and model s a m p l i n g f o r t h e two t o be sampled Outputs i s i l l u s t r a t e d i n F i g . 12 and F i g . 13. iJJ_Lli± Ç 0 9'i 6 P '•ai ü i o <P n i 20 ¿0 L'ft'fr-i'ml ifft.1 60 80 mtervol t e n g t h ( s e c ) s a m p l i n g o u t p u t h u m a n O p e r a t o r s a m p l i n g o u t p u t m o d e l 100 40 20 V 11111. rt r t i i . Li 20 ¿0 60 80 i n t e r v a l l e n g t h (sec) s u m p h n g o u t p u t h u m a n O p e r a t o r s a m p l i n g o u t p u t m o d e l 100

(14)

The p a r a m e t e r , p , o f t h e c o n t r o l l e r s u b s y s t e m , détermines t h e number o f t i m e s t e p s , t h e s e t p o i n t c o r r e c t i o n w i l l r e m a i n c o n s t a n t and détermines the a m p l i t u d e o f t h a t c o r r e c t i o n ; t h a t p a r a m e t e r , p , have t o be i d e n t i f i e d . In t h i s i n v e s t i g a t i o n différent p a r a m e t e r v a l u e s have been u s e d , whereas p = 22 t u r n e d out t o be t h e l o w e s t v a l u e b e f o r e i n s t a b i l i t y o f t h e H.P.-steam c o n t r o l l o o p o c c u r s . - W i t h p = 22 a l s o t h e b e s t c o n t r o l performances were o b t a i n e d . I n o r d e r t o r e l a t e thèse r e s u l t s w i t h o t h e r c o n t r o l s i t u a -t i o n s . T a b l e V I shows -t h e a b s o l u -t e v a l u e o f -t h e dévia-tion in-tégrais o f the t h r e e o u t p u t v a r i a b l e s o f t h e s u p e r v i s o r System f o r s e v e r a l c o n t r o l s i -t u a -t i o n s .

Table VI: Déviation scores of System outputs

D e v i a t i o n s c o r e o f : B o i l e r Back P r e s s u r e C o n d e n s i n g o u t p u t o u t p u t o u t p u t S i t u a t i o n : Non O p e r a t o r i n t e r v e n t i o n 1+00 106 50 O p t i m a l O p e r a t o r c o n t r o l 0 . 0 0.01 0 . 0 0 1 OCD-model c o n t r o l ; 137 73 58 S i n g l e s t e p c o n t r o l l a w (p=22) OCD-model c o n t r o l ; 0 . 3 5 10 9 - 5 O p t i m a l ( c o n t i n u o u s ) c o n t r o l l a w

The r e s u l t s a r e c l e a r : The o p t i m a l ( c o n t i n u o u s ) c o n t r o l l a w déviation s c o r e agrées m o s t l y w i t h t h e déviation s c o r e o f t h e human O p e r a t o r . However, t h e c h a r a c t e r i s t i c s o f t h e way o f C o n t r o l l i n g o f t h e model do n o t agrée a t a i l w i t h t h e discrète a c t i o n p a t t e r n o f t h e human O p e r a t o r . The number o f con-t r o l l e r a c con-t i o n s , i n i con-t i a con-t e d by con-t h e OCD model ( p= 2 2 ) , agrées w i t h t h e number o f c o n t r o l a c t i o n e x e c u t e d by t h e human O p e r a t o r ; a l s o , t h e discrète a c t i o n p a t t e r n o f t h e s i n g l e s t e p c o n t r o l l a w agrées w i t h human O p e r a t o r c o n t r o l a c t i o n s , b u t t h e o v e r a l l p e r f o r m a n c e o f t h e model e x p r e s s e d by t h e dévia-t i o n s c o r e s , i s s dévia-t i l l somewhadévia-t dévia-t r o u b l e s o m e .

7. CONCLUSIONS AND FINAL C0MMENTS

Whether t h e séparation t h e o r e m i s v a l i d o r n o t f o r t h e OCD-model, c a n n o t be answered r i g h t now. However, i t can be s a i d t h a t t h e r e s u l t s o b t a i n e d w i t h a h i g h l y t r a i n e d and m o t i v a t e d s u b j e c t showed t h e p o s t u l a t e d independency o f o b s e r v a t i o n and c o n t r o l .

I t can a l s o be s a i d t h a t most o f t h e model p a r a m e t e r s can be i d e n t i f i e d , a l t h o u g h t h e C o m p u t i n g t i m e i s s t i l l a l a r m i n g . T h e r e f o r e , t h e r e s e a r c h w i l l be c o n t i n u e d w i t h h i g h l y t r a i n e d s u b j e c t s ; i t w i l l d e a l w i t h changes i n t h e p a r a m e t e r c h o i c e o f t h e c o n t r o l l e r p a r t o r even a c c e p t i n g a n o t h e r c o n t r o l l a w and i t w i l l d e a l w i t h o p t i m i z i n g t h e p a -r a m e t e -r i d e n t i f i c a t i o n p-rocédu-res. REFERENCES

1. A n n u a l Conference on Manual C o n t r o l T h e o r y , P r c c e e d i n g s : S p r i n g f i e l d NTIS 1966 up t o and i n c l u d i n g 1 9 8 0 .

2 . B e a v e r s t o c k , M.C.; S t a s s e n , H.G.; W i l l i a m s o n , R.A. I n t e r f a c e D e s i g n i n t h e P r o c e s s I n d u s t r i e s . P r o c e e d i n g s o f t h e 13-th A n n u a l C o n f e r e n c e on Ma-n u a l C o Ma-n t r o l , C a m b r i d g e , MIT ( 1 9 7 7 ) PP 2 5 8 - 2 6 5

3. B a r o n , S.; K l e i n m a n , D.L. The Human as an O p t i m a l C o n t r o l l e r and I n f o r m a -t i o n P r o c e s s o r . IEEE T r a n s a c -t i o n s on Man-Machine S y s -t e m s , V o l MMS-10, No. 1,

(15)

h. K l e i n m a n , D.L.; B a r o n , S. ; L e v i s o n , W.H. An O p t i m a l C o n t r o l Model o f Human Response. P a r t I : T h e o r i e a n d V a l i d a t i o n . Automática V o l . 6 , No. 3

( 1 9 7 0 ) pp 3 5 7 - 3 6 9

5 . K l e i n m a n , D.L.; B a r o n , S.; L e v i s o n , W.H. A C o n t r o l T h e o r e t i c Approach

t o M a n n e d - V e h i c l e System A n a l y s i s , IEEE T r a n s , on A.C. V o l . A . C. - 1 6 Wo. 6

( 1 9 7 1 ) PP 821+-832

6 . Kok, J . J . ; Van W i j k , R.A. E v a l u a t i o n o f Models D e s c r i b i n g Human O p e r a t o r

C o n t r o l o f S l o w l y R e s p o n d i n g Complex S y s t e m s , D e l f t , DUT, 1978

7 . L e v i s o n , W.H. ; B a r o n , S.; K l e i n m a n , D.L. A Model f o r Human C o n t r o l l e r

Remnant. IEEE T r a n s , on Man-Machine Systems, V o l . MMS-10 No. k (1969)

pp 1 0 1 - 1 0 8

Cytaty

Powiązane dokumenty

This complex includes mainly intermediate K-rich volcanic (trachyte, latite and andesite) and pluton- ic (syenite and monzonite) rocks that belong to shoshonitic magma.. The

Choć i jego talent skłaniał się często do budowy satyry jako „ciągu“ lo­ gicznego (retorycznego lub częściej dyskursywnego), jak wy­ kazaliśmy jednak

De verbetering van de instroom van specifieke doelgroepen mag niet afhankelijk gemaakt worden van de goodwill van de gemeenten, maar moet op algemene en gelijke wijze geregeld

Разм ах забастовочного движ ения на польских зем лях в пе­ риод революции был явлением исключительным н е только на ф оне совре­ менной Европы, но

Parliamentary elections have brought success to 8 political parties, which managed to pass the 5% threshold at the Election Day (SMER- SD, SaS, oľano-novA, SnS, ĽSnS,

Przy- toczona statystyka dowodzi szczególnej troski i dbałości mieszczan urzędow- skich o kształcenie swoich dzieci, pozwala też z niemal stuprocentową pewnoś- cią przyjąć,

Pourtant, il y a des traductions homomorphes non documentaires et équifonction- nelles portant des marques d’intervention du traducteur et donc de traduction en tant que discours

210 Grzegorz Białuński Dobra za granicą 211 211 dóbr, przy którym najpewniej znajdowały się podarowane klasztorowi łąki.. Hanko zdecydował się na nadanie, porządkując