• Nie Znaleziono Wyników

Hardy class of functions defined by the Salagean operator

N/A
N/A
Protected

Academic year: 2021

Share "Hardy class of functions defined by the Salagean operator"

Copied!
6
0
0

Pełen tekst

(1)

POLONICI MATHEMATICI LXIX.1 (1998)

Hardy class of functions defined by the Salagean operator

by Norio Niwa (Niigata), Toshiya Jimbo (Nara) and Shigeyoshi Owa (Osaka)

Abstract. We derive some properties of the Hardy class of analytic functions defined by the Salagean operator.

1. Introduction. Let A be the class of functions f (z) of the form

(1.1) f (z) = z +

X

k=2

a

k

z

k

that are analytic in the open unit disk U = {z : |z| < 1}.

For f (z) ∈ A, the Salagean operator D

n

(cf. [6]) is defined by D

0

f (z) = f (z),

(1.2)

D

1

f (z) = Df (z) = zf

(z), (1.3)

D

n

f (z) = D(D

n−1

f (z)) (n ∈ N = {1, 2, 3, . . .}).

(1.4)

A function f (z) belonging to A is said to be starlike of order α if it satisfies

(1.5) Re  zf

(z)

f (z)



> α (z ∈ U )

for some α (0 ≤ α < 1). We denote by S

(α) the subclass of A consisting of functions which are starlike of order α in U .

A function f (z) ∈ A is said to be convex of order α if it satisfies

(1.6) Re



1 + zf

′′

(z) f

(z)



> α (z ∈ U )

for some α (0 ≤ α < 1). Also we denote by K(α) the subclass of A consisting of all such functions. Note that f (z) ∈ K(α) if and only if zf

(z) ∈ S

(α) for 0 ≤ α < 1.

1991 Mathematics Subject Classification: Primary 30C45.

Key words and phrases : Hardy class, Salagean operator, starlike.

[25]

(2)

Let H

p

(0 < p ≤ ∞) be the class of all analytic functions in U such that

(1.7) kf k

p

= lim

r→1

M

p

(r, f ) < ∞, where (cf. [1])

(1.8) M

p

(r, f ) =

 

 

 1 2π

\

0

|f (re

)|

p



1/p

(0 < p < ∞), max

|z|≤r

|f (z)| (p = ∞).

2. Some lemmas. To discuss our problems for the Hardy class H

p

, we need the following lemmas.

Lemma 1 ([7]). If f (z) ∈ K(α), then f (z) ∈ S

(β), where

(2.1) β = β(α) =

 

 

1 − 2α

2(2

1−2α

− 1) (α 6= 1/2), 1

2 log 2 (α = 1/2).

This result is sharp.

Lemma 2 ([2]). If f (z) ∈ S

(α) and is not of the form

(2.2) f (z) = z

(1 − ze

it

)

2(1−α)

,

then there exists δ = δ(f ) > 0 such that f (z)/z ∈ H

δ+1/(2(1−α))

. Lemma 3 ([5]). If p(z) is analytic in U with p(0) = 1 and (2.3) Re(p(z) + zp

(z)) > 1 − 2 log 2

2(1 − log 2) (z ∈ U ), then Re(p(z)) > 0 (z ∈ U ).

Remark. We have

1 − 2 log 2

2(1 − log 2) ; −0.629 . . .

Lemma 4 ([1]). Every analytic function p(z) with positive real part in U is in H

p

for all 0 < p < 1.

Lemma 5 ([4]). If f (z) ∈ A satisfies z

r

f (z) ∈ H

p

(0 < p < ∞) for a real r, then f (z) ∈ H

p

(0 < p < ∞).

Lemma 6 ([1]). If f

(z) ∈ H

p

for some p (0 < p < 1), then f (z) ∈ H

q

(q = p/(1 − p)).

Lemma 7 ([3]). Let w(z) be analytic in U with w(0) = 0. If |w(z)| attains its maximum value on the circle |z| = r (0 ≤ r < 1) at a point z

0

, then

z

0

w

(z

0

) = kw(z

0

), where k is real and k ≥ 1.

(3)

3. Hardy class. Our first result for the Hardy class is Theorem 1. Let f (z) ∈ A satisfy

(3.1) Re  D

n+1

f (z)

D

n

f (z)



> α

0

(z ∈ U ) for some α

0

(0 ≤ α

0

< 1), and let

(3.2) α

j

=

 

 

1 − 2α

j−1

2(2

1−2αj−1

− 1) (α

j−1

6= 1/2), 1

2 log 2 (α

j−1

= 1/2), for j = 1, . . . , n. If D

n−j

f (z) is not of the form

(3.3) D

n−j

f (z) = z

(1 − ze

it

)

2(1−αj)

,

then there exists δ > 0 such that D

n−j

f (z) ∈ H

δ+1/(2(1−αj))

. P r o o f. Note that

D

n+1

f (z) = D(D

n

f (z)) = z(D

n

f (z))

(3.4)

= z(D

n−1

f (z))

+ z

2

(D

n−1

f (z))

′′

and

(3.5) D

n

f (z) = z(D

n−1

f (z))

. This implies that

(3.6) Re  D

n+1

f (z) D

n

f (z)



= Re



1 + z(D

n−1

f (z))

′′

(D

n−1

f (z))



> α

0

,

so that D

n−1

f (z) ∈ K(α

0

). Therefore, an application of Lemma 1 leads to D

n−1

f (z) ∈ K(α

0

) ⇒ D

n−1

f (z) ∈ S

1

)

⇔ D

n−2

f (z) ∈ K(α

1

)

⇒ D

n−2

f (z) ∈ S

2

) . . .

⇔ D

n−j

f (z) ∈ K(α

j−1

)

⇒ D

n−j

f (z) ∈ S

j

).

Further, by using Lemmas 2 and 5, we know that there exists δ > 0 such that D

n−j

f (z) ∈ H

δ+1/(2(1−αj))

.

Taking j = n in Theorem 1, we have

Corollary 1. Let f (z) ∈ A satisfy (3.1) for some α

0

(0 ≤ α

0

< 1),

and let α

n

be as in (3.2). If f (z) is not of the form (3.3), then there exists

δ > 0 such that f (z) ∈ H

δ+1/(2(1−αn))

.

(4)

Next, we derive

Theorem 2. Let f (z) ∈ A satisfy (3.7) Re  D

n+1

f (z)

z



> 1 − 2 log 2

2(1 − log 2) (z ∈ U ).

Then there exists p

j

(j = 1, . . . , n + 1) such that D

n−j+1

f (z) ∈ H

pj

, where

(3.8) p

k

< 1

j − k + 1 (k = 1, . . . , j).

P r o o f. Define

(3.9) p(z) = D

n

f (z)/z.

Then p(z) is analytic in U and p(0) = 1. Since (3.10) Re  D

n+1

f (z)

z



= Re(p(z) + zp

(z)) > 1 − 2 log 2 2(1 − log 2) , Lemma 3 gives

(3.11) Re(p(z)) = Re{D

n

f (z)/z} > 0 (z ∈ U ).

Since D

n

f (z)/z = (D

n−1

f (z))

, an application of Lemma 4 implies that (D

n−1

f (z))

∈ H

p1

, so by Lemma 6,

D

n−1

f (z) ∈ H

p2

(p

2

= p

1

/(1 − p

1

)).

Further, since D

n−1

f (z) = z(D

n−2

f (z))

, using Lemma 5, we obtain (D

n−2

f (z))

∈ H

p2

. Continuing this process, we conclude that D

n−j+2

f (z)

∈ H

pj−1

and 0 < p

j−1

< 1/2. Thus, finally we have D

n−j+1

f (z) ∈ H

pj

(0 <

p

j

< 1). This completes the proof.

Letting j = n + 1 in Theorem 2, we have

Corollary 2. Let f (z) ∈ A satisfy (3.7). Then there exists p

n+1

such that f (z) ∈ H

pn+1

, where

p

k

< 1

n − k + 2 (k = 1, . . . , n + 1).

4. Hardy class of bounded functions. Our next theorem for the Hardy class of bounded functions is

Theorem 3. Let f (z) ∈ A satisfy (4.1)

D

n+2

f (z) D

n+1

f (z) − 1

< 5α

0

− 2α

20

− 1 2α

0

(z ∈ U ) for some α

0

(1/3 ≤ α

0

≤ 1/2), or

(4.2)

D

n+2

f (z) D

n+1

f (z) − 1

< α

0

− 2α

20

+ 1 2α

0

(z ∈ U )

(5)

for some α

0

(1/2 ≤ α

0

< 1). If D

n−j

f (z) is not of the form (3.3), then there exists δ > 0 such that D

n−j

f (z) ∈ H

δ+1/(2(1−αj))

(j = 1, . . . , n), where α

j

is given by (3.2).

P r o o f. Define the function w(z) by (4.3) D

n+1

f (z)

D

n

f (z) = 1 + (1 − 2α

0

)w(z)

1 − w(z) (w(z) 6= 1).

Then w(z) is analytic in U and w(0) = 0. It follows from (4.3) that D

n+2

f (z)

D

n+1

f (z) − 1 =

 w(z) 1 − w(z)



2(1 − α

0

) + zw

(z) (4.4) w(z)

+ (1 − 2α

0

)(1 − w(z)) 1 + (1 − 2α

0

)w(z)

 zw

(z) w(z)



. Suppose that there exists a point z

0

∈ U such that

|z|≤|z

max

0|

|w(z)| = |w(z

0

)| = 1 (w(z

0

) 6= 1).

Then Lemma 7 yields w(z

0

) = e

and

z

0

w

(z

0

) = kw(z

0

) (k ≥ 1).

Therefore, we have

D

n+2

f (z

0

) D

n+1

f (z

0

) − 1

=

w(z

0

) 1 − w(z

0

)

2(1 − α

0

) + z

0

w

(z

0

) w(z

0

) (4.5)

+ (1 − 2α

0

)(1 − w(z

0

)) 1 + (1 − 2α

0

)w(z

0

)

 z

0

w

(z

0

) w(z

0

)



=

e

1 − e

2(1 − α

0

) + k + k (1 − 2α

0

)(1 − e

) 1 + (1 − 2α

0

)e

≥ 2(1 − α

0

) + k

|1 − e

| − k|1 − 2α

0

|

|1 + (1 − 2α

0

)e

|

≥ 2(1 − α

0

) + k

2 − k|1 − 2α

0

| 2α

0

. For 1/3 ≤ α

0

≤ 1/2, we have

(4.6)

D

n+2

f (z

0

) D

n+1

f (z

0

) − 1

≥ 5α

0

− 2α

20

− 1 2α

0

, and for 1/2 ≤ α

0

< 1, we have

(4.7)

D

n+2

f (z

0

) D

n+1

f (z

0

) − 1

≥ α

0

− 2α

20

+ 1 2α

0

.

Since the above contradicts our assumptions (4.1) and (4.2), we conclude

that |w(z)| < 1 for all z ∈ U . This implies that

(6)

(4.8) Re  D

n+1

f (z) D

n

f (z)



> α

0

(z ∈ U ).

Note that (4.8) is equivalent to D

n

f (z) ∈ S

0

). In the same manner, in the proof of Theorem 1, we conclude that D

n−j

f (z) ∈ S

j

). Thus, applying Lemmas 2 and 5, we can complete the proof.

If we put j = n in Theorem 3, then we have

Corollary 3. Let f (z) ∈ A satisfy the condition (4.1) for some α

0

(1/3 ≤ α

0

≤ 1/2) or (4.2) for some α

0

(1/2 ≤ α

0

< 1). If f (z) is not of the form (3.3), then there exists δ > 0 such that f (z) ∈ H

δ+1/(2(1−αn))

, where α

n

is given by (3.2).

Acknowledgments. This work was supported in part by the Japanese Ministry of Education, Science and Culture under Grant-in-Aid for General Scientific Research.

References

[1] P. L. D u r e n, Theory of H

p

Spaces, Monographs Textbooks Pure Appl. Math. 38, Academic Press, New York. 1970.

[2] P. J. E e n i g e n b u r g and F. R. K e o g h, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335–346.

[3] I. S. J a c k, Functions starlike and convex of order α, J. London Math. Soc. 3 (1971), 469–474.

[4] Y. C. K i m, K. S. L e e and H. M. S r i v a s t a v a, Certain classes of integral operators associated with the Hardy space of analytic functions, Complex Variables Theory Appl. 20 (1992), 1–12.

[5] M. N u n o k a w a, On starlikeness of Libera transformation, ibid. 17 (1991), 79–83.

[6] G. S. S a l a g e a n, Subclasses of univalent functions, in: Lecture Notes in Math. 1013, C. A. Cazacu, N. Boboc, M. Jurchescu and I. Susiu (eds.) Springer, Berlin 1983, 362–372.

[7] D. R. W i l k e n and J. F e n g, A remark on convex and starlike functions, J. London Math. Soc. 21 (1980), 287–290.

Department of Mathematical Science Department of Mathematics

Niigata University Kinki University

Niigata 950-2181, Japan Higashi-Osaka

E-mail: niwa@scux.sc.niigata-u.ac.jp Osaka 577-8502, Japan E-mail: owa@math.kindai.ac.jp Department of Mathematics

Nara University of Education Takabatake

Nara 630-8301, Japan E-mail: jinbo@nara-edu.ac.jp

Re¸ cu par la R´ edaction le 26.7.1996

Cytaty

Powiązane dokumenty

[9] Murugusundaramoorthy, G., Magesh, N., Differential subordinations and superordi- nations for analytic functions defined by Dziok–Srivastava linear operator, JIPAM.. 152,

In this paper, we obtain some applications of first order differ- ential subordination and superordination results involving certain linear op- erator and other linear operators

The conference is organised under the auspices of The Finnish EU Presidency by The Ministry of Science and Higher Education, Embassy of Finland in Warsaw, The Representation of

Because real-time multimedia stream cannot be either retransmitted nor flow controlled, TCP-friendly protocols used for multimedia transmission typically don’t

Stankiewicz, On a class of p-valent analytic functions with fixed argument of coefficients defined by fractional calculus, Folia Scient. Waniurski, Some classes of univalent

The following answers were given to the question: “Would the presence of people having competences corresponding with the effects of our project contribute to improvement of

Religious groups – Hamas and the Palestinian Islamic Jihad – are for the state based on the Islamic princi- ples, whereas secular groups – Al-Fatah, the Popular Front for

This research was supported in part by the Jap- anese Ministry of Education, Science and Culture under Grant-in-Aid for General Scientific