• Nie Znaleziono Wyników

Second Hankel determinant for a class of analytic functions of complex order defined by convolution

N/A
N/A
Protected

Academic year: 2021

Share "Second Hankel determinant for a class of analytic functions of complex order defined by convolution"

Copied!
13
0
0

Pełen tekst

(1)

A N N A L E S

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A

VOL. LXIX, NO. 2, 2015 SECTIO A 47–59

S. M. EL-DEEB and M. K. AOUF

Second Hankel determinant for a class of analytic functions of complex order defined by convolution

Abstract. In this paper, we obtain the Fekete–Szeg¨o inequalities for the functions of complex order defined by convolution. Also, we find upper bounds for the second Hankel determinant

a2a4− a23

for functions belonging to the class Sbγ(g(z); A, B).

1. Introduction. Let A denote the class of analytic functions of the form:

(1.1) f (z) = z +

X

k=2

akzk (z ∈ U = {z : z ∈ C and |z| < 1})

and S be the subclass of A consisting of univalent functions. Furthermore, let P be a family of functions p(z) ∈ A.

Let g(z) ∈ S be given by

(1.2) g(z) = z +

X

k=2

bkzk.

The Hadamard product (or convolution) of f (z) and g(z) is given by (1.3) (f ∗ g)(z) = z +

X

k=2

akbkzm= (g ∗ f )(z).

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. Fekete–Szeg¨o inequality, second Hankel determinant, convo- lution, complex order.

(2)

If f and g are analytic functions in U, we say that f is subordinate to g, written f ≺ g if there exists a Schwarz function w, which is analytic in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such that f (z) = g(w(z)).

Furthermore, if the function g is univalent in U, then we have the following equivalence (see [6] and [19]):

f (z) ≺ g(z) ⇔ f (0) = g(0) and f (U) ⊂ g(U).

For complex parameters α1, . . . , αq and β1, . . . , βsj ∈ Z/ 0 = {0, −1,

−2, . . . }; j = 1, 2, . . . , s), we now define the generalized hypergeometric functionqFs1, . . . , αq; β1, . . . , βs; z) by (see, for example, [29, p. 19])

qFs1, . . . , αq; β1, . . . , βs; z) =

X

k=0

1)k. . . (αq)k1)k. . . (βs)k ·zk

k!

(q ≤ s + 1; q, s ∈ N0 = N ∪ {0}; N = {1, 2, . . . }; z ∈ U), where (θ)ν is the Pochhammer symbol defined, in terms of the Gamma function Γ, by

(1.4)

(θ)ν = Γ(θ + ν) Γ(θ)

=

(1 (ν = 0; θ ∈ C = C\{0}),

θ(θ + 1) . . . (θ + ν − 1) (ν ∈ N; θ ∈ C).

It corresponds to the function hq,s1, β1; z) = h(α1, . . . αq; β1. . . , βs; z), defined by

(1.5)

hq,s1, β1; z) = zqFs1, . . . , αq; β1, . . . , βs; z)

= z +

X

k=2

Γk1)zk, where

(1.6) Γk1) = (α1)k−1. . . (αq)k−11)k−1. . . (βs)k−1(k − 1)!.

In [13] El-Ashwah and Aouf defined the operator Iq,s,λm,`1, β1)f (z) as follows:

Iq,s,λ0,`1, β1)f (z) = f (z) ∗ hq,s1, β1; z);

Iq,s,λ1,`1, β1)f (z) = (1 − λ)(f (z) ∗ hq,s1, β1; z))

+ λ

(1 + `)z`−1 h

z`(f (z) ∗ hq,s1, β1; z))i0

; and

(1.7) Iq,s,λm,`1, β1)f (z) = Iq,s,λ1,` (Iq,s,λm−1,`1, β1)f (z)).

(3)

If f ∈ A, then from (1.1) and (1.7), we can easily see that (1.8) Iq,s,λm,`1, β1)f (z) = z +

X

k=2

 1 + ` + λ(k − 1) 1 + `

m

Γk1)akzk, where m ∈ Z = {0, ±1, . . . }, ` ≥ 0 and λ ≥ 0.

We note that when ` = 0, the operator

Iq,s,λm,01, β1)f (z) = Dλm1, β1)f (z)

was studied by Selvaraj and Karthikeyan [28]. We also note that:

(i) Iq,s,λ0,` f (z) = Hq,s1, β1)f (z) (see Dziok and Srivastava [11, 12]);

(ii) For q = s + 1, αi = 1 (i = 1, . . . , s + 1) and βj = 1 (j = 1, . . . , s), we get the operator I(m, λ, `) (see Catas [7], Prajapat [24] and El-Ashwah and Aouf [14]);

(iii) For q = s + 1, αi = 1 (i = 1, . . . , s + 1), βj = 1 (j = 1, . . . , s), λ = 1 and ` = 0, we obtain the S˘al˘agean operator Dm (see S˘al˘agean [27]);

(iv) For q = s + 1, αi= 1 (i = 1, . . . , s + 1), βj = 1 (j = 1, . . . , s) and λ = 1, we get the operator I`m (see Cho and Srivastava [8] and Cho and Kim [9]).

(v) For q = s + 1, αi = 1 (i = 1, . . . , s + 1), βj = 1 (j = 1, . . . , s) and ` = 0, we obtain the operator Dmλ (see Al-Oboudi [2]).

By specializing the parameters m, λ, `, q, s, αi (i = 1, . . . , q) and βj (j = 1, . . . , s) we obtain:

(i) I2,1,λm,` (n+1, 1; 1)f (z) = Iλm,`(n)f (z) = z+

P

k=2

h1+`+λ(k−1)

1+`

im(n + 1)k−1 (1)k−1 akzk (n > −1);

(ii) I2,1,λm,` (a, 1; c)f (z) = Iλm,`(a; c)f (z) = z +

P

k=2

h1+`+λ(k−1) 1+`

im(a)k−1

(c)k−1akzk (a ∈ R; c ∈ R \ Z0);

(iii) I2,1,λm,` (2, 1; n+1)f (z) = Iλ,nm,`f (z) = z+

P

k=2

h1+`+λ(k−1) 1+`

im (2)k−1

(n + 1)k−1akzk (n ∈ Z; n > −1).

In 1976, Noonan and Thomas [23] discussed the qth Hankel determinant of a locally univalent analytic function f (z) for q ≥ 1 and n ≥ 1 which is defined by

Hq(n) =

an an+1 . . . an+q−1 an+1 an+2 . . . an+q

... ... . . . ... an+q−1 an+q . . . an+2q−2

.

For our present discussion, we consider the Hankel determinant in the case q = 2 and n = 2, i.e. H2(2) = a2a4− a23. This is popularly known as the second Hankel determinant of f .

In this paper, we define the following class Sγb(g(z); A, B) (0 ≤ γ ≤ 1, b ∈ C= C \ {0}) as follows:

(4)

Definition 1. Let 0 ≤ γ ≤ 1, b ∈ C. A function f (z) ∈ A is said to be in the class Sbγ(g(z); A, B) if

(1.9) 1 +1 b



(1 − γ)(f ∗ g) (z)

z + γ (f ∗ g)0(z) − 1



≺ 1 + Az 1 + Bz

(b ∈ C; 0 ≤ γ ≤ 1; −1 ≤ B < A ≤ 1; z ∈ U), which is equivalent to say that

(1 − γ)(f ∗g)(z)z + γ (f ∗ g)0(z) − 1 b(A − B) − Bh

(1 − γ)(f ∗g)(z)z + γ (f ∗ g)0(z) − 1i

< 1.

We note that for suitable choices of b, γ and g(z) we obtain the following subclasses:

(i) Sγb 1−zz ; A, B = Sγb(A, B) (0 ≤ γ ≤ 1, b ∈ C, −1 ≤ B < A ≤ 1) (see Bansal [5]);

(ii) S0(1−ρ)e−iθcos θ z +P k=2

(α)k−1

(β)k−1zk; 1, −1

= Rα,β(θ, ρ) (−π2 < θ < π2, 0 ≤ ρ < 1, α ∈ C, β ∈ C \ Z0) (see Mishra and Kund [21]);

(iii) S(1−ρ)e

−iαcos α

0 z +P

k=2

(λ+1)k−1

(m)k−1 knzk; 1, −1

= Smλ,n(α, σ) (m ∈ N;

n, λ ∈ N0; |α| < π2; 0 ≤ σ < 1) (see Mohammed and Darus [22]);

(iv) S11 z +P

k=2[1 + (αµk + α − µ) (k − 1)]σ(ρ)k−1zk; 1, −1 = Rα,µ(σ, ρ) (0 ≤ µ ≤ α ≤ 1; ρ, σ ∈ N0) (see Abubaker and Darus [1]);

(v) Sγb z +P

k=2kmzk; A, B = Gm(γ, b) (b ∈ C, 0 ≤ γ ≤ 1, m ∈ N0) (see Aouf [3]).

Also, we note that:

(i) Sγb



z+P k=2

h1+`+λ(k−1) 1+`

im

Γk1)zk; A, B



= Sγb(λ, `, m, q, s, α1, β1; A, B)

=



f (z) ∈ A : 1 + 1b



(1 − γ)I

m,`

q,s,λ11)f (z)

z + γ

Iq,s,λm,`1, β1)f (z)0

− 1



1+Az1+Bz, (b ∈ C; 0 ≤ γ ≤ 1; m ∈ N0; ` ≥ 0; λ ≥ 0; q ≤ s + 1;

q, s ∈ N0; z ∈ U)



;

(ii) Sγb



z +P k=2

h 1+`

1+`+λ(k−1)

im

zk; A, B



= Sγb(λ, `, m; A, B)

= n

f (z) ∈ A : 1 + 1b



(1 − γ)Jm(λ,`)f (z)z + γ(Jm(λ, `)f (z))0 − 1

1+Bz1+Az , (b ∈ C; 0 ≤ γ ≤ 1; m ∈ N0; ` ≥ 0; λ ≥ 0; z ∈ U)o

;

(5)

(iii) S(1−ρ) cos ηe−iη

γ (g(z); A, B) = Sγ[ρ, η, A, B, g(z)]

= n

f (z) ∈ A : e h

(1 − γ)(f ∗g)(z)z + γ (f ∗ g)0(z) i

≺ (1 − ρ) cos η ·1+Bz1+Az + ρ cos η + i sin η,

|η| < π2; 0 ≤ γ ≤ 1; 0 ≤ ρ < 1; −1 ≤ B < A ≤ 1; z ∈ Uo In this paper, we obtain the Fekete–Szeg¨o inequalities for the functions in the class Sγb(g(z); A, B). We also obtain an upper bound to the functional H2(2) for f (z) ∈ Sγb(g(z); A, B). Earlier Janteng et al. [16], Mishra and Gochhayat [20], Mishra and Kund [21], Bansal [4] and many other authors have obtained sharp upper bounds of H2(2) for different classes of analytic functions.

2. Preliminaries. To prove our results, we need the following lemmas.

Lemma 1 ([26]). Let

(2.1) h(z) = 1 +

X

n=1

cnzn≺ 1 +

X

n=1

Cnzn= H(z) (z ∈ U).

If the function H is univalent in U and H(U) is a convex set, then

(2.2) |cn| ≤ |C1| .

Lemma 2 ([10]). Let a function p ∈ P be given by (2.3) p(z) = 1 + c1z + c2z2+ . . . (z ∈ U), then, we have

(2.4) |cn| ≤ 2 (n ∈ N).

The result is sharp.

Lemma 3 ([17, 18]). Let p ∈ P be given by the power series (2.3), then for any complex number ν

(2.5)

c2− νc21

≤ 2 max{1; |2ν − 1|}.

The result is sharp for the functions given by p(z) = 1 + z2

1 − z2 and p(z) = 1 + z

1 − z (z ∈ U).

Lemma 4 ([15]). Let a function p ∈ P be given by the power series (2.3), then

(2.6) 2c2= c21+ κ(4 − c21) for some κ, |κ| ≤ 1, and

(2.7) 4c3= c31+ 2(4 − c21)c1κ − c1(4 − c212+ 2(4 − c21)



1 − |κ|2

 z, for some z, |z| ≤ 1.

(6)

3. Main results. We give the following result related to the coefficient of f (z) ∈ Sγb(g(z); A, B).

Theorem 1. Let f (z) given by (1.1) belong to the class Sγb(g(z); A, B), 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1 and b ∈ C, then

(3.1) |ak| ≤ (A − B) |b|

[1 + γ (k − 1)] bk (k ∈ N \ {1}) .

Proof. If f (z) of the form (1.1) belongs to the class Sγb(g(z); A, B) , then 1 +1

b



(1 − γ)(f ∗ g) (z)

z + γ (f ∗ g)0(z) − 1



≺ 1 + Az

1 + Bz = h(z) (b ∈ C; 0 ≤ γ ≤ 1; −1 ≤ B < A ≤ 1; z ∈ U), where h(z) is convex univalent in U and we have

(3.2) 1 +1

b



(1 − γ)(f ∗g)(z)z + γ (f ∗ g)0(z) − 1



= 1 +

X

k=1

(1 + kγ)

b bk+1ak+1zk ≺ 1 + (A − B)z − B(A − B)z2+ . . . (z ∈ U). Now, by applying Lemma 1, we get the desired result.  Remark 1. Putting g(z) = 1−zz in Theorem 1, we obtain the result obtained by Bansal [5, Theorem 2.1].

It is easy to derive a sufficient condition for f (z) to be in the class Sγb(m, λ, `; A, B) using standard techniques (see [25]). Hence we state the following result without proof.

Theorem 2. Let f (z) ∈ A, then a sufficient condition for f (z) to be in the class Sγb(g(z); A, B) is

(3.3)

X

k=2

[1 + γ(k − 1)] bk|ak| ≤ (A − B) |b|

1 + B .

In the next two theorems, we obtain the result concerning Fekete–Szeg¨o inequality and an upper bound for the Hankel determinant for the class Sγb(g(z); A, B).

Remark 2. Putting g(z) = 1−zz in Theorem 2, we obtain the result obtained by Bansal [5, Theorem 2.2].

Theorem 3. Let f (z) given by (1.1) belong to the class Sγb(g(z); A, B), 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1 and b ∈ C, then

(3.4)

a3− µa22

≤ (A − B) |b|

(1 + 2γ) b3 · max (

1,

B +µbb3(A − B) (1 + 2γ) (1 + γ)2b22

) . This result is sharp.

(7)

Proof. Let f (z) ∈ Sγb(g(z); A, B), then there is a Schwarz function w(z) in U with w(0) = 0 and |w(z)| < 1 in U and such that

(3.5) 1 +1 b



(1 − γ)(f ∗ g) (z)

z + γ (f ∗ g)0(z) − 1



= Φ(w(z)) (z ∈ U), where

(3.6)

Φ(z) = 1 + Az

1 + Bz = 1 + (A − B)z − B(A − B)z2+ B2(A − B)z3− . . .

= 1 + B1z + B2z2+ B3z3+ . . .

(z ∈ U). If the function p1(z) is analytic and has positive real part in U and p1(0) = 1, then

(3.7) p1(z) = 1 + w(z)

1 − w(z) = 1 + c1z + c2z2+ . . . (z ∈ U), since w(z) is a Schwarz function. Define

(3.8) h(z) = 1 +1 b



(1 − γ)(f ∗ g) (z)

z + γ (f ∗ g)0(z) − 1



= 1 + d1z + d2z2+ . . .

(z ∈ U). In view of the equations (3.5) and (3.7), we have p(z) = Φ p1(z) − 1

p1(z) + 1

 . Since

(3.9) p1(z) − 1 p1(z) + 1 = 1

2

 c1z +

 c2−c21

2

 z2+

 c3+c31

4 − c1c2



z3+ . . .

 , we have

(3.10) Φ p1(z) − 1 p1(z) + 1



= 1 +1

2B1c1z + 1 2B1

 c2−c21

2

 +1

4B2c21



z2+ . . . , and from this equation and (3.8), we obtain

(3.11) d1 = 1

2B1c1, d2 = 1 2B1

 c2−c21

2

 +1

4B2c21 and

(3.12) d3 = B1

2



c3− c1c2+ c31 4



+B2c1

2

 c2− c21

2



+B3c31 8 . Then, from (3.6), we see that

(3.13) d1 = (1 + γ) b2a2

b and d2 = (1 + 2γ) b3a3

b .

(8)

Now from (3.6), (3.8) and (3.13), we have (3.14) a2 = (A − B) bc1

2 (1 + γ) b2

, a3= b (A − B) 4 (1 + 2γ) b3

2c2− c21(1 + B) and

(3.15) a4 = b (A − B)

8 (1 + 3γ) b4 4c3− 4c1c2(1 + B) + c31(1 + B)2 Therefore, we have

(3.16) a3− µa22 = b (A − B)

2 (1 + 2γ) b3 c2− νc21 , where

(3.17) ν = 1

2

"

1 + B +µb(A − B) (1 + 2γ) b3

(1 + γ)2b22

# .

Our result now follows by an application of Lemma 3. The result is sharp for the functions

(3.18) 1 +1 b



(1 − γ)(f ∗ g) (z)

z + γ (f ∗ g)0(z) − 1



= Φ(z2) and

(3.19) 1 +1 b



(1 − γ)(f ∗ g) (z)

z + γ (f ∗ g)0(z) − 1



= Φ(z).

This completes the proof of Theorem 3. 

Remark 3. Putting g(z) = 1−zz in Theorem 3, we obtain the result due to Bansal [5, Theorem 2.3].

Putting g(z) = z +P k=2

h1+`+λ(k−1)

1+`

im

Γk1) (m ∈ N0, ` ≥ 0, λ ≥ 0, q ≤ s + 1, q, s ∈ N0), where Γk1) is given by (1.6) in Theorem 3, we obtain the following corollary.

Corollary 1. Let f (z) given by (1.1) belong to the class Sbγ(λ, `, m, q, s, α1, β1; A, B), 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1, m ∈ N0, ` ≥ 0, λ ≥ 0, q ≤ s + 1, q, s ∈ N0 and b ∈ C, then

(3.20)

a3− µa22

≤ (A − B) (1 + `)m|b|

(1 + 2γ) (1 + ` + 2λ)mΓ31)

× max (

1,

B +µb

h1+`+2λ 1+`

im

Γ31)(A−B)(1+2γ) (1+γ)2

h1+`+λ 1+`

i2m

Γ221)

) . This result is sharp.

Putting g(z) = z +P k=2

h 1+`

1+`+λ(k−1)

im

zk (m ∈ N0; ` ≥ 0; λ ≥ 0) in Theorem 3, we obtain the following corollary.

(9)

Corollary 2. Let f (z) given by (1.1) belong to the class Sγb(λ, `, m; A, B), 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1, m ∈ N0, ` ≥ 0, λ ≥ 0 and b ∈ C, then

(3.21)

a3− µa22

≤ (A − B) |b|

(1 + 2γ)

h1+`+2λ 1+`

im

× max



 1,

B + µbh

1+`

1+`+2λ

im

(A − B) (1 + 2γ) (1 + γ)2h

1+`

1+`+λ

i2m



 .

This result is sharp.

Putting b = (1 − ρ) e−iηcos η (|η| < π2, 0 ≤ ρ < 1) in Theorem 3, we obtain the following corollary.

Corollary 3. Let f (z) given by (1.1) belong to the class Sγ[ρ, η, A, B, g(z)], 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1 and b ∈ C, then

(3.22)

a3− µa22

≤ (A − B) (1 − ρ) cos η (1 + 2γ) b3

× max (

1,

B +µb3(A − B) (1 + 2γ) (1 − ρ) e−iηcos η (1 + γ)2b22

) . This result is sharp.

Theorem 4. Let f (z) given by (1.1) belong to the class Sγb(g(z); A, B), 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1 and b ∈ C, then

(3.23)

a2a4− a23

≤ (A − B)2|b|2 (1 + 2γ)2b23 . Proof. Using (3.14) and (3.15), we have

(3.24) a2a4− a23

= (A − B)2|b|2 16 (1 + γ) (1 + 3γ) b2b4

4c1c3− 4c21c2(1 + B) + c41(1 + B)2

−(1 + γ) (1 + 3γ) b2b4

(1 + 2γ)2b23 4c22− 4c21c2(1 + B) + c41(1 + B)2

= M

4c1c3− 4c21c2(1 + B) + c41(1 + B)2

− N 4c22− 4c21c2(1 + B) + c41(1 + B)2 , where

(3.25) M = (A − B)2|b|2

16 (1 + γ) (1 + 3γ) b2b4 and N = (1 + γ) (1 + 3γ) b2b4 (1 + 2γ)2b23 . The above equation (3.24) is equivalent to

(3.26)

a2a4− a23 = M

4c1c3+ d2c21c2+ d3c22+ d4c41 ,

(10)

where

(3.27) d1 = 4, d2 = −4(1 + B)(1 − N ), d3= −4N, d4 = (1 − N )(1 + B)2. Since the functions p(z) and p(re) (θ ∈ R) are members of the class P simultaneously, we assume without loss of generality that c1 > 0. For con- venience of notation, we take c1 = c (c ∈ [0, 2], see (2.4)). Also, substituting the values of c2 and c3, respectively, from (2.6) and (2.7) in (3.26), we have

a2a4− a23 = M

4

c4(d1+ 2d2+ d3+ 4d4) + 2κc2(4 − c2)(d1+ d2+ d3) + (4 − c22(−d1c2+ d3(4 − c2)) + 2d1c(4 − c2)

1 − |κ|2z . An application of triangle inequality, replacement of |κ| by ν and substi- tuting the values of d1, d2, d3 and d4 from (3.27), we have

(3.28)

a2a4− a23 ≤ M

4 4c4(1 − N )B2+ 8 |B| (1 − N )νc2(4 − c2) + (4 − c22 4c2+ 4N (4 − c2) + 8c(4 − c2) 1 − ν2

= Mc4(1 − N )B2+ 2c(4 − c2) + 2ν |B| (1 − N )c2(4 − c2) + ν2(4 − c2) c2(1 − N ) − 2c + 4N

= F (c, ν).

Next, we assume that the upper bound for (3.28) occurs at an interior point of the rectangle [0, 2] × [0, 1]. Differentiating F (c, ν) in (3.28) partially with respect to ν, we have

(3.29)

∂F (c, ν)

∂ν = M2 |B| (1 − N )c2(4 − c2)

+ 2ν(4 − c2) c2(1 − N ) − 2c + 4N .

For 0 < ν < 1 and for any fixed c with 0 < c < 2, from (3.29), we observe that ∂F∂ν > 0. Therefore, F (c, ν) is an increasing function of ν, which con- tradicts our assumption that the maximum value of F (c, ν) occurs at an interior point of the rectangle [0, 2] × [0, 1]. Moreover, for fixed c ∈ [0, 2] , (3.30) max F (c, ν) = F (c, 1) = G(c).

Thus

(3.31) G(c) = Mc4(1 − N ) B2− 2 |B| − 1

+ 4c2(2 |B| (1 − N ) + 1 − 2N ) + 16N . Next,

G0(c) = 4M cc2(1 − N ) B2− 2 |B| − 1 + 2(2 |B| (1 − N ) + 1 − 2N 

= 4M cc2(1 − N ) B2− 2 |B| − 1 + 2 {(1 − N ) (2 |B| + 1) − N } .

(11)

So G0(c) < 0 for 0 < c < 2 and has a real critical point at c = 0. Also G(c) > G(2). Therefore, maximum of G(c) occurs at c = 0. Therefore, the upper bound of F (c, ν) corresponds to ν = 1 and c = 0. Hence,

a2a4− a23

≤ 16M N = (A − B)2|b|2 (1 + 2γ)2b23 .

This completes the proof of Theorem 4. 

Remark 4. (i) Putting g(z) = 1−zz in Theorem 4, we obtain the result due to Bansal [5, Theorem 2.4];

(ii) Putting

g(z) = z +

X

k=2

(α)k−1 (β)k−1zk

(α ∈ C, β ∈ C \ Z0), b = (1 − ρ)e−iθcos θ (|θ| < π2, 0 ≤ ρ < 1), γ = 0, A = 1 and B = −1 in Theorem 4, we obtain the result due to Mishra and Kund [21, Theorem 3.1];

(iii) Putting

g(z) = z +

X

k=2

(λ + 1)k−1 (m)k−1 knzk

(m ∈ N; λ, n ∈ N0), b = (1 − ρ)e−iαcos α (|α| < π2; 0 ≤ σ < 1), γ = 0, A = 1 and B = −1 in Theorem 4, we obtain the result due to Mohammed and Darus [22, Theorem 2.1];

(iv) Putting

g(z) = z +

X

k=2

[1 + (αµk + α − µ) (k − 1)]σ(ρ)k−1zk

(0 ≤ µ ≤ α ≤ 1, ρ, σ ∈ N0), b = γ = A = 1 and B = −1 in Theorem 4, we obtain the result due to Abubaker and Darus [1, Theorem 3.1].

Putting g(z) = z +P k=2

h1+`+λ(k−1) 1+`

im

Γk1) (m ∈ N0, ` ≥ 0, λ ≥ 0, q ≤ s + 1, q, s ∈ N0), where Γk1) is given by (1.6) in Theorem 4, we obtain the following corollary.

Corollary 4. Let f (z) given by (1.1) belong to the class Sγb(λ, `, m, q, s, α1, β1; A, B), 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1, m ∈ N0, ` ≥ 0, λ ≥ 0, q ≤ s + 1, q, s ∈ N0 and b ∈ C, then

(3.32)

a2a4− a23

≤ (A − B)2|b|2 (1 + 2γ)2h

1+`+2λ 1+`

i2m

Γ231) .

Putting g(z) = z +P k=2

h 1+`

1+`+λ(k−1)

im

zk (m ∈ N0; ` ≥ 0; λ ≥ 0) in Theorem 4, we obtain the following corollary.

(12)

Corollary 5. Let f (z) given by (1.1) belong to the class Sγb(λ, `, m; A, B), 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1, m ∈ N0, ` ≥ 0, λ ≥ 0 and b ∈ C, then

(3.33)

a2a4− a23

≤ (A − B)2|b|2 (1 + 2γ)2h

1+`

1+`+2λ

i2m.

Putting b = (1 − ρ) e−iηcos η (|η| < π2, 0 ≤ ρ < 1) in Theorem 4, we obtain the following corollary.

Corollary 6. Let f (z) given by (1.1) belong to the class Sγ[ρ, η, A, B, g(z)], 0 ≤ γ ≤ 1, −1 ≤ B < A ≤ 1 and b ∈ C, then

(3.34)

a2a4− a23

≤ (A − B)2(1 − ρ)2cos2η (1 + 2γ)2b23 . References

[1] Abubaker, A., Darus, M., Hankel determinant for a class of analytic functions in- volving a generalized linear differential operator, Internat. J. Pure Appl. Math. 69 (3) (2011), 429–435.

[2] Al-Oboudi, F. M., On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math. Sci. 27 (2004), 1429–1436.

[3] Aouf, M. K., Subordination properties for a certain class of analytic functions defined by the Salagean operator, Appl. Math. Lett. 22 (2009), 1581–1585.

[4] Bansal, D., Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett. 26 (1) (2013), 103–107.

[5] Bansal, D., Fekete–Szeg¨o problem and upper bound of second Hankel determinant for a new class of analytic functions, Kyungpook Math. J. 54 (2014), 443–452.

[6] Bulboac˘a, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.

[7] C˘ata¸s, A., On certain classes of p-valent functions defined by multiplier transforma- tions, in Proceedings of the International Symposium on Geometric Function Theory and Applications, (Istanbul, Turkey, August 2007), Istanbul, 2008, 241–250.

[8] Cho, N. E., Srivastava, H. M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 (1–2) (2003), 39–49.

[9] Cho, N. E., Kim, T. H., Multiplier transformations and strongly close-to-convex func- tions, Bull. Korean Math. Soc. 40 (3) (2003), 399–410.

[10] Duren, P. L., Univalent Functions, Springer-Verlag, New York, 1983.

[11] Dziok, J., Srivastava, H. M., Classes of analytic functions associated with the gener- alized hypergeometric function, Appl. Math. Comput. 103 (1999), 1–13.

[12] Dziok, J., Srivastava, H. M., Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), 7–18.

[13] El-Ashwah, R. M., Aouf, M. K., Differential subordination and superordination for certain subclasses of p-valent functions, Math. Comput. Modelling 51 (2010), 349–

360.

[14] El-Ashwah, R. M., Aouf, M. K., Some properties of new integral operator, Acta Univ.

Apulensis 24 (2010), 51–61.

[15] Grenander, U., Szeg¨o, G., Toeplitz Forms and Their Application, Univ. of California Press, Berkeley, 1958.

(13)

[16] Janteng, A., Halim, S. A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (13) (2007), 619–625.

[17] Keogh, F. R., Markes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.

[18] Libera, R. J., Złotkewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc. 87 (2) (1983), 251–257.

[19] Miller, S. S., Mocanu, P. T., Differential Subordination: Theory and Applications, Marcel Dekker Inc., New York–Basel, 2000.

[20] Mishra, A. K., Gochhayat, P., Second Hankel determinant for a class of analytic functions defined by fractional derivative, Int. J. Math. Math. Sci. (2008), Art. ID 153280, 1–10.

[21] Mishra, A. K., Kund, S. N., Second Hankel determinant for a class of functions defined by the Carlson–Shaffer, Tamkang J. Math. 44 (1) (2013), 73–82.

[22] Mohammed, A., Darus, M., Second Hankel determinant for a class of analytic func- tions defined by a linear operator, Tamkang J. Math. 43 (3) (2012), 455–462.

[23] Noonan, J. W., Thomas, D. K., On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (2) (1976), 337–346.

[24] Prajapat, J. K., Subordination and superordination preserving properties for gen- eralized multiplier transformation operator, Math. Comput. Modelling 55 (2012), 1456–1465.

[25] Raina, R. K., Bansal, D., Some properties of a new class of analytic functions defined in tems of a Hadmard product, J. Inequal. Pure Appl. Math. 9 (2008), Art. 22, 1–9.

[26] Rogosinski, W., On the coefficients of subordinate functions, Proc. London Math.

Soc. 48 (1943), 48–82.

[27] S˘al˘agean, G. S., Subclasses of univalent functions, in Complex analysis – fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), Springer-Verlag, Berlin, 1983, 362–372.

[28] Selvaraj, C., Karthikeyan, K. R., Differential subordinant and superordinations for certain subclasses of analytic functions, Far East J. Math. Sci. 29 (2) (2008), 419–430.

[29] Srivastava, H. M., Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Limited, Chichester; Halsted Press, New York, 1985.

S. M. El-Deeb M. K. Aouf

Department of Mathematics Department of Mathematics Faculty of Science Faculty of Science

Damietta University Mansoura University

New Damietta 34517 Mansoura 35516

Egypt Egypt

e-mail: shezaeldeeb@yahoo.com e-mail: mkaouf127@yahoo.com

Received April 21, 2015

Cytaty

Powiązane dokumenty

O sumach częściowych pewnej klasy funkcji jednolistnych Об отрезках ряда Тейлора одного класса однолистных функций.. Subsequently the

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

A., Somanatha, C., Certain classes of univalent functions, Current Topics in Analytic Function Theory, (Edited by H.

[9] Murugusundaramoorthy, G., Magesh, N., Differential subordinations and superordi- nations for analytic functions defined by Dziok–Srivastava linear operator, JIPAM.. 152,

M., On univalent functions defined by a generalized S˘ al˘ agean operator, Internat.. D., Convex and starlike univalent

In this paper, we obtain some applications of first order differ- ential subordination and superordination results involving certain linear op- erator and other linear operators

R., Certain subordination results for a class of analytic functions defined by the generalized integral operator, Int.. S., Subordinating factor sequences for some convex maps of

This problem was investigated by many authors for various classes of holomorphic functions usually under the assumption of univalence.. An interesting result for the class