• Nie Znaleziono Wyników

Heavy minerals as detritus provenance indicators for the Jurassic pre-Callovian palaeokarst infill from the Czatkowice Quarry (Kraków–Wieluń Upland, Poland)

N/A
N/A
Protected

Academic year: 2022

Share "Heavy minerals as detritus provenance indicators for the Jurassic pre-Callovian palaeokarst infill from the Czatkowice Quarry (Kraków–Wieluń Upland, Poland)"

Copied!
14
0
0

Pełen tekst

(1)

Heavy min er als as de tri tus prov e nance in di ca tors for the Ju ras sic pre-Callovian palaeokarst infill from the Czatkowice Quarry

(Kraków–Wieluñ Up land, Po land)

Dorota SALATA1, *

1 In sti tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity, Oleandry 2a, 30-063 Kraków, Po land

Salata D. (2013) Heavy min er als as de tri tus prov e nance in di ca tors for the Ju ras sic pre-Callovian palaeokarstinfill from the Czatkowice Quarry (Kraków–Wieluñ Up land, Po land). Geo log i cal Quar terly, 57 (3): 537–550, doi: 10.7306/gq.1113 Heavy min eral as sem blages from the infill of Ju ras sic pre-Callovian palaeokarst in the Czatkowice Quarry, in the Kra - ków–Wieluñ Up land, are zir con dom i nated. They con tain also gar net, tour ma line, rutile and scarce grains of kyan ite, staurolite and sin gle chromian spinel. The tex tural fea tures of the heavy min er als sug gest that cer tain types of source rocks sup plied the clastic ma te rial infill ing in the karst stud ied. Most of the heavy min er als were de rived from sed i men tary or metasedimentary rocks as sug gested by the high de gree of round ness of the grains and also by high ZTR (zir con–tour ma - line–rutile) in dex val ues. Rounded min er als may de rive from Car bon if er ous, Perm ian and Tri as sic clastic rocks oc cur ring in the area sur round ing the Czatkowice Quarry. The chem i cal com po si tions of rounded de tri tal gar net and tour ma line grains sug gest meta mor phic and ig ne ous rocks as ini tial sources, per haps lo cated in the Bo he mian Mas sif. How ever, a hy po thet i - cal land mass lo cated south of the Kraków–Wieluñ Up land might have been an ad di tional source area. The euhedral zir con and gar net grains were trans ported di rectly from crys tal line rocks, which may have been Car bon if er ous-Perm ian vol ca nic rocks and crys tal line base ment el e va tions of Brunovistulicum ex posed dur ing Ju ras sic pre-Callovian sed i men ta tion in the Czatkowice area.

Key words: heavy min er als, sed i men tary prov e nance, palaeokarst, Ju ras sic, Czatkowice, Kraków–Wieluñ Up land.

INTRODUCTION

The karstification that af fected the Kraków–Wieluñ Up land has long at tracted in ter est (e.g., Lis and Wójcik, 1960; Gra - dziñski, 1962; Gradziñski and Wójcik, 1966; Madeyska- Nikle - wska, 1969; Madeyska, 1977; G³azek, 1989 and ref er ences therein). More de tailed de scrip tion in the Czatkowice area fol - lowed the dis cov ery there of bone brec cias, ini tially at waste heaps of the work ing Czatkowice Quarry and then within palaeo - karsts in the quarry it self (see Paszkowski and Wie czorek, 1982). In ves ti ga tions fo cused mainly on de tailed palaeonto - logical ex am i na tion of the bone rem nants oc cur ring in sed i men - tary fill ings in or der to es tab lish more fully the stages of karsti - fication in the area (Paszkowski and Wieczorek, 1982; Pasz - kowski, 2000; Borsuk-Bia³ynicka and Ev ans, 2009 with ref er - ences therein).

The prov e nance of the de tri tus that infills Late Tri as sic–mid Ju ras sic cave sys tems was briefly dis cussed based on one heavy min eral sam ple (Paszkowski and Wieczorek, 1982). Ma - te rial from the Ju ras sic pre-Callovian palaeokarst was ex posed as a re sult of quarry ex plo ra tion and were sam pled again in

2005. From these de pos its, heavy min eral as sem blages were sep a rated. The heavy min eral frac tion, not treated with HCl so - lu tion, was briefly de scribed and some qual i ta tive anal y ses were made us ing an En ergy Dispersive Spec trom e ter (EDS) (K¹kol, 2011). These in ves ti ga tions and the few EDS anal y ses gave only gen er al ized data, pro vid ing the ground work for more de tailed anal y ses.

Heavy min er als are a very use ful tool for de ter min ing the prov e nance of de tri tus in sed i men tary rocks. Re sults may be ob - tained us ing stan dard op ti cal tech niques and ad vanced scan ning mi cros copy in or der to ex am ine tex tural fea tures of the heavy min er als and to study their de tailed chem i cal com po si tion. The lat ter al low de ter mi na tion of the pri mary rocks in which the min er - als crys tal lised, which en ables track ing the orig i nal source ar eas even for re cy cled sed i men tary ma te rial. Gar net and tour ma line groups are par tic u larly use ful in pri mary rock de ter mi na tion. They are re sis tant to trans port and burial pro cesses and re tain their orig i nal chem i cal com po si tion that re flects the na ture of their par - ent rocks (e.g., Mange and Wright, 2007).

The pres ent pa per pro vides de tailed in for ma tion on heavy min eral as sem blages oc cur ring in rem nants of Ju ras sic pre- Callovian palaeokarst forms in the Czatkowice Quarry. The work is based on new data ob tained from de tailed chem i cal anal y ses and mi cro scopic ob ser va tions. The data ob tained shed light on the or i gin of the heavy min er als, and thus of the de tri tal ma te rial, oc cur ring in the karst sam pled, sup port ing pre vi ous ideas on the min eral prov e nance and also gen er at ing new in sights.

* E-mail: dorota.salata@uj.edu.pl

Received: January 29, 2013; accepted: June 21, 2013; first published online: August 1, 2013

(2)

GEOLOGICAL OUTLINE

The Czatkowice Quarry is a work ing quarry lo cated in the west ern part of the Dêbnik Anticline (Fig. 1), along the east ern edge of the post-Hercynian tec tonic struc ture termed the S³awków Graben. The cen tral part of the anticline is built of Givetian to Famennian dolomites and lime stones fol lowed by Up per Tournaisian to mid Visean car bon ate rocks to wards its west ern part (e.g., Siedlecki, 1954; Bogacz, 1980; Paszkowski, 2009). To the west of the Czatkowice Quarry the Car bon if er ous de pos its are suc ces sively fol lowed by con ti nen tal and ma rine Tri as sic and Ju ras sic strata, while fur ther to wards the west (in the area of Miêkinia and Karniowice) the Car bon if er ous rocks are over lain by Lower Perm ian con ti nen tal de pos its that fill the S³awków Graben, where a va ri ety of Perm ian vol ca nic and volcanoclastic rocks are pres ent (e.g., Harañczyk, 1989; ¯aba, 1999; Nawrocki et al., 2008). In con trast, to wards the east of the Czatkowice area the Cam brian to Lower Car bon if er ous rocks are di rectly cov ered by Mid dle Ju ras sic strata (Fig. 1; Sied lecki, 1954; Bogacz, 1980; Paszkowski and Wieczorek, 1982; Pasz - kowski, 2000, 2009). As a re sult of the Variscan move ments the Up per Pa leo zoic de pos its were in part re moved. Lower Perm - ian, Lower Tri as sic, Up per Tri as sic and Lower–Mid dle (up to Callovian) Ju ras sic sed i ments were pre served ex clu sively in the infills of palaeokarstic de pres sions oc cur ring in the area (see Pasz kowski and Wieczorek, 1982; G³azek, 1989;

Paszkowski, 2000, 2009).

An ob vi ous ef fect of the Variscan tec ton ics in the Czat - kowice area is the steep, up to al most ver ti cal, ori en ta tion of the Car bon if er ous strata. This al lowed the for ma tion of pro nounced karst forms (Paszkowski and Wieczorek, 1982; Paszkowski, 2000, 2009), which at tain up to 150 m in depth (Paszkowski, 2000). In the Krzeszowice area, karsts formed dur ing the in ter -

val span ning from the Early Car bon if er ous to the Callovian, in which three main phases may be dis tin guished (Paszkowski, 2000):

– synsedimentary, Early Car bon if er ous;

– con ti nen tal, start ing af ter re moval of the Up per Car bon if - er ous cover and end ing be fore Early Tri as sic trans gres - sion;

– Me so zoic phase, last ing from the Late Tri as sic to the Callovian trans gres sion.

The karstification de vel oped mainly in Lower Car bon if er ous lime stones or in infills of older karsts (Paszkowski, 2000).

Palaeokarst forms were filled with clayey to sandy sed i ments, brec cias, pyroclastic rocks and speleothems (Paszkowski, 2000). Bone brec cias, with fos sils of fishes, rep tiles and am - phib i ans, were found in some karsts, en abling the es tab lish ing of age con straints (see Paszkowski and Wieczorek, 1982;

Paszkowski, 2000; Borsuk-Bia³ynicka and Ev ans, 2009 and ref - er ences therein).

One of the palaeokarst forms (now no lon ger avail able for in ves ti ga tion), was filled with sed i ment re sem bling the Mid dle Ju ras sic sand stone oc cur ring at the top of the quarry; it in cluded pieces of ver te brate bone, fish scales and Cera to dus teeth, de - ter mined as Cera to dus phillipsi Agassiz (Paszkowski and Wieczorek, 1982; Paszkowski, 2000). This places the karst as formed dur ing the third stage of karstification in the area, hence rep re sent ing the rem nants of a Ju ras sic pre-Callovian cave (see Paszkowski, 2000).

SAMPLED MATERIAL

The ma te rial fill ing the Ju ras sic palaeokarst was sam pled by M. Gradziñski and M. Paszkowski in 2005, in part of the palaeokarst shown in Fig ure 2, ex posed as a con se quence of

Fig. 1. Lo ca tion of the Czatkowice Quarry on a geo log i cal map of the Dêbnik Anticline area (Paszkowski, 2009, mod i fied ac cord ing to Gradziñski, 1993)

CZ – Czatkowice, D1 – Dêbnik (old), D2 – Dêbnik (new), DU – Dubie

(3)

the pro gres sive ex ploi ta tion of the quarry. The pres ence of Cera to dus teeth was con firmed (M. Gradziñski pers. comm., 2012) in the de pos its fill ing the sam pled karst, in di cat ing that it rep re sents the same sys tem of Ju ras sic karsts as de scribed by Paszkowski and Wieczorek (1982). The de pos its in ves ti gated rep re sent sandy to gravely lime stones. The de tri tus, ce mented by cal cite, is cha ot i cally dis persed and com posed mainly of well-rounded or bro ken quartz grains. White, rounded quartzitic sand stone clasts are also pres ent. Lo cally, si li ceous con cre - tions are de vel oped in the car bon ate ce ment. The heavy frac - tion sep a rated from the sandy ma te rial, not treated with the hy - dro chlo ric acid so lu tion, was dom i nantly of opaque min er als rep re sented mainly by Fe-ox ides, hy drox ides and Fe-Ti ox ides.

Among trans par ent grains, tiny pieces of bone and authigenic ap a tite min er als dom i nate. Be sides these, zir con, tour ma line, rutile, gar net and scarce grains of staurolite and chromian spinel were iden ti fied (K¹kol, 2011).

ANALYTICAL METHODS

The rock sam ples were crushed to about 1 cm pieces and then were dis in te grated in 10% HCl so lu tion for 24 hours at room tem per a ture, to re move car bon ate ce ment and tiny pieces of bone. Dur ing the treat ment all ap a tite par ti cles were dis solved but no dam age was caused to other con stit u ents. Zir - con, tour ma line, rutile, gar net, staurolite and chromian spinel, pre vi ously de ter mined also by K¹kol (2011) in the ma te rial not treated with HCl are, ac cord ing to Deer et al. (1992), not sol u ble in this acid. Then the loose sandy ma te rial was split into frac - tions. Heavy min er als were sep a rated from the 63–250 mm frac tion us ing so dium polytungstate of 2.9 g/cm3 den sity as the heavy liq uid. Heavy min eral as sem blages were mounted in Can ada bal sam, de scribed and counted us ing a polar is ing mi - cro scope. For each sam ple 300 grains of trans par ent, non- micaceous min er als were counted ac cord ing to the rib bon method. Min eral fre quen cies were cal cu lated as num ber per - cents. Grain mor phol ogy was ad di tion ally stud ied by means of a Scan ning Elec tron Mi cro scope (SEM) Hitachi S-4700 in the Lab o ra tory of Field Emis sion Scan ning Elec tron Mi cros copy and Microanalysis at the In sti tute of Geo log i cal Sci ences,

Jagiellonian Uni ver sity. Ad di tion ally, sur face fea tures of min er - als not treated and af ter HCl treat ment were com pared by SEM, to re veal any dam age to min er als. The chem i cal com po si tion of gar nets and tour ma lines was de ter mined in car bon-coated pol - ished thin sec tions with a Cameca SX-100 elec tron microprobe (EMP) op er ated in wave length dis per sion (WDS) mode at the Joint-In sti tute An a lyt i cal Com plex for Min er als and Syn thetic Sub stances at War saw Uni ver sity. The WDS anal y ses con di - tions were: 15 kV ac cel er at ing volt age, 20 nA beam cur rent and fo cused beam. Syn thetic and nat u ral min eral stan dards were used for an a lyt i cal cal i bra tion: Si (wollastonite in tour ma lines and di op side in gar nets), Al and K (orthoclase), Cr (Cr2O3), Ti (rutile), Mg (di op side), Fe (Fe2O3), Mn (rhodo nite), Ca (wollasto - nite), Na (al bite), F (phlogopite). The de tec tion lim its of el e - ments mea sured are: Ca – 0.02%, Fe – 0.07%, Mn – 0.07%, Ti – 0.03%, Cr – 0.03%, Si – 0.02%, Al – 0.02%, Mg – 0.01% in gar net and K – 0.05%, Ca – 0.05%, Fe – 0.12%, Mn – 0.14%, Ti – 0.05%, Cr – 0.08%, Na – 0.05%, F – 0.31%, Mg – 0.03%, Al – 0.03%, Si – 0.04% in tour ma line. Gar net and tour ma line grains for anal y ses were cho sen ran domly. Gar net grains were ana lysed mostly in their cen tres. Ad di tion ally, 15 gar net grains of var i ous com po si tions were ana lysed in tra verses to de tect changes in el e ment pro por tions. Tour ma line grains were mostly ana lysed in one spot per grain. If any lighter or darker zones were no ticed in the back-scat tered elec tron (BSE) im ages of tour ma lines, anal y ses were made in each zone. Ad di tion ally, 15 tour ma line grains were ana lysed in tra verses. The tour ma line cal cu la tions were nor mal ized to 31 an ions. The bo ron con tent in tour ma lines was not mea sured di rectly but three bo ron at oms were as sumed to be pres ent in the tour ma line for mula. There - fore, the weight percents of B2O3 nec es sary to pro duce 3 bo ron at oms were cal cu lated for the anal y ses on stoichiometry as - sum ing OH + F = 4 apfu (at oms per for mula unit) and that all iron is Fe2+.

RESULTS AND INTERPRETATION

HEAVY MINERAL ASSEMBLAGES

Zir con, tour ma line, rutile, gar net, staurolite and sin gle grains of kyan ite and chromian spinel were iden ti fied among the trans - par ent heavy min er als (Fig. 3A and Ta ble 1). Scan ning mi cro - scopic in ves ti ga tions re vealed also very rare rounded monazite grains. Zir con is most fre quent in the heavy min eral as sem - blages stud ied, reach ing 69%. Tour ma line, rutile and gar net oc - cur in sim i lar quan ti ties in most sam ples, com pris ing from about ten to sev eral per cent. Only in one sam ple the tour ma line pop u - la tion ana lysed slightly ex ceeds 2%. Staurolite amounts reach 3%, while kyan ite rarely reaches 1%. A sin gu lar chromian spinel grain was de ter mined only in one sam ple (Fig. 3A and Ta ble 1). The rough heavy min eral frac tion, not treated with HCl so lu tion, con tained also euhedral ap a tite (most prob a bly authi - genic) and ap a tite pieces (frag ments of bone). How ever, due to the large amount of ap a tite bone frag ments the real con tent of de tri tal ap a tite was im pos si ble to es tab lish (K¹kol, 2011). Ap a - tite and its frag ments were dis solved dur ing rock dis in te gra tion in the cur rent study, there fore the heavy min eral frac tion is im - pov er ished in this min eral.

Among the zir con pop u la tion, mostly colour less but also pink ish and yel low ish va ri et ies are typ i cal. Colour less grains of - ten con tain nu mer ous in clu sions, while the yel low ish and pink - ish zir cons oc ca sion ally dis play dis tinct os cil la tory zonation pat - terns. The tour ma line pop u la tion is dom i nated by ol ive-brown va ri et ies, whereas blue-green and pink grains are in the mi nor - Fig. 2. View of the pre-Callovian Ju ras sic cave stud ied

(pink solid lines) de vel oped within Lower Car bon if er ous lime stones (C1) in the Czatkowice Quarry Dashed lines in di cate bed ding of cave loam de formed

by com pac tion (ac cord ing to Paszkowski, 2000;

phot. M. Gradziñski, 1997)

(4)

ity. Rutile is rep re sented by brown-red and or ange to yel low grains. Gar net is mostly colour less but pink and salmon-pink grains are also pres ent. Staurolite dis plays yel low to or ange colours.

The char ac ter is tic fea ture of all the heavy min er als listed above is their high de gree of round ness (Fig. 4). They are mostly well-rounded, sel dom subrounded, while euhedral grains oc cur ex cep tion ally (Fig. 4B–F). The rounded and sub - rounded grains com prise up to 98% of the heavy min eral as - sem blages stud ied, among which rounded grains of zir con com prise the ma jor ity. Fur ther more, all the min er als stud ied of -

ten oc cur in the form of ir reg u lar frag ments with un even frac - tures. Among the in fre quent euhedral min eral pop u la tion, com - pris ing mostly be low 10% of trans par ent heavy min er als (Fig.

3B and Ta ble 1), elon gated zir con is most com mon (Fig. 4C), but short pris matic zir con was also found (Fig. 4D). Less fre - quently, euhedral gar net (Fig. 4F) and rutile (Fig. 4B) are pres - ent. The large quan tity of rounded grains is ac com pa nied by high val ues of the ZTR (Hubert, 1962) reach ing 86 (Fig. 3B and Ta ble 1).

The sur faces of gar net, tour ma line, rutile and kyan ite grains dis play microtextures such as etch-pits, fac ets and hack saw Fig. 3A – heavy min eral com po si tion in the sam ples stud ied; B – ZTR in dex val ues and con tent

of rounded, subrounded and an gu lar (in clud ing euhedral) grains P&W * – data ac cord ing to Paszkowski and Wieczorek (1982)

T a b l e 1 Heavy min eral com po si tions of the sam ples stud ied [%]

No. Zrn + Mnz Tur Rt Grt St Ky Ep Cr-sp ZTR R + S A

1 68.9 2.1 14.7 12.3 1.2 0.3 – 0.6 85.6 86.4 13.6

3 58.6 11.3 12.6 14.9 2.0 0.7 – – 82.5 91.1 8.9

5 60.2 11.8 9.9 14.8 2.6 0.7 – – 81.9 92.6 7.4

6 60.2 9.7 14.4 12.0 3.2 0.5 – – 84.3 95.2 4.8

10 52.9 13.9 13.9 15.9 2.9 0.5 – – 80.8 98.0 2.0

11 66.3 7.7 11.5 10.9 2.6 1.0 – – 85.6 92.0 8.0

P&W* 68.5 12.0 6.0 11.0 0.5 – 2.0 – 84.5 – –

Cr-sp – chromian spinel, Ep – epidote, Grt – gar net, Ky – kyan ite, Mnz – monazite, Rt – rutile, St – staurolite, Tur – tour ma line, Zrn – zir con, ZTR – zir con–tour ma line–rutile in dex, R – rounded grains, S – subrounded grains, A – not rounded (an gu lar, euhedral) grains; for other ex pla na tions see Fig ure 3

(5)

Fig. 4. Heavy min er als oc cur ring in the palaeokarst stud ied in the Czatkowice Quarry A – gen eral view of rounded ran domly scat tered heavy min er als; B – euhedral rutile and rounded kyan ite; C – euhedral elon gated zir con; D – euhedral short prism of zir con and rounded tour ma line and grossular-rich pyrope-almandine gar net; E – rounded grains of tour ma line, rutile and pyrope-rich almandine gar net; F – euhedral spessartine-almandine gar net and rounded rutile and tour ma line; Fe-Ti Ox – Fe-Ti ox ide, Grt – gar net, Ky – kyan ite, Rt – rutile, Tur – tour ma line, Zrn – zir - con; SEM

(6)

ter mi na tions in di cat ing intrastratal dis so lu tion of those min er als (Fig. 4). The microtextures are pres ent only in rounded grains, of ten on their smoothed sur faces (Fig. 4A, B, D, E), while they are not vis i ble on crys tal faces of euhedral grains or on pre- depositional planes of min eral frac tures (Fig. 4B, C, F).

GARNET AND TOURMALINE CHEMICAL COMPOSITION

The gar net pop u la tion stud ied dis plays a large di ver sity in terms of chem i cal com po si tion (Figs. 5, 6 and Ta ble 2). Among them five compositional va ri et ies may be dis tin guished (Fig. 6):

1– pyrope slightly en riched in the uvarovite mol e cule (Prp 68–70 mol%; Uv 7–10 mol%);

2– almandine-dom i nated gar net, some times en riched in spessartine (up to 24 mol%) or grossular (up to 32 mol%) mol e cules;

3– pyrope-rich almandine (Prp 22–46 mol%; Alm 34–65 mol%);

4– almandine-pyrope-grossular (Prp 22–43 mol%; Alm 34–45 mol%; Grs 20–34 mol%);

5– spessartine-dom i nated (Alm 24–45 mol%; Sps 37–59 mol%).

An dra dite and uvarovite mol e cules in al most all gar net va ri - et ies (ex cept group 1) do not ex ceed 7 and 1 mol% re spec - tively.

Among the gar net pop u la tion stud ied spessartine- or pyrope-rich almandine grains be long to the most com mon gar - net va ri et ies, while other types are less wide spread. Only two grains of gar net rep re sent ing chro mium-en riched pyrope were found (Fig. 5 and Ta ble 2). There is one fur ther dis tinc tive fea - ture of the de tri tal gar net group ana lysed: all of the gar net compositional va ri et ies were es tab lished among the rounded set of gar net grains but only the spessartine-rich almandine was de ter mined within the in fre quent euhedral gar net pop u la - tion. The gar net pop u la tion ana lysed prevailingly dis plays in ter - nal ho mo ge ne ity in terms of the el e ments mea sured. Only some of the grossular-rich va ri et ies dis play weak dif fer ences be tween mol e cule con tents (mainly pyrope, almandine and grossular), but the max i mum dif fer ences be tween the mar ginal and in ter nal parts of such gar nets do not ex ceed 4 mol% (Ta - ble 2). How ever, this fea ture may be mis lead ing as the ir reg u lar chem i cally ho mog e nous frag ments may rep re sent pieces of larger zoned gar net grains.

Gar nets with high almandine mol e cule con tent, with the grossular amount up to about 30 mol%, or with sig nif i cant spessartine con tent, de rive gen er ally from metapelites of me - dium-grade meta mor phic fa cies. Spessartine and spes sartine- almandine with pyrope con tent com pris ing sev eral per cent is most typ i cal of in ter me di ate to acidic plutonic and vol ca nic rocks. Spessartine-dom i nated gar net may form in skarns where it oc curs in as sem blages with Mn-rich min er als. It may also oc - cur in gran ite pegmatites and aplites. Almandine with el e vated amounts of pyrope is fre quently found in high-grade meta mor - phic rocks, such as granu lites and eclogites, while almandine-pyrope with el e vated con tents of grossular may be found in ultra mafic rocks such as pyroxenites and peri dot ites and their meta mor phosed va ri et ies. Pyrope-bear ing gar net, with pyrope mol e cule ex ceed ing 70%, in clud ing those with an el e vated uvarovite amount, in di cates or i gin from ul tra-high pres sure eclogites, gar net peri dot ites and kimberlites (Fig. 7;

e.g., Deer et al., 1997; Mor ton et al., 2004; Dahlquist et al., 2007; Mange and Mor ton, 2007; Méres et al., 2012 and ref er - ences therein).

The tour ma line pop u la tion stud ied mostly dis plays X-site va cancy (Xvac) val ues lower than 0.50 and very low con tents of Ca, mostly be low 0.20 apfu, which al low clas si fi ca tion of the tour ma lines to the al kali group, al though some grains have Xvac

val ues close to 0.50, what places them at the bound ary be - tween al kali and X-va cant groups. (Fig. 8A and Ta ble 3; Henry et al., 2011). The X-site is oc cu pied mainly by Na mostly ex -

Fig. 5. Gar net end-mem ber amounts in the de tri tal gar net pop u la tion ana lysed

Gar net anal y ses are ar ranged in or der of de creas ing pyrope amount

(7)

ceed ing 0.50 apfu. The tour ma lines stud ied dis play Si con tents close to the stoichiometric value of 6.00 apfu and are rich in Al, which ex cels 6.00 apfu in al most all cases. The Mg/(Mg + Fe) ra tio var ies in a broad range from 0.08 to 0.85, how ever, most val ues ex ceed 0.40 (Fig. 8B and Ta ble 3). The main di va lent cat ions in the tour ma line struc ture are Fe2+ and Mg, thus most of them rep re sent the schörl-dravite se ries (Fig. 8B), but those of dravitic com po si tion pre vail in the pop u la tion ana lysed.

Scarce tour ma lines with Xvac val ues close to 0.50 dis play foititic com po si tion (Fig. 8B and Ta ble 3). The tour ma lines con tain also Ti in amounts be low 0.30 apfu and mi nor con tents of Mn and Cr com pris ing up to 0.07 and 0.02 apfu re spec tively (Ta ble 3). Most tour ma lines stud ied were chem i cally al most ho mo ge - neous. Some grains dis played vis i ble change in col our tone in trans mit ted light but dif fer ences in com po si tion (mainly Mg and Fe con tents) of such zones were weak and did not in flu enced af fil i a tion to a tour ma line spe cies. Only one grain dis played a dis tinct dif fer ence in com po si tion be tween its mar ginal (scho - rlitic com po si tion) and cen tral (dravitic com po si tion) parts (Ta - ble 3).

Tour ma line rep re sent ing the com po si tion de scribed above are typ i cal con stit u ents of gra nitic as well as meta mor phic rocks (e.g., Henry and Guidotti, 1985; Henry and Dutrow, 1996;

Hinsberg et al., 2011a, b; Dutrow and Henry, 2011 and ref er - ences therein). The Fe-rich tour ma lines stud ied, rep re sent ing the schorlitic se ries, may or i gin from Li-poor gra nitic rocks and their pegmatites, how ever, some pro jec tion points of such tour - ma lines lo cate close to the bound ary with fields de not ing meta - mor phic or i gin. The greater part of the tour ma line pop u la tion shows com po si tions typ i cal of Al-rich and Al-poor metapelites and metapsammites (Fig. 9; Henry and Guidotti, 1985). Ad di tion - ally, they show Mg/(Mg + Fe) ra tios ex ceed ing 0.3 apfu (Ta ble 3), con sis tent with metasedimentary der i va tion (Henry and Dutrow, 1996). The meta mor phic tour ma line group is ad di tion ally fea - tured by Mg/(Mg + Fe) and Xvac ra tios in the range 0.50–0.85 and 0.20–0.40 re spec tively which sug gests that they de vel oped un - der me dium-grade meta mor phic con di tions (Henry and Dutrow,

1996). Some tour ma line grains have com po si tions in di cat ing their or i gin from Fe3+-rich quartz-tour ma line rocks, calc silicates or metapelites (Fig. 9; Henry and Guidotti, 1985).

THE QUESTION OF PROVENANCE

ROUNDED HEAVY MINERAL SUITE

The min eral com po si tion of the heavy min eral as sem blages stud ied show con sid er able sim i lar i ties to the heavy min eral frac tion of one sam ple from the same gen er a tion, though no lon ger ac ces si ble, of Ju ras sic pre-Callovian palaeokarst in the Czatkowice Quarry (Paszkowski and Wieczorek, 1982). The sim i lar i ties con cern the dom i nant min eral va ri et ies as well as their fre quen cies. In the sam ples de scribed above and the one pre vi ously stud ied (Paszkowski and Wieczorek, 1982) zir con is clearly dom i nant, ex ceed ing 50%, while the rel a tive pro por tions of tour ma line, gar net and rutile are sim i lar (Fig. 3A and Ta ble 1).

Some dif fer ences are shown by sub or di nate min er als, i.e., staurolite, epidote and kyan ite. The staurolite con tent in the sam ple ear lier stud ied is lower, com pris ing 0.5%, epidote reaches 2%, while kyan ite is ab sent (Fig. 3A and Ta ble 1). How - ever, these dif fer ences are mi nor and may re flect sort ing pro - cesses.

The large num ber of rounded grains in the heavy min eral as sem blages stud ied as well as the el e vated val ues of the ZTR in dex sug gest that the min er als de rive from sed i men tary or metasedimentary source rocks. How ever, long trans port from a dis tant source or re peated abra sion in ae olian or ma rine en vi - ron ments, which were typ i cal of the Early Tri as sic and Early Callovian in the area stud ied, may also have caused the round - ing of the min er als.

These data are sim i lar to those ob tained for heavy min eral as sem blages oc cur ring in Mid dle Ju ras sic clastic de pos its of in the area sur round ing the Czatkowice Quarry (Przyby³owicz, Fig. 6. Tri an gle pro jec tion of the end-mem bers of the gar net pop u la tion ana lysed (black

tri an gles) in com par i son to data ob tained by Méres et al. (2012) for gar nets from Mid dle Ju ras sic strata of the area ad ja cent to the Czatkowice Quarry (grey cir cles)

Alm – almandine, Grs – grossular, Prp – pyrope, Sps – spessartine

(8)

1958; Krysowska, 1960, 1962; Méres et al., 2012). The heavy min eral as sem blages dis play the same min eral com po si tion, and there are close re sem blances also in the col our va ri et ies of tour ma line, gar net, zir con and rutile and their habit (cf. Przy - by³owicz, 1958; Krysowska, 1960, 1962). Nev er the less, there are no tice able dif fer ences in min eral fre quen cies. The Mid dle Ju ras sic de pos its are var i ously dom i nated by zir con or gar net, while the fre quen cies of other con stit u ents fluc tu ate in the range from sev eral to over ten per cent, though in the zir - con-dom i nated as sem blages the zir con con tent usu ally does not ex ceed 40% (Przyby³owicz, 1958; Krysowska, 1960, 1962;

Méres et al., 2012).

The heavy min eral frac tions from the Czatkowice palaeo - karst de scribed here are clearly zir con-dom i nated. This may be ei ther an ef fect of ero sion of rocks where zir con dom i nates in the heavy frac tion, rel a tive en rich ment in zir con due to dis in te - gra tion and dis so lu tion of less re sis tant min er als, a re sult of spe cific sort ing pro cesses dur ing sed i men ta tion in the karst, or a com bi na tion of all these.

The “pro duc tive” Car bon if er ous and Lower Tri as sic clastic de pos its have long been con sid ered as the source rocks for de - tri tus of the Mid dle Ju ras sic sand stones and sandy lime stones.

This opin ion was based on the rounded habit of min er als and on a com par i son of gar net and other min eral fre quen cies (Przyby - 2el baT de iduts noi ta l upop te nrag eht fo se s ylana evi ta tne se rpeR .oN124812526203538364156595*c521*r521c451r451 OiS277.1430.04 02.9332.9303.8387.83 34.83 86.8377.7367.7396.7307.73 72.6375.6313.7393.7359.8395.83 OiT212.040.0 11.080.0 50.0 72.052.0 32.060.0 32.061.0 31.0 37.0 82.0.l.d.b40.041.070.0 lA2O363.1254.22 21.2250.22 63.1233.1225.12 35.1269.0212.12 76.0279.02 78.9122.0212.0280.0251.1231.12 rC2O325.250.0 20.0 20.040.0 80.0 20.0.l.d.b.l.d.b60.0 10.0 20.0.l.d.b.l.d.b.l.d.b30.0 50.030.0 eF2O3**77.044.0 42.0 83.016.0 28.0 74.0 36.0 06.0 43.019.066.0 68.0 39.033.144.180.112.1 OeF09.737.9163.5254.32 48.7227.02 18.4271.9157.6225.72 90.5291.62 70.0247.0181.3226.3248.5280.62 OgM76.9136.21 08.1105.01 44.7 00.7 47.668.5 97.324.3 01.2 35.1 57.0 23.085.1 35.186.0136.01 OaC62.554.485.079.3 27.3 27.9 25.772.3105.8 56.817.0184.2162.2 93.5 01.0108.8 57.0 08.0 OnM63.094.035.0 53.015.0 03.1 75.083.048.005.1 85.227.0 73.0263.6204.545.6 24.065.0 la toT18.9913.00149.9940.00158.9930.00123.00167.9972.9907.00139.9904.00181.10108.00101.9984.9960.9901.99 sm ota ne g yxo 21 no desab alu mroF iS599.2689.2189.2389.2689.2389.2379.2879.2899.2279.2599.2489.2559.2769.2500.3110.3600.3689.2 lA508.1479.1389.1679.1269.1439.1269.1459.1169.1869.1639.1659.1809.1339.1000.0300.0800.0400.0 iT210.0200.0600.0500.0300.0610.0510.0410.0400.0410.0010.0800.0540.0710.0919.1609.1429.1729.1 rC341.0300.0200.0200.0200.0500.0100.0000.0000.0400.0100.0100.0000.0000.0000.0200.0300.0200.0 eF+3 **240.0520.0410.0220.0630.0840.0820.0730.0630.0020.0550.0040.0350.0750.0180.0780.0360.0170.0 eF+2474.0132.1316.1194.1518.1333.1506.1432.1577.1218.1866.1437.1863.1927.0265.1195.1866.1886.1 gM201.2404.1733.1091.1468.0408.0777.0376.0844.0204.0942.0181.0190.0930.0981.0481.0922.1622.1 aC404.0653.0740.0423.0113.0208.0326.0590.1327.0037.0219.0850.1891.0864.0278.0067.0360.0760.0 nM220.0130.0430.0220.0430.0580.0830.0520.0750.0001.0471.0940.0604.1118.1863.0644.0720.0730.0 la toT799.7110.8510.8310.8110.8800.8810.8800.8000.8020.8899.7800.8120.8020.8599.7989.7199.7500.8 ]%lom[ sre bmem-dne te nraG prP0.075.641.443.936.826.625.522.229.412.313.8 0.60.33.1 3.6 2.67.041.04 mlA8.517.042.353.940.061.448.258.041.955.955.554.757.449.322.254.352.552.55 spS 7.0 0.1 1.17.0 1.1 8.2 2.18.0 9.1 3.3 8.56.19.544.953.210.519.0 2.1 dnA 1.22.1 7.01.1 8.1 4.2 4.1 8.1 8.10.1 7.20.27.29.2 1.4 4.4 1.35.3 vU 1.7 2.0 1.01.0 1.03.0 1.00.0 0.0 2.0 1.01.00.0 0.00.0 1.01.0 1.0 srG 2.44.018.0 5.9 4.8 9.320.913.433.228.226.720.338.35.211.520.120.0 0.0 – mlAenidnamla ,eti dar dna – dnA ,srG– ralussorg ,prP– eporyp– spS ,enitrasseps ,vU– etivoravu ;te nrag gn imu ssa deta lu clac – ** ;mir– r ;eroc – c* yrtemoihciots]%.tw[ ni sed ixo ;timilnoi tce ted wo leb – .l.d.b ;

(9)

³owicz, 1958; Krysowska, 1960, 1962 and ref er ences therein).

The dom i nant rounded heavy min er als from the Czatkowice palaeokarst dis play tex tural fea tures in di cat ing their re cy cling and der i va tion from sed i men tary source rocks. Microtextures vis i ble on the rounded grains, hav ing smoothed sur faces, sug - gest that their dis so lu tion took place prior to fi nal de po si tion in the palaeokarst infill. As for the Mid dle Ju ras sic clastic rocks,

the min er als stud ied show close sim i lar i ties to heavy min eral as sem blages oc cur ring in the Car bon if er ous, Perm ian and also Tri as sic clastic rocks oc cur ring in the Kraków area (e.g., £ydka, 1955, 1956; Siedlecka and Krysowska, 1962). There fore, these rocks may be the source rocks. An ad di tional source of clastic ma te rial could be sed i ments of the north east ern sur round ings of the area stud ied, up lifted due to Me so zoic re ac ti va tion along the Kraków–Lubliniec Fault Zone (e.g., ¯aba, 1999).

The chem i cal com po si tion of the gar net pop u la tion stud ied is to a large ex tent com pa ra ble to that ac quired for gar net from Mid dle Ju ras sic strata of the re gion ad ja cent to the Czatkowice Quarry (Fig. 6; e.g., Aubrecht et al., 2009a; Méres et al., 2012).

The sim i lar ity es pe cially con cerns the gar net pop u la tion rich in pyrope, though in the gar net pop u la tion oc cur ring in the Czatko - wice palaeokarst more spessartine-rich euhedral gar net va ri et - ies were found (Fig. 6; the ques tion of the euhedral gar net is dis cussed be low). This sug gests that the sed i ments pre served in the karst and that of the Mid dle Ju ras sic clastics were mostly sup plied from the same rocks.

The orig i nal source area for the rounded group of heavy min - er als stud ied may be in ferred from tour ma line and par tic u larly gar net chem i cal com po si tion. The di ver sity of chem i cal com po si - tion of those min er als in di cate that they formed in a lithologically

Fig. 7A – com po si tion of gar nets from the Ju ras sic pre- Callo - vian palaeokarst infill from the Czatkowice Quarry on a the ter - nary plot of nat u ral sed i men tary gar net con cen tra tions (Mange and Mor ton, 2007): A – gar nets mainly from high-grade granu - lite-fa cies metasedimentary rocks or charnockites, and also from in ter me di ate-acidic ig ne ous rocks sourced from deep in the crust; Bi and Bii – gar nets de rived from am phi bo lite-fa cies metasedimentary rocks where the Bi field is char ac ter is tic of gar net from in ter me di ate-acidic ig ne ous rocks; Ci and Cii – fields of gar nets mainly from high-grade metabasic rocks where Cii im ply sour cing from ultra mafic rocks such as pyro - xenites and peri dot ites; D – gar nets gen er ally de rived from metasomatic rocks, very low-grade metabasic rocks or ultra - high tem per a ture meta mor phosed calc-sil i cate granu lites. XFe, XMg, XCa, XMn – de note the ionic con tents of Fe, Mg, Ca and Mn nor mal ized ac cord ing to Droop and Harte (1995). B, C – com po - si tion of the de tri tal gar nets from the palaeokarst infill stud ied from the Czatkowice Quarry on clas si fi ca tion di a grams based on the com po si tions of gar nets stud ied in their par ent rocks (ac cord ing to Aubrecht et al., 2009b; Méres et al., 2012): en vi - ron men tal fields: A – gar nets from UHP/HP (ul tra-high pres - sure/high pres sure) con di tions; B – gar nets from eclogite and gra nulite fa cies con di tions; C – gar nets from am phi bo lite fa cies con di tions, where C1 – tran si tional sub group be tween gran - ulite and high am phi bo lite fa cies con di tions and C2 – sub group of am phi bo lite fa cies con di tions. Grey fields within en vi ron - men tal fields – immi scibility gap of gar net end-mem ber com po - si tions: A – from UHP/HP con di tions, B – from eclogite and granulite fa cies con di tions, C – from am phi bo lite fa cies con di - tions. Po si tions around num bers de note gar net de rived from:

1a – UHP eclo gites, gar net peri dot ites and kimberlites; 1b – UHP eclogites; 2 – HP eclogites and HP mafic granu lites; 3 – HP fel sic and in ter me di ate granu lites; 4 – gneiss es meta mor pho - sed un der P–T tran si tional to granulite and am phi bo lite fa cies con di tions; 5 – am phi bo lites meta mor phosed un der tran si tio - nal P–T granulite to am phi bo lite fa cies con di tions; 6 – gneiss es meta mor phosed un der am phi bo lite fa cies con di tions; 7 – am - phi bo lites meta mor phosed un der am phi bo lite fa cies con di - tions. In the C2 sub group gar nets from other sources are in te gra ted, e.g., gar net from ig ne ous rocks (granitoids, sye - nites), gar net from HP/LT meta mor phic rocks, gar net from con - tact-meta mor phosed rocks; for other ex pla na tions see Fig ure 6

(10)

Fig. 8A – pri mary tour ma line groups, based on dom i nant oc cu pancy of X-site;

B – gen er al ised tour ma line spe cies Clas si fi ca tion di a grams af ter Henry et al. (2011)

T a b l e 3 Rep re sen ta tive anal y ses of the tour ma line pop u la tion stud ied

No. 51r1 51c1 121r 121c 156 3 9 8 13 2 6 5 19

SiO2 36.26 36.89 36.17 37.46 35.86 37.91 36.15 35.26 36.51 35.96 35.85 35.41 35.13

TiO2 1.05 1.34 0.80 0.75 0.32 0.74 0.62 0.14 0.45 1.26 2.48 0.49 1.15 B O2 32 10.69 10.62 10.45 10.81 10.52 10.98 10.60 10.44 10.87 10.38 10.48 10.47 10.53

Al2O3 33.45 30.60 31.27 31.90 34.59 32.88 32.18 34.46 35.73 27.77 30.10 33.27 31.70

Cr2O3 0.02 0.08 0.06 0.09 0.03 0.04 0.05 0.03 0.10 0.06 0.01 b.d.l. 0.04 MgO 5.97 6.60 4.64 9.23 1.10 9.28 5.65 0.72 5.46 7.19 4.74 2.46 5.70 CaO 0.50 0.23 0.04 0.48 0.03 0.36 0.42 0.05 0.54 1.20 0.05 0.33 1.41 MnO 0.10 b.d.l. b.d.l. 0.04 0.43 b.d.l. 0.18 0.40 0.03 0.04 0.04 0.11 0.07 FeO 6.73 8.14 10.93 3.29 12.96 2.96 9.22 14.04 6.05 10.97 10.68 12.97 10.18 Na2O 1.73 2.26 2.09 2.19 1.52 2.43 2.20 1.84 1.72 2.15 2.45 1.88 1.58 K2O 0.05 b.d.l. 0.03 0.01 0.03 b.d.l. 0.05 0.01 b.d.l. 0.07 0.01 0.06 0.02 F 0.01 0.07 b.d.l. 0.10 0.06 0.06 0.04 0.13 0.09 0.12 0.01 0.08 0.16 O = F 0.01 0.03 0.00 0.04 0.03 0.03 0.02 0.05 0.04 0.05 0.00 0.03 0.07

To tal 96.55 96.79 96.47 96.31 97.43 97.61 97.34 97.45 97.51 97.11 96.88 97.49 97.61

Num bers of ions in for mula based on 31 an ions

Si 5.895 6.038 6.015 6.024 5.925 6.002 5.928 5.871 5.837 6.019 5.945 5.879 5.799 Ti 0.128 0.165 0.100 0.091 0.040 0.088 0.076 0.017 0.054 0.159 0.309 0.061 0.143 B 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 Cr 0.002 0.010 0.008 0.012 0.004 0.005 0.006 0.004 0.012 0.008 0.001 0.000 0.005 Al 6.410 5.904 6.129 6.046 6.735 6.135 6.221 6.763 6.734 5.478 5.884 6.509 6.167 Mg 1.446 1.610 1.150 2.213 0.272 2.191 1.381 0.178 1.301 1.795 1.172 0.609 1.404 Mn 0.013 0.000 0.000 0.005 0.060 0.000 0.025 0.056 0.005 0.006 0.006 0.015 0.009 Ca 0.088 0.041 0.007 0.082 0.005 0.061 0.074 0.008 0.092 0.215 0.009 0.059 0.250 Fe2+ 0.914 1.115 1.520 0.443 1.791 0.391 1.265 1.955 0.809 1.535 1.481 1.800 1.405 Na 0.546 0.716 0.672 0.684 0.486 0.746 0.701 0.593 0.534 0.698 0.787 0.606 0.507 K 0.010 0.000 0.006 0.003 0.006 0.000 0.011 0.003 0.000 0.014 0.003 0.013 0.005 To tal 18.453 18.599 18.609 18.604 18.325 18.618 18.689 18.448 18.379 18.926 18.597 18.552 18.694 F 0.007 0.037 0.000 0.050 0.032 0.031 0.019 0.066 0.045 0.062 0.004 0.043 0.085 OH 3.993 3.963 4.000 3.950 3.968 3.969 3.981 3.934 3.955 3.938 3.996 3.957 3.915

Xvac3 0.36 0.24 0.31 0.23 0.50 0.19 0.21 0.40 0.37 0.07 0.20 0.32 0.24

XMg4 0.61 0.59 0.43 0.83 0.13 0.85 0.52 0.08 0.62 0.54 0.44 0.25 0.50

Name5 D D S D F D D S D S S S S

1c – core; r – rim, 2 – cal cu lated ac cord ing to stoichiometry, 3 – Xvac = X-site va cancy, 4 – XMg = Mg/(Mg + Fe), 5 Name: D – dravite, S – schörl, F – foitite; b.d.l. – be low de tec tion limit; ox ides in [wt.%]; cat ions in [apfu]

(11)

di verse source area or sev eral dif fer ent source ar eas. The most prob a ble source area built of ig ne ous and var i ous grade meta - mor phic rocks, as in di cated by gar net and tour ma line com po si - tion, is lo cated in the Moldanubian Zone of the Bo he mian Mas sif (e.g., Dallmeyer et al., 1995; Novák et al., 2004; Mazur et al., 2006; Kotková, 2007; Buriánek and Novák, 2007; ¯elaŸniewicz et al., 2011; Biernacka, 2012a, b and ref er ences therein). Crys - tal line ig ne ous and meta mor phic mas sifs of this re gion have also re peat edly been shown to be the or i gin of de tri tus of the Car bon - if er ous clastic rocks of the Up per Silesia Block (e.g., Paszkowski et al., 1995; Kusiak et al., 2006). More over, the com po si tion of gar net and tour ma line is gen er ally com pa ra ble with the com po si - tions of de tri tal gar net and tour ma line de rived from cer tain mas - sifs of the Molda nubian Zone within the Bo he mian Mas sif (Feli - cka, 2000; Èopja ková et al., 2005; Kotková et al., 2007; Bierna - cka and Józefiak, 2009; Biernacka, 2012a, b; Kowal-Linka and Stawikowski, 2013).

Re gard ing the gar net group, one ques tion is whether a two-stage prov e nance would af fect the whole pop u la tion. Gar - net is re garded as mod er ately sta ble dur ing trans port and burial diagenesis (e.g., Mor ton, 1984; Mor ton and Hallsworth, 1999, 2007 and ref er ences therein). It can per sist to depths of over 3500 m (Mor ton, 1984; Andà et al., 2012), how ever, the deeper un der ground level, the more etched the gar net grains be come and the pri mary gar net pop u la tion is grad u ally de pleted in less sta ble end-mem bers. Ac cord ing to Mor ton (1987) the less sta - ble gar net mol e cule is grossular, and in the sys tem alman - dine–spessartine–grossular–pyrope its rel a tive con tent de crea - ses with in creas ing depth. Con se quently, the gar net pop u la tion be comes rel a tively en riched in pyrope, spessartine and alman - dine mol e cules. Tak ing this into con sid er ation, if gros sular gar - net was pres ent in the pri mary source rocks, it may be im pov er - ished in the pop u la tion stud ied, while other va ri et ies sur vive.

EUHEDRAL HEAVY MINERAL SUITE

Only the euhedral min er als have most prob a bly di rectly de - rived from a crys tal line mas sif that was ex posed and eroded si - mul ta neously with ero sion of Car bon if er ous–Tri as sic clastic strata de liv er ing the rounded grain pop u la tion. Elon gated euhe - dral zir con is char ac ter is tic of rap idly cooled, por phy ritic shal low ig ne ous bod ies, while euhedral short pris matic zir con crys tals of ten form in deep ig ne ous in tru sions (e.g., Corfu et al., 2003). A source for the elon gated zir cons could be there fore Car bon if er - ous-Perm ian vol ca nic rocks around Czatkowice (e.g., Harañ - czyk, 1989; ¯aba, 1999; Nawrocki et al., 2008; S³aby et al., 2010 and ref er ences therein). This idea is sup ported by the pres ence of vol ca nic frag ments in the Ju ras sic strata of the Krzeszowice re gion (Przyby³owicz, 1958).

The euhedral gar net prov e nance is more prob lem atic. The pres ence of euhedral spessartine-rich almandine among the compositionally vari able rounded gar net pop u la tion in the Czatkowice palaeokarst im plies that an ad di tional crys tal line source mas sif was eroded dur ing karst infill. The sup ply seems to have been shut off when the Mid dle Ju ras sic sed i ments were de pos ited, as sug gested by lower fre quency of spessartine-rich gar net in those clastic de pos its (Fig. 6; Aubrecht et al., 2009a;

Méres et al., 2012). Meta mor phic rocks which could sup ply such gar net are known from the crys tal line base ment of Bruno - vistulicum, in which the area stud ied is sit u ated (e.g., Bu³a and

¯aba, 2005, 2008; Bu³a et al., 2008; ¯elaŸniewicz et al., 2009).

The Bielsko-Andrychów Mas sif con tains mica-schists and gneiss es formed un der mid dle to up per am phi bo lite fa cies con - di tions (e.g., Moryc and Heflik, 1998; ¯elaŸniewicz et al., 2009) but these rocks are over lain by strata dat ing back to the De vo - nian. How ever, in the south ern part of the Bielsko-Andrychów Mas sif the Pre cam brian crys tal line rocks are el e vated (a sit u a - tion that may con tinue un der the Carpathians) and oc cur di - rectly un der Mio cene strata (Bu³a et al., 2004). The other known area (much closer to the Czatkowice Quarry) built of meta mor - phic rocks cov ered di rectly by Mid dle Ju ras sic de pos its (Burtan, 1962; Krysowska, 1962) is the Rzeszotary horst, as de ter mined in the bore holes Rzeszotary 1 and 2, Dobczyce 1 and 4 and Wiœniowa 6 (Burtan, 1962; Pelczar and Wieser, 1962; Heflik and Konior, 1972, 1974; Konior, 1974; see also Bu³a et al., 2004). Among meta mor phic rocks build ing the horst mica- schists, gneiss es and am phi bo lites formed un der greenschist to am phi bo lite fa cies con di tions, con tain ing gar net as one of the ac ces sory min er als, were de scribed (Burtan, 1962; Heflik and Konior, 1972, 1974; Górska and Heflik, 1975). The gar net was rec og nized as almandine us ing op ti cal meth ods only (Heflik and Konior, 1974; Górska and Heflik, 1975). How ever, as this iden ti fi ca tion was not ac com pa nied by an a lyt i cal data on the gar net, it can not be ex cluded that this almandine could con tain a sig nif i cant amount of the spessartine mol e cule. There fore, the Rzeszotary horst may be taken into ac count as a po ten tial source area for the euhedral spessartine-almandine gar net oc - cur ring in the Czatkowice palaeokarst fill ing. The area is also close enough to the Czatkowice re gion for gar net to re main in a good pres er va tion state dur ing trans port. Nev er the less, it can - not be ex cluded that other lo cal ig ne ous bod ies with meta mor - phic en ve lopes de liv er ing euhedral grains ex isted in the area south of the Kraków–Wieluñ Up land, and are now lo cated deep un der the Carpathian overthrust. Al ter na tively, the euhedral grains may have been re leased from peb bles of ig ne ous and meta mor phic rocks of Car bon if er ous con glom er ates (e.g., Paszko wski et al., 1995).

Al

Al Fe50 (tot)50 Al Mg50 50

1

2

3

4 5

6

7

8

Fig. 9. Prov e nance of the tour ma lines stud ied on the prov e nance di a gram of Henry and Guidotti (1985) 1 – Li-rich granitoids, pegmatites and aplites; 2 – Li-poor granitoids, pegmatites and aplites; 3 – hy dro ther mally al tered gra nitic rocks; 4 – Al-rich metapelites and metapsammites; 5 – Al-poor metapelites and metapsammites; 6 – Fe3+-rich quartz-tour ma line rocks, calcsili - cates and metapelites; 7 – Ca-poor ultramafites; 8 – metacarbo - nates and metapyroxenites

(12)

CONCLUSIONS

The high de gree of round ing of heavy min er als found in the rem nants of Ju ras sic pre-Callovian palaeokarst in the Czatko - wice Quarry sug gests their re cy cling and prov e nance from sed - i men tary or metasedimentary rocks. Min eral fre quen cies and min eral spe cies in the as sem blages point mainly at Car bon if er - ous or Tri as sic clastic de pos its of the area sur round ing the Czatkowice Quarry as the di rect sed i men tary source rocks, though other sed i men tary clastic rocks can not be ex cluded as sources.

The chem i cal com po si tions of the rounded gar nets in di - cates their ini tial or i gin from di verse rock types in clud ing acidic to in ter me di ate ig ne ous rocks, metasedimentary rocks of am - phi bo lite fa cies con di tions, high-grade meta mor phic rocks as well as ultramafites and ul tra-high pres sure metabasites. Tour - ma line com po si tion sug gests a pri mary prov e nance from Li- poor gra nitic rocks and metasedimentary rocks of low Ca and var i ous Al con tents. The Bo he mian Mas sif crys tal line com - plexes seem to be the most prob a ble ini tial source ar eas for the rounded group of heavy min eral as sem blages stud ied. How - ever, other crys tal line mas sifs ex posed dur ing infill of the palaeokarst stud ied can not be ruled out.

Only the scarce euhedral grains may have been de rived di - rectly from ig ne ous or meta mor phic par ent rocks. Car bon if er - ous-Perm ian vol ca nic rocks in truded within the sed i men tary

cover of the Up per Silesia Block, be ing a part of Brunovi - stulicum, ap pear to be par ent rocks for euhedral zir con, while crys tal line meta mor phic rocks build ing the up lifted parts of base ment of Brunovistulicum may be source rocks for the euhedral gar net pop u la tion.

Sum ming up two si mul ta neously op er at ing prov e nance mod els may be pro posed to ex plain the heavy min er als oc cur - ring in the Czatkowice Ju ras sic pre-Callovian palaeokarst infills:

1) Bo he mian Mas sif ig ne ous and meta mor phic bod ies (ini - tially) ® Car bon if er ous-Tri as sic clastic de pos its of the area sur - round ing the Czatkowice Quarry ® Czatkowice palaeokarst infill or/and ad di tional de liv ery from ex posed sed i men tary or meta sedimentary rocks – for the rounded grains and

2) Perm ian vol ca nic rocks, the Rzeszotary horst and/or other lo cal ig ne ous and meta mor phic bod ies, for the euhedral zir con and gar net grains.

Ac knowl edg ments. I would like to thank to M. Gradziñski for the ed i to rial han dling of the pa per. More over, M. Gradziñski is ac knowl edged for hand ing on the sam ples from the quarry and the pho to graph of the palaeokarst, which was used in this ar ti cle.

I am also thank ful to M. Paszkowski (Pol ish Acad emy of Sci - ences) and R. Aubrecht (Comenius Uni ver sity) for their pos i tive and crit i cal com ments which helped to im prove the manu script.

The in ves ti ga tion was fi nan cially sup ported by Jagiellonian Uni - ver sity DS funds.

REFERENCES

Andà S., Garzanti E., Padoan M., Limonta M. (2012) Cor ro sion of heavy min er als dur ing weath er ing and diagenesis: a cat a log for op ti cal anal y sis. Sed i men tary Ge ol ogy, 280: 165–178.

Aubrecht R., Méres Š., Gradziñski M., Sýkora M. (2009a) Mys te ri - ous high-pyrope detritic gar nets in the Mid dle Ju ras sic clastics of the Cra cow re gion. Geologia, 35: 9–15.

Aubrecht R., Méres Š., Sykora M. and Mikuš T. (2009b) Prov e - nance of the de tri tal gar nets and spi nels from the Albian sed i - ments of the Czorstyn Unit (Pieniny Klippen Belt, West ern Carpa thians, Slovakia). Geologica Carpathica, 60: 463–483.

Biernacka J. (2012a) De tri tus from Variscan lower crust in Rotlie - gend sand stones of the Intra-Sudetic Ba sin, SW Po land, re - vealed by de tri tal high-pyrope gar net. Annales Societatis Geolo - gorum Poloniae, 82: 127–138.

Biernacka J. (2012b) Prov e nance of Up per Cre ta ceous quartz-rich sand stones from the North Sudetic Synclinorium, SW Po land:

con straints from de tri tal tour ma line. Geo log i cal Quar terly, 56 (2): 315–332.

Biernacka J., Józefiak M. (2009) The East ern Sudetic Is land in the Early-to-Mid dle Turonian: ev i dence from heavy min er als in the Jerzmanice sand stones, SW Po land. Acta Geologica Polonica, 59: 545–565.

Bogacz K. (1980) Tec ton ics of the Palaeozoic of the Dêbnik re gion (in Pol ish with Eng lish sum mary). Rocznik Polskiego Towa - rzystwa Geologicznego, 50 (2): 175–182.

Borsuk-Bia³ynicka M., Ev ans S.E., eds. (2009) An Early Tri as sic ver te brate as sem blage from karst de pos its at Czatkowice, Po - land. Palaeontologia Polonica, 65.

Bu³a Z., ¯aba J. (2005) Pozycja tektoniczna Górnoœl¹skiego Zag³ê - bia Wêglowego na tle prekambryjskiego i dolnopaleozoicznego pod³o¿a. In: Geologia i zagadnienia ochrony œrodowiska w regionie górnoœl¹skim (eds. J. Jureczka, Z. Bu³a and J. ¯aba):

14–42. Pañstwowy Instytut Geologiczny, Polskie Towarzystwo Geologiczne.

Bu³a Z., ¯aba J. (2008) Struc ture of the Pre cam brian base ment of the east ern part of the Up per Silesian block (Brunovistulicum) (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 56 (6):

473–480.

Bu³a Z., Jawor E., Baran U. (2004) Geotectonic po si tion of Car bon - if er ous strata in the south ern part of the Up per Silesian and Ma³opolska blocks (in Pol ish with Eng lish sum mary). In:

Mo¿liwo œci generowania wêglowodorów w ska³ach karbonu w po³udniowej czêœci bloku górnoœl¹skiego i ma³opolskiego (ed.

M.J. Kotarba): 9–14. Towarzystwo Badañ Przemian Œrodowiska

“Geosfera”, Wydawnictwo Naukowe “Akapit”, Kraków.

Bu³a Z., ¯aba J., Habryn R. (2008) Tec tonic sub di vi sion of Po land:

south ern Po land (Up per Silesian Block and Ma³opolska Block) (in Pol ish with Eng lish sum mary). Przegl¹d Geologiczny, 56 (10): 912–920.

Buriánek D., Novák M. (2007) Compositional evo lu tion and sub sti - tu tions in dis sem i nated and nod u lar tour ma line from leucocratic gran ites: ex am ples from the Bo he mian Mas sif, Czech Re pub lic.

Lithos, 95: 148–164.

Burtan J. (1962) Bore hole Rzeszotary 2 (pre lim i nary re port) (in Pol - ish with Eng lish sum mary). Kwartalnik Geologiczny, 6 (2):

245–259.

Corfu F., Hanchar J.M., Kinny P. (2003) At las of zir con tex tures.

Re views in Min er al ogy and Geo chem is try, 53: 468–500.

Èopjaková R., Sulovský P., Pat er son B.A. (2005) Ma jor and trace el e ments in pyrope-almandine gar nets as sed i ment prov e nance in di ca tors of the Lower Car bon if er ous Culm sed i ments, Drahany Up lands, Bo he mian Mas sif. Lithos, 82: 51–70.

Dahlquist J.A., Galindo C., Pankhurst R.J., Rapela C.W., Alasino P.H., Saavedra J., Fan ning C.M. (2007) Mag matic evo lu tion of the Peñón Rosado gran ite: petro gen esis of gar net-bear ing grani toids. Lithos, 95: 177–207.

Dallmeyer R.D., Franke W., Weber K., eds. (1995) Pre-Perm ian Ge ol ogy of Cen tral and East ern Eu rope. Springer-Verlag, Berlin.

(13)

Deer W.A., Howie R.A., Zussman J. (1992) An introduction to the Rock-form ing Min er als (2nd edi tion). Longman Sci en tific and Tech ni cal, New York, Wiley.

Deer W.A., Howie R.A., Zussman J. (1997) Rock-form ing Min er - als. Orthosilicates. The Geo log i cal So ci ety; Lon don.

Droop G.T.R., Harte B. (1995) The ef fect of Mn on the phase re la - tions of me dium grade pelites: con straints from nat u ral as sem - blages on petro gen etic grid to pol ogy. Jour nal of Pe trol ogy, 36:

1549–1578.

Dutrow B.L., Henry D.J. (2011) Tour ma line: a geo logic DVD. El e - ments, 7: 301–306.

Felicka E. (2000) Heavy min er als in the Car bon if er ous sed i ments of the Intra-Sudetic Ba sin as palaeogeographic in di ca tors. Geolo - gica Sudetica, 33: 49–65.

G³azek J. (1989) Paleokarst of Po land. In: Paleokarst (eds. P.

Bosák, D.C. Ford, J. G³azek and I. Horáèek): 77–105. Ac a de - mia, Praha.

Górska L., Heflik W. (1975) Hornblende-epidote schists and am - phi bo lites from crys tal line base ment of the Cieszyn-Kraków area (in Pol ish with Eng lish sum mary). Geologia, 1 (3): 41–47.

Gradziñski R. (1962) Or i gin and de vel op ment of sub ter ra nean karst in the south ern part of the Cra cow Up land (in Pol ish with Eng lish sum mary). Rocznik Polskiego Towarzystwa Geolo - gicznego, 32: 429–492.

Gradziñski R. (1993) Geo log i cal map of Cra cow re gion with out Qua ter nary and ter res trial Ter tiary de pos its. Muzeum Geolo - giczne, Instytut Nauk Geologicznych PAN, Kraków.

Gradziñski R., Wójcik Z. (1966) Kras kopalny w Polsce. Prace Muzeum Ziemi, 9: 151–222.

Harañczyk C. (1989) Rozwój wulkanizmu krakowskiego. In: Prze - wodnik LX Zjazdu Polskiego Towarzystwa Geologicznego (ed.

J. Rutkowski): 51–58. Wydawnictwo AGH, Kraków.

Heflik W., Konior K. (1972) Meta mor phic for ma tions in bore hole Dobczyce 1 (in Pol ish with Eng lish sum mary). Kwartalnik Geolo - giczny, 16 (3): 546–556.

Heflik W., Konior K. (1974) The pres ent state of knowl edge con - cern ing the crys tal line base ment in the Cieszyn–Rzeszotary area (in Pol ish with Eng lish sum mary). Biuletyn Instytutu Geolo - gicznego, 273: 195–221.

Henry D.J., Dutrow B.L. (1996) Meta mor phic tour ma line and its pet ro logic ap pli ca tions. Re views in Min er al ogy, 33: 503–557.

Henry D.J., Guidotti C.V. (1985) Tour ma line as a petro gen etic in di - ca tor min eral: an ex am ple from the staurolite-grade metapelites of NW Maine. Amer i can Min er al o gist, 70: 1–15.

Henry D.J., Novák M., Haw thorne F.C., Ertl A., Dutrow B.L., Uher P., Pezzotta F. (2011) No men cla ture of the tour ma line-super - group min er als. Amer i can Min er al o gist, 96: 895–913.

Hinsberg V.J. van, Henry D.J., Dutrow B.L. (2011a) Tour ma line as a pet ro logic fo ren sic min eral: a unique re corder of its geo logic past. El e ments, 7: 327–332.

Hinsberg V.J. van, Henry D.J., Marschall H.R. (2011b) Tour ma - line: an ideal in di ca tor of its host en vi ron ment. Ca na dian Min er - al o gist, 49: 1–16.

Hubert J.F. (1962) A zir con-tour ma line ma tu rity in dex and the in ter - de pen dence of the com po si tion of heavy min eral as sem blages with the gross com po si tion and tex ture of sand stones. Jour nal of Sed i men tary Pe trol ogy, 32: 440–450.

K¹kol T. (2011) Heavy min er als fill ing the Czatkowice palaeokarst (in Pol ish with Eng lish ab stract). Un pub lished Msc the sis. Ar - chive of the In sti tute of Geo log i cal Sci ences, Jagiellonian Uni - ver sity.

Konior K. (1974) Geo log i cal struc ture of the Rzeszotary el e va tion in the light of re cent geo phys i cal and drill ing data. Rocznik Polskiego Towarzystwa Geologicznego, 44: 321–375

Kotková J. (2007) High-pres sure granu lites of the Bo he mian Mas - sif: re cent ad vances and open ques tions. Jour nal of Geoscien - ces, 52: 45–71.

Kotková J., Gerdes A., Parrish R.R., Novák M. (2007) Clasts of Variscan high-grade rocks within Up per Viséan con glom er ates

– con straints on ex hu ma tion his tory from pe trol ogy and U-Pb chro nol ogy. Jour nal of Meta mor phic Ge ol ogy, 25: 781–801.

Kowal-Linka M., Stawikowski W. (2013) Gar net and tour ma line as prov e nance in di ca tors of terrigenous ma te rial in epicontinental car bon ates (Mid dle Tri as sic, S Po land). Sed i men tary Ge ol ogy, 291: 27–47.

Krysowska M. (1960) As sem blages of heavy min er als in Dogger sed i ments in the vi cin ity of Krzeszowice (In Pol ish with Eng lish sum mary). Biuletyn Instytutu Geologicznego, 152: 289–320.

Krysowska M. (1962) Ana lyse pÀtrographique des roches du Jurassique moyen ´ Rzeszotary (in Pol ish with French sum - mary). Rocznik Polskiego Towarzystwa Geologicznego, 32:

565–578.

Kusiak M.A., Kêdzior A., Paszkowski M., Suzuki K., González- Álvarez I., Wajsprych B., Doktor M. (2006) Prov e nance im pli - ca tions of Th-U-Pb elec tron microprobe ages from de tri tal monazite in the Car bon if er ous Up per Silesia Coal Ba sin, Po - land. Lithos, 88: 56–71.

Lis J., Wójcik Z. (1960) Tri as sic bone brec cia and karst forms in Stare Gliny quarry near Olkusz (Cra cow Up land) (in Pol ish with Eng lish sum mary). Kwartalnik Geologiczny, 4: 55–75.

£ydka K. (1955) Petrographic stud ies con cern ing the Permo-Car - bon if er ous of the Cra cow re gion (in Pol ish with Eng lish sum - mary). Biuletyn Instytutu Geologicznego, 97: 123–215.

£ydka K. (1956) On the pe trog ra phy and sed i men ta tion of the Bunter Sand stone in the Silesian Cra cow re gion (in Pol ish with Eng lish sum mary). Biuletyn Instytutu Geologicznego, 108:

1–194.

Madeyska T. (1977) The age dif fer en ti a tion of caves and their sed i - ments of the S¹spowska Val ley. Kras i Speleologia, 1: 71–80.

Madeyska-Niklewska T. (1969) Up per Pleis to cene de pos its in caves of the Cra cow Up land (in Pol ish with Eng lish sum mary).

Acta Geologica Polonica, 19: 341–392.

Mange M.A., Mor ton A.C. (2007) Geo chem is try of heavy min er als.

De vel op ments in Sedimentology, 58: 345–391.

Mange M.A., Wright D.T., eds. (2007) Heavy Min er als in Use. De - vel op ments in Sedimentology, 58.

Mazur S., Aleksandrowski P., Kryza R., Oberc-Dziedzic T. (2006) The Variscan Orogen in Po land. Geo log i cal Quar terly, 50:

89–118.

Méres Š., Aubrecht R., Gradziñski M., Sýkora M. (2012) High (ultrahigh) pres sure meta mor phic terrane rocks as the source of the de tri tal gar nets from the Mid dle Ju ras sic sands and sand - stones of the Cra cow Re gion (Cra cow-Wieluñ Up land, Po land).

Acta Geologica Polonica, 62: 231–245.

Mor ton A.C. (1984) Sta bil ity of de tri tal heavy min er als in Ter tiary sand stones of the North Sea Ba sin. Clay Min er als, 19: 287–308.

Mor ton A.C. (1987) In flu ences of prov e nance and diagenesis on de tri tal gar net suites in the For ties sand stone, Paleocene, cen - tral North Sea. Jour nal of Sed i men tary Pe trol ogy, 57:

1027–1032.

Mor ton A.C., Hallsworth C.R. (1999) Pro cesses con trol ling the com po si tion of heavy min eral as sem blages in sand stones. Sed - i men tary Ge ol ogy, 124: 3–29.

Mor ton A.C., Hallsworth C.R. (2007) Sta bil ity of de tri tal heavy min - er als dur ing burial diagenesis. De vel op ments in Sedimentology, 58: 215–245.

Mor ton A.C., Hallsworth C.R., Chalton B. (2004) Gar net com po si - tion in Scot tish and Nor we gian base ment ter rains: a frame work for in ter pre ta tion of North Sea sand stone prov e nance. Ma rine and Pe tro leum Ge ol ogy, 21: 393–410.

Moryc W., Heflik W. (1998) Meta mor phic rocks in the base ment of the Carpathians be tween Bielsko-Bia³a and Cra cow. Geo log i cal Quar terly, 42 (1): 1–14.

Nawrocki J., Fan ning M., Lewandowska A., Polechoñska O., Werner T. (2008) Palaeomagnetism and the age of the Cra cow vol ca nic rocks (S Po land). Geo phys i cal Jour nal In ter na tional, 174: 475–488.

Novák M., Povondra P., Selway J.B. (2004) Schorl–oxy–schorl to dravite–oxy–dravite tour ma line from gra nitic pegmatites; ex am -

(14)

ples from the Moldanubicum, Czech Re pub lic. Eu ro pean Jour - nal of Min er al ogy, 16: 323–333.

Paszkowski M. (2000) Pre-Callovian mul ti ple karstification of Car - bon if er ous lime stone. In: Cli mate Changes, the Karst Re cord II (ed. M. Gradziñski): 16–23. In sti tute of Geo log i cal Sci ences, Pol ish Acad emy of Sci ence, In sti tute of Geo log i cal Sci ences, Jagiellonian Uni ver sity, Kraków.

Paszkowski M. (2009) The Early Tri as sic karst of Czatkowice 1, south ern Po land. Palaeontologia Polonica, 65: 7–16.

Paszkowski M., Wieczorek J. (1982) Fos sil karst with Me so zoic bone brec cia in Czatkowice (Cra cow Up land, Po land). Kras i Speleologia, 4: 32–38.

Paszkowski M., Jachowicz M., Michalik M., Teller L., Uchman A., Urbanek Z. (1995) Com po si tion, age and prov e nance of gravel – sized clasts from the Up per Car bon if er ous of the Up per Silesia Coal Ba sin. Studia Geologica Polonica, 108: 45–127.

Pelczar A., Wieser T. (1962) Budowa metamorfiku wykrytego otworem wiertniczym w Rzeszotarach. Kwartalnik Geologiczny, 6: 444–445.

Przyby³owicz T. (1958) Petrographic stud ies of clastic Ju ras sic rocks of the Cra cow re gion (in Pol ish with Eng lish sum mary).

Archiwum Mineralogiczne, 22: 153–186.

S³aby E., Breitkreuz C., ¯aba J., Domañska-Siuda J., Gaidzik K., Falenty K., Falenty A. (2010) Magma gen er a tion in an al ter nat - ing transtensional–transpressional re gime, the Kraków–Lub - liniec Fault Zone, Po land. Lithos, 119: 251–268.

Siedlecki S. (1954) Palaeozoic for ma tions of the Cra cow re gion (in Pol ish with Eng lish sum mary). Biuletyn Instytutu Geologi - cznego, 73.

Siedlecka A., Krysowska M. (1962) Stud ies of or i gin and dis tri bu - tion of the Karniowice sand stones north of the Krzeszowice graben (in Pol ish with Eng lish sum mary). Rocznik Polskiego Towarzystwa Geologicznego, 32: 371–398.

¯aba J. (1999) The struc tural evo lu tion of Lower Palaeozoic suc ces - sion in the Up per Silesia Block and Ma³opolska Block bor der zone (south ern Po land) (in Pol ish with Eng lish sum mary). Prace Pañstwowego Instytutu Geologicznego, 166: 1–89.

¯elaŸniewicz A., Bu³a Z., Fan ning M., Seghedi A., ¯aba J. (2009) More ev i dence on Neoproterozoic ter ranes in south ern Po land and south east ern Ro ma nia. Geo log i cal Quar terly, 53: 93–124.

¯elaŸniewicz A., Aleksandrowski P., Bu³a Z., Karnkowski P.H., Konon A., Oszczypko N., Œl¹czka A., ¯aba J., ¯ytko K. (2011) Regionalizacja tektoniczna Polski. Komitet Nauk Geologi - cznych PAN, Wroc³aw.

Cytaty

Powiązane dokumenty

ich współwystępowania jest określony poprzez pierwsze pojawienie się Ctenidodinium ornatum oraz ostatnie wystąpienie Ctenidodinium comba- zii i obejmuje poziom Discus

Other ex pla na tion as in Figure 2.. pos its of the Rzeczyn PIG-1 suc ces sion are very vari able. Un doubt edly, one of the main fac tors re spon si ble for this is the chang

Sand stones from the Albian–Cenomanian exotics-bear ing flysch de pos its were ana lysed for their heavy-min eral con tent (Klape Unit in the Pieniny Klippen Belt, Tatric and

Pet ro log i cal and geo chem i cal con straints on prov e nance, paleo-weath er ing and tec tonic set ting of clastic sed i ments from the Neo gene Lambir and Sibuti For

SEM photomicrographs of phosphatized ‘white’ sponges; A – interspicular space, empty space after dissolved siliceous spicule with its relict; B – close-up view of relict of

9B provides evidence that the parent rocks for the garnets studied did not lie in that part of the Eastern Sudetic Island which at present constitutes the Sudetes Mts.: neither

The heavy mine- rai assemblages in the central part of the Magura Nappe are characterised usually by the most stable heavy mineral groups (zircon, tourmaline

The prob - lem of the ab sence of ap a tite leads to the con clu sion that the sed i men tary ma te rial of the sand stones stud ied was prob a bly trans ported and/or stored