• Nie Znaleziono Wyników

Measurement of the $np\rightarrow np\pi^{0} \pi ^{0}$ reaction in search for the recently observed $d^{\ast}$ (2380) resonance

N/A
N/A
Protected

Academic year: 2022

Share "Measurement of the $np\rightarrow np\pi^{0} \pi ^{0}$ reaction in search for the recently observed $d^{\ast}$ (2380) resonance"

Copied!
8
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the npnp π 0 π 0 reaction in search for the recently observed d ( 2380 ) resonance

WASA-at-COSY Collaboration

P. Adlarson

a,1

, W. Augustyniak

b

, W. Bardan

c

, M. Bashkanov

d,e

, F.S. Bergmann

f

, M. Berłowski

g

, H. Bhatt

h

, A. Bondar

i,j

, M. Büscher

k,l,2,3

, H. Calén

a

, I. Ciepał

c

, H. Clement

d,e,∗

, D. Coderre

k,l,m,4

, E. Czerwi ´nski

c

, K. Demmich

f

, E. Doroshkevich

d,e

, R. Engels

k,l

, A. Erven

n,l

, W. Erven

n,l

, W. Eyrich

o

, P. Fedorets

k,l,p

, K. Föhl

q

, K. Fransson

a

, F. Goldenbaum

k,l

, P. Goslawski

f

, A. Goswami

k,l,r

, K. Grigoryev

k,l,s,5

, C.-O. Gullström

a

, F. Hauenstein

o

, L. Heijkenskjöld

a

, V. Hejny

k,l

, B. Höistad

a

, N. Hüsken

f

, L. Jarczyk

c

, T. Johansson

a

, B. Kamys

c

, G. Kemmerling

n,l

, F.A. Khan

k,l

, A. Khoukaz

f

, D.A. Kirillov

u

, S. Kistryn

c

, H. Kleines

n,l

, B. Kłos

v

, W. Krzemie ´n

c

, P. Kulessa

w

, A. Kup´s ´c

a,g

, A. Kuzmin

i,j

, K. Lalwani

h,6

, D. Lersch

k,l

, B. Lorentz

k,l

, A. Magiera

c

, R. Maier

k,l

, P. Marciniewski

a

, B. Maria ´nski

b

, M. Mikirtychiants

k,l,m,s

, H.-P. Morsch

b

, P. Moskal

c

, H. Ohm

k,l

, I. Ozerianska

c

, E. Perez del Rio

d,e

, N.M. Piskunov

u

, P. Podkopał

c

, D. Prasuhn

k,l

,

A. Pricking

d,e

, D. Pszczel

a,g

, K. Pysz

w

, A. Pyszniak

a,c

, J. Ritman

k,l,m

, A. Roy

r

, Z. Rudy

c

, S. Sawant

k,l,h

, S. Schadmand

k,l

, T. Sefzick

k,l

, V. Serdyuk

k,l,x

, B. Shwartz

i,j

, R. Siudak

w

, T. Skorodko

d,e,y

, M. Skurzok

c

, J. Smyrski

c

, V. Sopov

p

, R. Stassen

k,l

, J. Stepaniak

g

,

E. Stephan

v

, G. Sterzenbach

k,l

, H. Stockhorst

k,l

, H. Ströher

k,l

, A. Szczurek

w

, A. Täschner

f

, A. Trzci ´nski

b

, R. Varma

h

, G.J. Wagner

d

, M. Wolke

a

, A. Wro ´nska

c

, P. Wüstner

n,l

,

P. Wurm

k,l

, A. Yamamoto

z

, J. Zabierowski

aa

, M.J. Zieli ´nski

c

, A. Zink

o

, J. Złoma ´nczuk

a

, P. ˙Zupra ´nski

b

, M. ˙Zurek

k,l

aDivisionofNuclearPhysics,DepartmentofPhysicsandAstronomy,UppsalaUniversity,Box516,75120Uppsala,Sweden bDepartmentofNuclearPhysics,NationalCentreforNuclearResearch,ul.Hoza 69,00-681,Warsaw,Poland

cInstituteofPhysics,JagiellonianUniversity,ul.Reymonta4,30-059Kraków,Poland

dPhysikalischesInstitut,Eberhard-Karls-UniversitätTübingen,AufderMorgenstelle14,72076Tübingen,Germany

eKeplerCenterforAstroandParticlePhysics,EberhardKarlsUniversityTübingen,AufderMorgenstelle14,72076Tübingen,Germany fInstitutfürKernphysik,WestfälischeWilhelms-UniversitätMünster,Wilhelm-Klemm-Str.9,48149Münster,Germany

gHighEnergyPhysicsDepartment,NationalCentreforNuclearResearch,ul.Hoza69,00-681,Warsaw,Poland hDepartmentofPhysics,IndianInstituteofTechnologyBombay,Powai,Mumbai-400076,Maharashtra,India iBudkerInstituteofNuclearPhysicsofSBRAS,11akademikaLavrentievaprospect,Novosibirsk,630090,Russia jNovosibirskStateUniversity,2PirogovaStr.,Novosibirsk,630090,Russia

kInstitutfürKernphysik,ForschungszentrumJülich,52425Jülich,Germany lJülichCenterforHadronPhysics,ForschungszentrumJülich,52425Jülich,Germany

mInstitutfürExperimentalphysikI,Ruhr-UniversitätBochum,Universitätsstr.150,44780Bochum,Germany nZentralinstitutfürEngineering,ElektronikundAnalytik,ForschungszentrumJülich,52425Jülich,Germany

oPhysikalischesInstitut,Friedrich-Alexander-UniversitätErlangen-Nürnberg,Erwin-Rommel-Str.1,91058Erlangen,Germany

*

Correspondingauthor.

E-mailaddress:heinz.clement@uni-tuebingen.de(H. Clement).

1 Presentaddress:InstitutfürKernphysik,JohannesGutenberg-UniversitätMainz,Johann-Joachim-BecherWeg 45,55128Mainz,Germany.

2 Presentaddress:PeterGrünbergInstitut,PGI-6ElektronischeEigenschaften,ForschungszentrumJülich,52425Jülich,Germany.

3 Presentaddress:InstitutfürLaser- undPlasmaphysik,Heinrich-HeineUniversitätDüsseldorf,Universitätsstr. 1,40225Düsseldorf,Germany.

4 Presentaddress:AlbertEinsteinCenterforFundamentalPhysics,UniversitätBern,Sidlerstrasse 5,3012Bern,Switzerland.

5 Presentaddress:III. PhysikalischesInstitut B,Physikzentrum,RWTHAachen,52056Aachen,Germany.

6 Presentaddress:DepartmentofPhysicsandAstrophysics,UniversityofDelhi,Delhi-110007,India.

http://dx.doi.org/10.1016/j.physletb.2015.02.067

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Articlehistory:

Received9September2014

Receivedinrevisedform29January2015 Accepted27February2015

Availableonline3March2015 Editor: V.Metag

Keywords:

Two-pionproduction

ABCeffectandresonancestructure Dibaryonresonance

Exclusivemeasurementsofthequasi-freenpnpπ0π0reactionhavebeenperformedbymeansofdp collisionsatTd=2.27 GeV usingtheWASAdetectorsetupatCOSY.Totalanddifferentialcrosssections have been obtained covering the energy region √

s= (2.35–2.46) GeV, which includes the regionof the ABC effectand itsassociated d(2380)resonance. Addingthe d resonance amplitudetothat for theconventionalprocessesleadstoareasonabledescriptionofthedata.Theobservedresonanceeffect inthetotalcrosssectionisinagreementwiththepredictionsofFäldtand Wilkinas wellwiththose of Albadajedo and Oset.The ABC effect, i.e. the low-massenhancement in the π0π0-invariant mass spectrum, isfoundto beverymodest–ifpresentatall,whichmightposeaproblemtosomeofits interpretations.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Recentdata onthe basicdouble-pionicfusion reactions pnd

π

0

π

0 and pnd

π

+

π

demonstratethattheso-calledABCef- fectistightlycorrelatedwithanarrowresonancestructureinthe totalcrosssectionofthesereactions[1–3].TheABCeffectdenoting ahugelow-massenhancementinthe

π π

invariantmassspectrum is observed to occur, if the initial nucleons or light nuclei fuse toa bound final nuclearsystemand iftheproduced pionpairis isoscalar.TheeffecthasbeennamedaftertheinitialsofAbashian, BoothandCrowe,who firstobserveditinthe inclusivemeasure- mentofthepd3HeX reactionmorethanfiftyyearsago[4].

TheresonancestructurewithI(JP)=0(3+)[1]observedinthe pnd

π π

totalcrosssectionat√

s2.38 GeV issituatedabout 80MeV below√

s=2m, thepeak position ofthe conventional t-channel  process, which is also observed in this reaction.

The resonance structure has a width of only 70 MeV, which is about three times narrower than the conventional process. Nev- ertheless, from the Dalitz plotof the pnd

π

0

π

0 reaction it is concludedthat thisresonance decaysviatheintermediate +0 system(atleastpredominantly) intoits final d

π

0

π

0 state.Inthe pnpp

π

0

π

reaction the resonance has been sensed, too [5], though in this case, there is no ABC effect associated with the resonance. In consequence it has no longer be called ABC reso- nance, butd – adopting the notation of thepredicted so-called

“inevitabledibaryon”[6]withidenticalquantumnumbers.

Bysubsequentquasifreepolarizednp scatteringmeasurements, it has been demonstrated that there is a resonance pole in the coupled3D33G3partialwavescorrespondingtothed resonance structureinmass,widthandquantumnumbers[7,8]–supporting thusitss-channelcharacter.

Ifthescenarioofas-channelresonanceinthenp systemiscor- rect, then also thenpnp

π

0

π

0 reaction should be affected by thisresonance, since thischannel may proceed via the samein- termediate0+systemasthenpd

π

0

π

0 andpnpp

π

0

π

reactions do.From a simple isospinpoint ofview we expectthe resonance effect in the np

π

0

π

0 system to be identical in size to that in the d

π

0

π

0 system. From more refined estimates in

Refs. [9,10],whichaccountalsofordifferencesinphasespace, we expect the resonance effect in the np

π

0

π

0 channel to be about 85% ofthat inthed

π

0

π

0 system. Sincethepeakresonancecross section inthelatteris270 μb[3]sittinguponbackgrounddueto conventionalt-channelRoperandexcitations,weestimatethe peak resonance contribution in thenp

π

0

π

0 systemto be in the orderof200 μb.

2. Experiment

Since there exist no data at all for the npnp

π

0

π

0 chan- nel, we have investigated this reaction experimentally with the WASA detector at COSY (FZ Jülich) by using a deuteron beam with an energy of Td=2.27 GeV impinging on a hydrogen pel- let target [11,12]. By exploiting the quasi-free scattering process dpnp

π

0

π

0+pspectator, we coverthe full energy range of the conjectured resonance. In addition, the quasi-free process in in- verse kinematics gives usthe opportunity to detect alsothe fast spectatorprotonintheforwarddetectorofWASA.

The hardware triggerutilizedin thisanalysisrequiredatleast two chargedhits inthe forward detector aswell as two neutral hitsinthecentraldetector.

The quasi-free reactiondpnp

π

0

π

0+pspectator hasbeense- lectedintheofflineanalysisbyrequiringtwoprotontracksinthe forwarddetectoraswellasfourphotonhitsinthecentraldetec- tor, which can be traced back to the decay of two

π

0 particles.

Thatway,thenon-measuredneutronfour-momentumcouldbere- constructed by a kinematicfit withthreeover-constraints, which derive fromthe conditions forenergy andmomentum conserva- tion andthe

π

0 mass. The achievedresolution in √

s was about 20MeV.

Forthe reconstructionofthe two

π

0 particles out ofthefour

γ

quanta,allcombinationshavebeenconsideredandtheoptimal combination has been chosen, where both of the reconstructed

γ γ

-invariant masses Mγ γ are closest to the nominal

π

0 mass.

For all selected events this leads to a narrow peak in the two- dimensional plotof Mγ γ versus Mγ γ ,see,e.g. Fig. 2 inRef.[13]

(3)

Fig. 1. Plotofthe energylossElayer 4ofparticlesinlayer4ofthesegmented RangeHodoscope versus thatin layer 5(Elayer 5).The bands ofstopped and punch-throughprotonsanddeuteronsareindicated.

andFig. 3inRef.[14].Withthisprocedurethecombinatorialback- groundisverysmall,intheorderofafewpercent.

ThechargedparticlesregisteredinthesegmentedForwardDe- tector of WASAare identified by useof the EE energy loss method.Forits applicationin thedata analysis, all combinations ofsignalsstemmingfromthefivelayersoftheForwardRangeHo- doscope are used. As an example, Fig. 1 shows the plot of the energy loss in layer 4 versus that in layer 5. As can be seen, deuteronsandprotonscanbewellseparatedingeneral.

Adifficultyemerges fromdeuterons,which originatefromthe npd

π

0

π

0 reactionandwhichpartlyalsobreakupwhilepass- ing the detector. Since in the energyloss plots used for particle identificationprotonanddeuteronbandsdohavesome smallbut finiteoverlaps,deuteronscannot beseparatedcompletelyfromnp pairsstemmingfromthenpnp

π

0

π

0 reaction.Tosuppresssuch misidentified eventswe requirethe angle betweenemitted neu- tronandprotontobelargerthanfivedegreesandalsotheirener- giestobeintheexpectedrange.Nevertheless,aMonteCarlo(MC) simulationof thenpd

π

0

π

0 reaction,which is known experi- mentallyand alsocan be modeled very well [1], showsthat we havetoexpect stillacontamination ofabout5% inthespectraof

Fig. 2. Efficiencycorrecteddistribution ofthe spectatorproton momentain the dpnpπ0π0+pspectatorreactionwithintheWASAacceptance,whichallowsthe detectionofthespectatorprotononlyforlabangleslargerthanthreedegrees.In addition,theconstraintforthesuppressionofbreakupeventshasbeenapplied(see text).Dataaregivenbysolid circles.Thehatchedhistogram (visibleatthe bot- tomofthefigure)givestheestimatedsystematicuncertaintyduetotheincomplete coverageofthesolidangle.Thesolidlineshowstheexpecteddistributionforthe quasifreeprocessbasedontheCDBonnpotential[15]deuteronwavefunction.For comparison,thedashedlinegivesthepurephase-spacedistributionasexpectedfor acoherentreactionprocess.

thenpnp

π

0

π

0 reaction.InFigs. 2–7theobservablesareshown with the MC-generated contamination events alreadysubtracted.

Inthe pn invariant-massspectrum Mpn,wherethecontamination showsupmostpronounced, thisconcerns onlythefirst twobins (Fig. 7).

In Fig. 2, the measured efficiency and acceptance corrected spectatormomentum distributionisshownin comparisonwitha MC simulationof thequasifree dpnp

π

0

π

0+pspectator process.

Duetothebeam-pipe,ejectilescanonlybedetectedintheWASA forwarddetectorforlabangleslargerthanthreedegrees.Thegood agreementbetweendataandsimulationprovides confidencethat the dataindeedreflect aquasifree process. Systematicuncertain-

Fig. 3. (Coloronline.) Totalcrosssectionsforthereactionsppppπ0π0(left)andnpnpπ0π0(right).Theresultsofthisworkareshownbythefullcirclesintheright figure.Statisticalandsystematicuncertainties(Table 1)aresmallerthanthesymbolsize.Theuncertaintyintheabsolutenormalizationintheorderof20%isnotshown.

PreviousWASAresultsontheppπ0π0channelareshownbyfullcircles[18]andfullsquare[14],respectively,intheleftfigure,previousbubble-chambermeasurements fromKEK[16]byopencircles.ThemodifiedValenciamodelcalculationisshownbythesolidlines.Thedash-dottedcurveshowstheresult,ifthes-channeldresonance amplitudeisadded.Thedcontributionitselfisgivenbythedottedcurve.

(4)

Fig. 4. (Coloronline.) Distributionsofthec.m.anglescp.m. (top)and cπ.m0. (bot- tom)forthepnnpπ0π0reactionatTn=1.135 GeV.Sincethedataareshown withoutseparationinto

s bins,theycorrespondtotheaverageovertheenergyre- gioncoveredbythequasifreecollisionprocess,whichis2.35 GeV<

s<2.41 GeV (1.07 GeV<Tn<1.23 GeV).Filledcirclesrepresenttheexperimentalresultsofthis work.Thehatchedhistogramsgiveestimatedsystematicuncertaintiesduetothe incompletecoverageofthesolidangle.Theshadedareasdenotephase-space dis- tributions.ThesolidlinesarecalculationswiththemodifiedValenciamodel.The dashed(dash-dotted)linesshowstheresult,ifthed resonanceamplitudewith (without)inclusionofthevertexfunction[1]isadded.Notethatinthebot- tompaneldashedanddash-dottedcurvesliepracticallyontopofeachother.All calculationsarenormalizedinareatothedata.

ties dueto efficiency andacceptance corrections are very small.

Theyareshownashatchedhistogram,barelyvisibleatthebottom lineofFig. 2.Theconstraintforthesuppressionofbreakupevents (see above) causes the maximumaccepted spectator momentum to be < 0.14GeV/cfulfilling the spectator momentum condition used in previous works [1,3,7]. This implies an energy range of 2.35GeV≤√

s2.41GeVbeingcoveredduetotheFermimotion ofthenucleonsinthedeuteron.Thisenergyrangecorrespondsto incidentlabenergiesof1.07GeV<Tn<1.23GeV.

Intotalasampleofabout24 000goodeventshasbeenselected.

The requirement that the two protons have to be in the angu- lar rangecovered by the forward detectorand that the gammas resulting from

π

0 decay have to be in the angular rangeof the central detector reducesthe overall acceptanceto about 7%. The total reconstruction efficiency including all cuts and kinematical fittinghasbeenabout 1%.Efficiencyandacceptancecorrectionsof thedatahavebeenperformedbyMCsimulationsofreactionpro- cessanddetectorsetup.FortheMCsimulationsmodeldescriptions havebeenused,whichwillbediscussedinthenextchapter.Since WASAdoesnot coverthefull reactionphase space,albeit alarge

Fig. 5. (Coloronline.) SameasFig. 4butforthedistributionsoftheinvariantmasses Mpπ0(top)andMnπ0 (bottom).

fraction of it, the corrections are not fully model independent.

The hatched grey histogramsin Figs. 2,4–7 give an estimate for systematic uncertainties due to theuse of differentmodels with andwithoutd resonancehypothesisfortheefficiencycorrection.

Comparedtotheuncertaintiesinthesecorrections,systematicer- rors associated withmodeling the reconstruction of particles are negligible.

The absolute normalization of the data has been performed by the simultaneous measurement of the quasi-free single pion production process dppp

π

0+nspectator and its comparison to previous bubble-chamberresultsforthe pppp

π

0 reaction[16, 17].Thatway,theuncertaintyintheabsolutenormalizationofour dataisessentiallythatoftheprevious pppp

π

0 data,i.e. inthe orderof 20%.

3. Resultsanddiscussion

Inordertodeterminetheenergydependenceofthetotalcross sectionwe havedividedourdatasampleinto10MeVbinsin√

s.

Theresultingtotalcrosssectionstogetherwiththeirstatisticaland systematicuncertaintiesarelistedinTable 1.

Fig. 3exhibitstheenergydependenceofthetotalcrosssection forthenpnp

π

0

π

0reaction(right)incomparisontothatofthe pppp

π

0

π

0 reaction (left). The previous WASAresults [18,14]

and theones ofthis work aregiven by the full circles.They are compared to previous bubble-chamber measurements from KEK (opencircles)[16]incaseofthe pp

π

0

π

0 channel.

(5)

Fig. 6. (Coloronline.) SameasFig. 4butforthedistributionsoftheinvariantmasses Mnπ0π0(top)andMpnπ0(bottom).

Incaseof thenp

π

0

π

0 channel, there existno dedicateddata fromprevious investigations. However, thereare some connected datafromthePINOTexperimentatSaclay,wheretheinclusivere- actions pp

γ γ

X and pd

γ γ

X were measured at Tp=1.3 and1.5 GeV[19].Byexcludingthetwo-photoninvariantmassre- gions correspondingto single

π

0 or

η

production,the remaining two-photon events populating the combinatorial background are likelytooriginatefrom

π

0

π

0 production.Byusingthisfeature,a measureoftheratioofthecrosssectionspnpn

π

0

π

0+d

π

0

π

0

to pppp

π

0

π

0 has beenobtained. This leads to a crude esti- mate for the pnpn

π

0

π

0 cross section to be larger than the pppp

π

0

π

0 crosssectionbyroughlyafactoroftwo–inquali- tativesupportofourresultsfromtheexclusivemeasurements[20].

InFig. 3,wecomparethedatatotheoreticalcalculationsinthe framework of the Valencia model [21], which incorporates both non-resonantandresonantt-channel processesfortwo-pionpro- duction in N N collisions. The t-channel resonance processes of interest hereconcern first of all the excitation of the Roper res- onance and its subsequent decay either directly into the N

π π

systemorviathe

π

systemaswellastheexcitationanddecayof the system. Deviatingfromthe originalValenciacalculations [21],thepresentcalculationshavebeentuned todescribequanti- tativelytheisovectortwo-pionproductionreactions ppN N

π π

[18],inparticularthepp

π

0

π

0[22]andnn

π

+

π

+[23]channelsby thefollowingmodifications:

•relativistic corrections for the  propagator as given by Ref.[24],

Fig. 7. (Coloronline.) ThesameasFig. 4,butforthedistributionoftheinvariant massesMπ0π0(top)andMpn(middle).ThebottompanelshowstherawMpnspec- trumwithoutefficiencyandacceptancecorrections.

strongly reduced

ρ

-exchange contribution in the t-channel

process–inagreementwithcalculationsfromRef.[25],

reduction of the N→ 

π

amplitude by a factorof two in agreementwiththeanalysisofphoton- andpion-inducedpion productiononthenucleon[26]andinagreementwith pppp

π

0

π

0andpppp

π

+

π

measurementsclosetothreshold [27–30] aswellasreadjustment ofthetotalRoper excitation according to the results of the isospin decomposition of the ppN N

π π

crosssections[18],

inclusionofthet-channel excitationofthe(1600)P33 reso- nance.

(6)

The lattermodification was necessary,in orderto account for theunexpectedlylargeppnn

π

+

π

+crosssection[23].Thepre- dictive power of these modifications has been demonstrated by its successful applications to the recent pppp

π

0

π

0 data at Tp=1.4 GeV[14]andtothe pnpp

π

0

π

reaction[5].

Finalstateinteraction(FSI)intheemittedN N systemhasbeen taken into account in the Migdal and Watson [31,32] factorized form.

The N N FSI is by far strongest in the isovector 1S0 pn state andlessstrongin1S0 pp and 3S1 pn statesasapparentfromthe scatteringlengthsin thesesystems.At energies above 1GeVthe t-channel process isthe dominatingone.Isospin decomposi- tionofitscontributiontothetotalnpnp

π

0

π

0crosssection[33, 34,18]showsthatinthisprocess the1S0 final stateis muchless populatedthantheisoscalar3S1 state.Thesituationissomewhat differentinthenear-thresholdregion, wheretheRoperexcitation processdominates.Inthisprocess,equalamountsof pn pairsare emittedin1S0and3S1 states.

SincethemodifiedValenciacalculationshavebeentunedtothe pppp

π

0

π

0 reaction,itisnosurprisethatitstotalcrosssection is fairly well described – see left panel in Fig. 3.For the closely relatednpnp

π

0

π

0 reaction, thecalculations predict a similar energydependence,butanabsolutecrosssection,whichislarger byroughlya factoroftwo–whereasthedataarelargerbymore thananorderofmagnitude–seeFig. 3,rightpanel.

As an independent check of these calculations we may per- formanisospindecompositionofcrosssectionsusingtheformulas giveninRefs. [33,34] andthe matrixelements deducedfromthe analysisofthe pp inducedtwo-pionproduction[18].Asan result ofsuchan exercisewegetagreementwiththemodified Valencia calculationwithinroughly 30%.

AsweseefromFig. 3,theexperimentalcrosssectionsobtained inthisworkforthenpnp

π

0

π

0reactionarethreetofourtimes largerthanpredicted. Thisfailurepoints toanimportantreaction component not included in the t-channel treatment of two-pion production.Itisintriguingthat wedeal herewiththeenergyre- gionwherethe d resonancehasbeenobserved bothinnp scat- tering[7]andin theisoscalarpartofthedouble-pionicfusionto deuterium[1,3].Alsoithasbeenshownthatthedescriptionofthe pnpp

π

0

π

cross section improves greatly in this energyre- gion,ifthisresonanceisincluded[5].Henceweaddalsoherethe amplitudeofthisresonancetotheconventionalamplitude.Accord- ingtothepredictionsofFäldtandWilkin[9]aswellasAlbaladejo andOset[10],its contributionattheresonancemaximumshould beabout200 μb(dottedcurveinFig. 3)asdiscussedintheintro- duction.It isamazing,how well theresultingcurve (dash-dotted lineinFig. 3) describesthedata.Ofcourse,itisapitythatthere arenodataoutsidetheenergyregioncoveredbyourdata.Inpar- ticular at energies below 1 GeV and above 1.3 GeV, i.e. outside theresonanceregion,suchdatawouldbeveryhelpfultoexamine

entialobservables.Wechoosetoshowinthispaperthedifferential distributions forthe invariant masses 0π0, Mpn, Mpπ0, Mnπ0, Mnπ0π0 andMppπ0 aswellasthedifferentialdistributionsforthe center-of-mass (cm) angles for protons and pions, namely cp.m. andc.m.

π0 .ThesedistributionsareshowninFigs. 4–7.

All measured differential distributions are markedly different in shape from pure phase-space distributions (shaded areas in Figs. 3–6), but close to the predictions both with (dashed and dash-dottedlines)andwithout(solidlines)inclusionofthed res- onance.

Thepionangulardistribution(Fig. 4)behavesasexpectedfrom the p-wavedecayoftheresonance.Andalsotheprotonangu- lardistributionissimilarlycurved.Botht-channelmesonexchange andthe JP=3+requirementford formationpredictcomparable shapesinagreementwiththedata.

TheinvariantmassspectraforMpπ0,Mnπ0,Mnπ0π0 andMpnπ0 (Figs. 5–6)arecharacterizedby and Ndynamicsastheynat- urally appearin the deexcitationprocess of an intermediate 

system created either by d decay or via t-channel meson ex- change.

The Mpn and 0π0 spectra (Fig. 7) need a more thor- ough discussion. The data of the 0π0 spectrum appear to be quite well described by the calculations, which hardly devi- ate from each other. At small invariant masses though, in the range 0.3–0.4 GeV/c2, there is an indication of a small surplus of strength. Taken the uncertainties inherent in the data and in thetheoretical description,thesedeviationsappearnottobepar- ticularlysignificant.Therefore,ifthisconstitutesasignoftheABC effect, then it is obviously very small in this reaction. Note that contrarytothesituationinthe pnpp

π

0

π

reaction,wherethe pion pair hasto be in relative p-waveand hencethe ABC-effect isabsent,thepionpairhereispreferentiallyinrelatives-waveal- lowingthus,inprinciple,theoccurrenceoftheABCeffect.Hence, the finding that there is no or nearly no ABC effect comes as a surpriseatleastforsomeofitsinterpretations–see,e.g. Ref.[35].

This findingis ofno surprise, ifthe ABC effectis described by a formfactor atthe vertexofthed decay[1].However, thena problem ariseswiththe description ofthe Mpn spectrum,as we discussinthefollowing.

The Mpn spectrum peaks sharply at its low-mass threshold, whichischaracteristicforastrongnp FSIasdiscussedabove.This low-mass peakingiswellaccountedforby themodified Valencia calculations(solidlinesinFigs. 4–7).Inclusionofthedresonance as outlined in Ref. [1] (dashed lines) exaggerates the low-mass peakingdeterioratingthus theagreementwiththedata.The rea- son for this behavior is the formfactor at the  decay vertex ofd introduced inRef. [1]forthedescription ofthe ABCeffect, i.e. thelow-massenhancementinthe M(π π)0 spectraobservedin double-pionic fusion reactions. However, as already pointed out in Ref. [5], this formfactor acts only on the 0π0 and +π spectra, ifthenucleon pairis boundin a final nuclearsystem. If this is not the case, then the formfactor acts predominantly on

(7)

theinvariant-massspectrumofthenucleonpair.Thisisillustrated bycomparisonofthecalculationsincludingd with(dashed) and without (dash-dotted)this formfactor. As we see,the formfactor hardly changes the 0π0 distribution, but shuffles substantial strengthinthe Mpn spectrumto lowmasses–thusovershooting theobservedlow-massenhancement.

Unfortunately, also the model-dependence of the acceptance and efficiency corrections is largest near the low-mass thresh- old hampering thus a definite statement about a failure of the formfactoransatz. In ordertocircumvent thismodeldependence somewhat, we plotthe data inFig. 7, bottom, beforeacceptance andefficiencycorrections. The calculationsshown are nowgiven withintheacceptanceoftheWASAdetector.We seethat,firstof all, the corrections do not change the shape of the distribution profoundly,andsecondthatthecalculationswithformfactorover- shootthelow-masspeakinsimilarmannerasbefore,whereasthe calculationswithoutthisformfactoragreeagainwellwiththedata.

This overshooting indicates that the formfactor introduced in Ref.[1]onpurelyphenomenologicalgroundsforthedescriptionof theABC effect is possibly atvariance withthe data forisoscalar two-pionproductioninnon-fusionchannels.Hencealternativeso- lutionsfor thisphenomenon may haveto be looked for,such as d-wave contributionsintheintermediate systemand/or final nucleon-pair[36,37].

Another alternative involving d-waves has been proposed re- cently by Platonova and Kukulin [35]. In their ansatz they as- sumethe d resonance not only to decayinto the d

π

0

π

0 chan- nelvia theroute d→ +0d

π

0

π

0,7 butalso via the route dd

σ

d

π

0

π

0.Since

σ

is aspin zeroobject,ithasto bein relatived-waveto thedeuteroninthisdecayprocess,inorderto satisfythe resonancecondition of JP = 3+.Inconsequencethe availablemomentum inthisdecayprocess isconcentrated inthe relativemotionbetweend and

σ

leavingthus onlysmallrelative momentabetweenthetwo emergingpions.Therefore the 0π0 distributionisexpectedtobepeakedatlowmasses–i.e.,thelow- massenhancement(ABCeffect) inthismodelismadebythed

σ

decaybranch(intheamountofabout5%)andnotbyaformfactor asintroduced in Ref. [1]. The enhancement in thismodel is fur- therincreasedbyaninterferenceofthed

σ

decayamplitude with thedecayamplitude viathe+0 system. Itappearsstraightfor- ward to extend this ansatz also to reaction channels, where the np system is unbound. However, since we hardly observe a low- massenhancement(ABCeffect)inthe0π0 spectrum,muchless dd

σ

contribution is needed here than in the pnd

π

0

π

0

reaction – which possibly poses a consistency problem for this ansatz[35].

Another point of concern with this ansatz is that mass and widthof the sigmameson havebeen fitted to the pnd

π

0

π

0

data in Ref. [35] withthe resultthat ≈300 MeV and σ ≈ 100 MeV. Both values are much smaller than the generally accepted values for the sigma meson [38], which are = (400–550)MeV and σ= (400–700)MeV.InRef.[35]ithasbeen arguedthat thesedeviations couldbe a signofchiral restoration inthehadronic/nuclearenvironment–inparticularwithinthesix- quark bag. However, anyevidence forthishypothesis fromother experiments is lacking so far. Whether the enhanced ABC effect observedinthedouble-pionic fusionto4He [39] isinsupportof suchanargumentationisanopenquestion.

7 Actuallytheyconsider thedecaydD++12π0dπ0π0 with D++12 beinga I(JP)=1(2+)stateneartheNthreshold,butsincethepionemittedinthed decayisinrelativep-wavetoD12,thisrouteispracticallyindistinguishablefroma d→ +0decayatthegivenkinematicconditions.

4. Conclusions

The npnp

π

0

π

0 reaction, for which no dedicated previous data exist, has been investigated by exclusive and kinematically complete measurements.Theyhavebeen carriedout inquasifree kinematics with a deuteron beamimpinging on a hydrogen pel- let target. Utilizing the nucleons’ Fermi motion in the deuteron projectile an energy region of 2.35 GeV<

s<2.41 GeV could be covered corresponding to an incident lab energy range of 1.07–1.23 GeV.Thisenergyregioncoverstheregionofthedres- onance. Thedataareinagreement witha resonancecontribution ofabout200 μb,aspredictedbyFäldtandWilkin[9]aswellasby AlbaladejoandOset[10].Thed contributionisbyfarlargerthan that fromconventional processes. Calculations based on conven- tionalt-channelmesonexchangeunderpredictthedatabyfactors three to fourand inaddition are at variance withthe measured energydependenceofthetotalcrosssection.Thoughthosecalcu- lations havebeen tuned to two-pionproduction channels, where d doesnot contribute,they still mayhavesome inherent model dependence.But,evenifweassumetheassociateduncertaintyto beaslargeas 50%,westillarriveatanuncertaintyofonly15%for therequireddcontribution,i.e. 200±30 μb.

In general, the differential data are reasonably well described bycalculations,whichincludeboththed resonanceandthecon- ventionalt-channelprocesses.

Thedatadonot exhibitanysignificantlow-massenhancement (ABCeffect)inthe

π

0

π

0-invariantmassdistribution.Thoughthis is not in disagreement with the phenomenological ansatz of a formfactor at the d→  decay vertex introduced in Ref. [1], the worseningof thedescription ofthe Mpn spectrumby use of thisformfactor calls possibly foran improved explanation ofthe ABCeffectinconnectionwiththed resonance.

After having found evidences for the d resonance in the d

π

0

π

0, d

π

+

π

and pp

π

0

π

channels, the channel investigated here has been one of the two remaining two-pion production channels, wherethe predicted contributions of the d resonance hadnotyetbeencheckedexperimentally.Aswehaveshownnow, the datafor thenp

π

0

π

0 channel are consistent withthe d hy- pothesis andprovide an experimentally determined branching of about 12% for the d decay into thischannel. A preliminary list ofdecay branchesis giveninRef. [40],an update of whichis in preparation.

Sinced hasbeenobservedmeanwhilealsointheelasticchan- nelbypolarizednp scattering, theonlyremainingunexploredde- caychannelisnp

π

+

π

.Thischannelhasbeenmeasuredrecently at HADES and preliminary results have been presented already at conferences [41–43]. It will be highly interesting, not only to obtain total cross sections for this channel, but also differential distributions. Of particular interest will be the Mpn and +π distributionsasdiscussedinthiswork.

Acknowledgements

We acknowledgevaluable discussions withV.Kukulin,E.Oset and C. Wilkin on this issue. We are particularly indebted to L. Alvarez-Ruso for using his code. This work has been sup- portedbyForschungszentrumJülich(COSY-FFE),DFG(CL214/3-1), the Foundation For Polish Science through the MPD programme and by the Polish National Science Centre through the Grants Nos. 2011/01/B/ST2/00431and2013/11/N/ST2/04152.

References

[1]P.Adlarson,etal.,Phys.Rev.Lett.106(2011)242302.

[2]M.Bashkanov,etal.,Phys.Rev.Lett.102(2009)052301.

(8)

[15]R.Machleidt,Phys.Rev.C63(2001)024001.

[16]F.Shimizu,etal.,Nucl.Phys.A386(1982)571.

[17]A.M.Eisner,etal.,Phys.Rev.B138(1965)670.

[18]T.Skorodko,etal.,Phys.Lett.B679(2009)30.

[19]E.Scomparin,PhDthesis,UniversityofTorino,1993.

[20] C.Wilkin,privatecommunication.

[21]L.Alvarez-Ruso,E.Oset,E.Hernandez,Nucl. Phys.A633(1998)519,andpri-

[37]F.Huang,Z.Y.Zhang,P.N.Shen,W.L.Wang,arXiv:1408.0458[nucl-th].

[38]J.Behringer,etal.,PDG,Phys.Rev.D86(2012)010001.

[39]P.Adlarson,etal.,Phys.Rev.C86(2012)032201(R).

[40]A.Pricking,M.Bashkanov,H.Clement,arXiv:1310.5532[nucl-ex].

[41]A.K.Kurulkin,etal.,arXiv:1102.1843[hep-ex].

[42]1G.Agakishiev,etal.,Proc.Sci.Baldin-ISHEPP-XXI(2012)041.

[43]M.J.Amaryan,etal., Proc.MesonNet2013,arXiv:1308.2575[hep-ph].

Cytaty

Powiązane dokumenty

Results of the fits to the analyzing power data in dependence of the deuteron scattering angle by use of eq.. Results of the fits to the analyzing power data in dependence of the π

Note that the generated Monte Carlo events were scaled according to the fit to data after preselection and that the sum of all Monte Carlo events remaining after all cuts is equal to

Additionally, the upper limit of the preliminary total cross section was determined for the first time for the ( 4 He–η) bound production in dd → 3 Henπ 0 reaction [15]2. This

In the analysis pre- sented here we have produced an acceptance-corrected Dalitz plot and extracted experimental values for parameters describing the density distribution..

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

Those correction factors were calculated as two-dimensional functions of the dielectron invariant mass and the given angle using two reaction models (described in details in

This letter reports a first quantitative analysis of the contribution of higher partial waves in the charge symmetry breaking reaction dd → 4 He π 0 using the WASA-at-COSY detector

The systematic term is calculated from the following main contri- butions: 1) applying different selection regions to the flat part of the confidence level (probability) distribution