• Nie Znaleziono Wyników

Measurement of the absolute branching ratio of the $K^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+} (\gamma)$ decay with the KLOE detector

N/A
N/A
Protected

Academic year: 2022

Share "Measurement of the absolute branching ratio of the $K^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+} (\gamma)$ decay with the KLOE detector"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the absolute branching ratio of the K +π + π π + ( γ ) decay with the KLOE detector

KLOE/KLOE-2 Collaboration

D. Babusci

h

, I. Balwierz-Pytko

g

, G. Bencivenni

h

, C. Bloise

h

, F. Bossi

h

, P. Branchini

r

, A. Budano

q,r

, L. Caldeira Balkeståhl

u

, F. Ceradini

q,r

, P. Ciambrone

h

, F. Curciarello

i,d

, E. Czerwi ´nski

g

, E. Danè

h

, V. De Leo

i,d

, E. De Lucia

h

, G. De Robertis

b

, A. De Santis

h

, P. De Simone

h,∗

, A. Di Cicco

q,r

, A. Di Domenico

m,n

, R. Di Salvo

p

, D. Domenici

h

,

O. Erriquez

a,b

, G. Fanizzi

a,b

, A. Fantini

o,p

, G. Felici

h

, S. Fiore

s,n

, P. Franzini

m,n

, A. Gajos

g

, P. Gauzzi

m,n

, G. Giardina

i,d

, S. Giovannella

h

, E. Graziani

r

, F. Happacher

h

,

L. Heijkenskjöld

u

, B. Höistad

u

, T. Johansson

u

, D. Kami ´nska

g

, W. Krzemien

g

, A. Kupsc

u

, J. Lee-Franzini

h,t

, F. Loddo

b

, S. Loffredo

q,r

, G. Mandaglio

i,d,c

, M. Martemianov

j

,

M. Martini

h,l

, M. Mascolo

o,p

, R. Messi

o,p

, S. Miscetti

h

, G. Morello

h

, D. Moricciani

p

, P. Moskal

g

, A. Palladino

h

, A. Passeri

r

, V. Patera

k,h

, I. Prado Longhi

q,r

, A. Ranieri

b

, P. Santangelo

h

, I. Sarra

h

, M. Schioppa

e,f

, B. Sciascia

h

, M. Silarski

g

, L. Tortora

r

, G. Venanzoni

h

, W. Wi´slicki

v

, M. Wolke

u

aDipartimentodiFisicadell’UniversitàdiBari,Bari,Italy bINFNSezionediBari,Bari,Italy

cCentroSicilianodiFisicaNucleareeStrutturadellaMateria,Catania,Italy dINFNSezionediCatania,Catania,Italy

eDipartimentodiFisicadell’UniversitàdellaCalabria,Cosenza,Italy fINFNGruppocollegatodiCosenza,Cosenza,Italy

gInstituteofPhysics,JagiellonianUniversity,Cracow,Poland hLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

iDipartimentodiFisicaeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy jInstituteforTheoreticalandExperimentalPhysics(ITEP),Moscow,Russia

kDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy lDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy mDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy

nINFNSezionediRoma,Roma,Italy

oDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy pINFNSezionediRomaTorVergata,Roma,Italy

qDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy rINFNSezionediRomaTre,Roma,Italy

sENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy

tPhysicsDepartment,StateUniversityofNewYorkatStonyBrook,USA uDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden vNationalCentreforNuclearResearch,Warsaw,Poland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received10July2014

Receivedinrevisedform12September 2014

Accepted14September2014

TheabsolutebranchingratiooftheK+π+ππ+(γ)decay,inclusiveoffinal-stateradiation,hasbeen measuredusing∼17 milliontaggedK+mesonscollectedwiththeKLOEdetectoratDANE,theFrascati φ-factory.Theresultis:

BR

K+π+ππ+(γ)

=0.05565±0.00031stat±0.00025syst

*

Correspondingauthor.

E-mailaddress:patrizia.desimone@lnf.infn.it(P. De Simone).

http://dx.doi.org/10.1016/j.physletb.2014.09.033

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(2)

Availableonline19September2014 Editor:L.Rolandi

Keywords:

e+eexperiments Kaondecays

a factor 5 more precise with respect tothe previous result. Thiswork completes the program of precisionmeasurementsofthedominantkaonbranchingratiosatKLOE.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1. Introduction

The measurement of the branching ratio (BR) of K+

π

+

π

π

+(

γ

) decay completes the KLOE program of precision measurements of the dominant kaon branching ratios, fully in- clusive of radiation effects. We have already published an eval- uation, from a fit to the KLOE measurements of the charged kaon lifetime [1], and BRs, [2–5], constraining the BR sum to unity:BR(K±

π

±

π

+

π

)= (5.68±0.22)% [5].Themostrecent BR(K±

π

±

π

+

π

)measurement,basedon2330eventsfroma sampleof∼105 kaondecays,datesbackto1972andgivesnoin- formationontheradiationcut-off:BR(K±

π

±

π

+

π

)= (5.56± 0.20)% [6].The PDGvalue, BR(K±

π

±

π

+

π

)= (5.59±0.04)% [7], is obtained from a global fit that does not use any of the available BR(K±

π

±

π

+

π

) measurements but the rate mea- surementΓ (

π

+

π

+

π

)= (4.511±0.024)×106 s1 publishedin 1970 [8]. Furthermore the BR(K±

π

±

π

+

π

) value enters in the evaluation of the difference a0a2 between the I=0 and I=2 S-wave

π π

scatteringlengths[16,19];thiswillbediscussed inSection5.

In the following we report the measurement of the absolute branchingratioBR(K+

π

+

π

π

+(

γ

))performedwiththeKLOE detector using data corresponding to an integrated luminosity

Ldt174 pb1 collected atDANE,theFrascati φ-factory [9].

DANE isan e+e collideroperatedatthe energyof1020 MeV, the mass of the φ-meson. The beams collide at the interac- tion point (IP) with a crossing angle θx25 mrad,1 producing φ-mesons with a small momentum of ∼12.5 MeV in the hori- zontalplane.Theφ-mesonsdecayinanti-collinearandmonochro- maticneutral(34%)andcharged(49%)kaonpairs.Theuniquefea- tureofa φ-factory isthetagging: detectionofa K± (thetagging kaon) tags the presence of a K (the tagged kaon) withknown momentumanddirection.Theavailabilityoftaggedkaonsenables theprecision measurementofabsoluteBRsprovidingthenormal- izationsample.The decayproductsofthe K+K pairdefine two spatiallywellseparatedregionscalledinthefollowingthetagand thesignalhemispheres.

2. TheKLOEdetector

TheKLOEdetectorconsistsofa largecylindricaldriftchamber (DC)[10],surroundedbyaleadscintillatingfiberelectromagnetic calorimeter (EMC) [11] both immersed in an axial 0.52 T mag- netic field produced by a superconducting coil. At the beams IP thesphericalbeampipe of10 cmradius ismadeofaberyllium–

aluminumalloyof0.5 mmthickness.

The DC tracking system has 25 cm internal radius, 4 m dia- meterand3.3 mlength,witha totalof∼52000 wires,ofwhich

12000 are sensewires arrangedina stereogeometry.Inorder to minimize the multiple scatteringand KL regeneration, andto maximizethedetectionefficiencyforlowenergyphotons,theDC workswithahelium-basedgasmixtureanditswallsaremadeof lightmaterials,mostlycarbonfibercomposites.Spatialresolutions

1 Weuseleft-handedcoordinatessystemwiththez-axisdefinedasthebisectrix ofthe e+ebeamsandthey-axisvertical.

are

σ

xy150 μm and

σ

z2 mm andthetransversemomentum resolutionis

σ

(pT)/pT0.4%.

The calorimeter covers 98% of the solid angle and is com- posed by a barrel and two endcaps. Particles showering in the lead-scintillator-fiber EMC structure are detected as local energy deposits by clustering signals from read-out elements. For each impinging particlethecalorimeterinformationconsistsofenergy, position of impact point and time of arrival with accuracies of

σ

E/E=5.7%/

E(GeV),

σ

z=1.2 cm/

E (GeV),

σ

φ=1.2 cm,and

σ

t=57ps/

E (GeV)100ps.Energyclustersnotassociatedwith reconstructed tracks in the DC (neutral clusters) identify neutral particles. Thedefinitionofenergy clustersassociatedwithrecon- structedtracksisrelatedtothetrack-to-clusterassociationproce- duredescribedinRef.[12].

Thetrigger[13]isbasedonenergydepositsinthecalorimeter andonhitmultiplicityinthedriftchamber.Onlyeventstriggered by the calorimeter have been used in the present analysis. The triggersystemincludes asecond-level vetoforcosmic-ray muons (cosmic-ray veto or CRV) based on energy deposits in the out- ermost layers of the calorimeter and followed by a third-level softwaretrigger.A softwarefilter(SF),basedonthetopologyand multiplicityofenergyclustersanddriftchamberhits,isappliedto filterout machine background.Both CRV and SF maybe sources ofeventsloss.TheireffectontheBRmeasurementhasbeenstud- iedoncontroldatasamplesacquiredrespectivelywithouttheCRV andtheSFfilters.

Thedatasampleusedforthisanalysishasbeenprocessedand filtered with the KLOE standard reconstruction software and the event classification procedure [12]. The KLOE Monte Carlo (MC) simulation package, GEANFI, has beenused to produce a sample equivalenttodata,accountingforthedetectorstatusandthema- chineoperationonarun-by-runbasis.

3. Analysisstrategy

Tagging with K±

μ

±

ν

(

γ

) (Kμ2 tags) and K±

π

±

π

0(

γ

) (Kπ2 tags) provides two indipendent samples of pure kaons for the signal selection useful for systematic uncertainties evalua- tion and cross-checks [3]. These decays are easily identified as clear peaks in the distribution of pm

π, the momentum of the charged secondary track in the kaon rest frame evaluated using the pion mass.2 The selection efficiency of the two taggingnor- malizationsamples aresimilar, about36%. Then theseeventsare classifiedasφK+Kandarchivedindedicateddatasummary tapes, as described in Ref. [12]. MC studies show that the con- tamination dueto φ-meson decays other than K+K isnegligi- ble.

Tominimize the impactofthe triggerefficiencyon thesignal side, we choose as normalization sample 2 or 2 tags pro- viding the trigger of the event(self-triggering two-body decays).

Afterthisrequestthe2 sampleisreducedbyafactorof∼33%, while the 2 sample by a factorof ∼43%. The residual depen- dence ofthe signal sample on the tag selection, which we refer

2 Thecontributiontothepmπ distributionfromKμ2decaysisslightlybroadened duetothepionmasshypothesis[3].

(3)

toastagbias,hasbeenevaluatedfortheBRmeasurement.More- overweuseK asthetaggingkaon(Kμ2 or2)and K+asthe tagged kaon (signal), since the nuclear cross section for positive kaons with momenta 100 MeV is lower by a factor of103 withrespecttothatofnegativekaons[14].

Thetrackofthetaggingkaonisbackwardextrapolatedfromits firsthitintheDCtotheIP.Weusethemomentumofthetagging kaonattheIP,pIPK,andthemomentumoftheφ-mesonmeasured runbyrunwithBhabhascatteringevents,pφ,toevaluatethemo- mentumofthetaggedkaonattheIP,pIPK+=pφpIPK.Finallywe extrapolatepIPK+ insidetheDC(signalkaonpath).

Thekaonandthethreechargedpionsfromitsdecayhavelow momenta,lessthan∼200 MeV,andcurlupintheKLOEmagnetic field; this increasesthe probability to have poorly reconstructed tracks brokenin more segments (the trackreconstruction proce- dure inKLOE is described in Ref. [12]). We significantly improve thequalityofthereconstruction requiringthe K+ decaytooccur beforeit reachestheDCsensitive volume,i.e.insidea cylindrical fiducialvolumecenteredattheIPandwithatransverseradius

ρ

xy closetotheDCinnerwall(detectoracceptance∼26%).Inthisway only the pion tracks are reconstructed, and we extrapolate only twoofthemtosearchforavertexalongthesignal kaonpath.No furtherrequeston thecharge oftheparticles isappliedto maxi- mizetheselectionefficiency.

ToextractthenumberofK+

π

+

π

π

+(

γ

)we fitthemiss- ingmassspectrumm2miss=E2miss− (pK+p1p2)2wherep1 and p2 are the momenta of the selected tracks, with MC-predicted shapesforthe signal andthe background.The branching ratiois givenby:

BR



K+

π

+

π

π

+

( γ ) 

=

NK3π

Ntag

×

1

selCTBCSFCCRV (1) whereNK3π isthenumberofsignalevents,Ntagisthenumber oftaggedeventsand

sel istheoverall signal selectionefficiency, includingthedetectoracceptanceandthereconstructionefficiency.

CSFandCCRV arethecorrectionsforthemachinebackgroundfilter andthecosmic-rayveto.CTB accountsforthetagbiaseffect.

3.1. BRmeasurementwiththeKμ2normalizationsample

The normalization sample is given by Ntag=12065087 Kμ2 taggingevents. The K+

π

+

π

π

+(

γ

) signal selection uses DC informationonly.

Anyreconstructed trackidentified asa K+ (andthereforecor- respondingtoaK+outsidethefiducialvolume)isrejected.More specifically we reject tracks with the point of closest approach (PCA)totheIPsatisfyingtheconditions



x2PCA+y2PCA<10 cm,and

|zPCA|<20 cm,withthemomentumwithin70<pK<130 MeV, andwithagoodmatchingwiththe positionandthemomentum extrapolatedfromthetaggingkaon.

Toselect the decayvertex K+

π

+

π

π

+(

γ

) we require at leasttworeconstructedtracksthathave:

(1) momentumin thekaonrest frame,pm

π <190 MeV,thiscut removesthebackgroundfromtwo-bodydecays;

(2) distanceofclosestapproach(DCA) betweeneachextrapolated trackandthesignalkaonpath,DCA<3 cm;

(3) distanceofclosestapproachbetweenthetwotracks,DCA12<

3 cm;

(4) the opening angle between the momenta of the two tracks,

|cos12)|<0.9,thiscutremovesthebackgroundduetoresi- dualkaonbrokentracks;

(5) the decay vertex is accepted in the fiducial volume,

ρ

xy≤ 26 cm.

Fig. 1. MC(dashed)anddata(points)missingmassspectrumoftheselectedevents.

Thearrowsshowthemissingmasswindowforsignalcounting.

Fig. 2. Topplot:fitofthemissingmassspectrumsuperimposedwithdatapoints.

Bottomplot:residualsbetweentheoutputofthefitanddatadistributionnormali- zedtotheirerrors.

Fig. 1 shows the comparison between MC and data missing massdistributionsfortheselected K+decays.Wecountthenum- berofsignaleventsinthemissingmasswindow10000<m2miss<

30000MeV2,wherethesignaloverbackgroundratioisS/B88.

The background composition is given by K+ in two-body

μ

+

ν

and

π

+

π

00.1%, semileptonic

π

0e+

ν

and

π

0

μ

+

ν

0.5%, and

π

+

π

0

π

00.4% decays. These single track events pass the se- lection criteriabecause asecondary charged trackis wrongly re- constructed astwo separatetracks.Thetop panelofFig. 2shows theresultofthefitofthemissingmassdistribution comparedto data. The fit gives NK3π=48032±286 signal events (the er- ror accountingfordataandMCstatistics),with

χ

2/ndf=44.8/46 (P(

χ

2)=0.52). The bottom panel of Fig. 2showsthe fit norma- lizedresiduals.

The signal selection efficiency,

sel, is related to the track re- construction efficiency of two charged secondaries from K+ de- cays. We evaluate theselection efficiencyfrom MC,and thenwe correct it to take into account data-MC differences in the track

(4)

Table 1

CorrectionstoBR(K+π+π+π(γ))measurement.Theeventsselectedbythe twotagshavedifferenttopologiesintheKLOEdetectordeterminingdifferentcor- rectionsfactors.

Table of corrections Kμ2tags Kπ2tags cosmic ray veto correction CCRV 1.00125±0.00002 1.00049±0.00001 software filter correction CSF 1.0144±0.0013 1.0003±0.0005 tag bias correction CTB 0.839±0.001 0.802±0.002

Table 2

Summarytableofthefractionalstatisticaluncertainties.

Source of statistical uncertainties Kμ2tags (%) Kπ2tags (%)

signal counting 0.45 0.70

selection efficiency 0.38 0.60

tag bias 0.11 0.18

software filter 0.13 0.05

cosmic ray veto 0.002 0.0005

Total fractional statistical uncertainty 0.62 0.95

reconstruction.Tothisaimweselect,bothondataandMC,acon- trolsampleofK+

π

X decays(forsignaleventsX corresponds to

π

+

π

+).Thefirstrequirementisthepresenceofaself-triggering Kμ2 inthetaghemisphere.Thenthetrackofthe

π

candidateis selectedwiththefollowingrequirements:

(1) thenumberofneutralclusterswithan energy 30 MeV mustbe,Nclusters1;

(2) themomentum of the selected track inthe kaon rest frame mustbe,pm

π130 MeV;

(3) the distance of closest approach between the extrapolated trackandthesignalkaonpathmustbe,DCAπ<7 cm;

(4) thecosineoftheopeninganglebetweenthemomentaofthe signal kaon andthe momentaof theselected trackmust be, cosKπ)≤ −0.85.

Thecontrolsample K+

π

X , selectedwitha backgroundcon- tamination of 10.7%, is used to measure the efficiency cor- rections as function of the total transverse momentum pTX, and of the total longitudinal momentum pLX of the

π

+

π

+ pair (the average efficiencycorrectionis∼0.92).Theselectionefficiency,is finallyobtainedfoldingtheMCselection efficiencywiththemea- suredcorrections:

sel=0.0842±0.0003.

The corrections CCRV and CSF have been measured with data takenwithoutthe cosmic-ray vetoandthe softwarefilter,respe- ctively. The correction for the tag bias, CTB, has been evaluated usingMC.AllcorrectionvaluesarereportedinTable 1.

The summary of the fractional statistical uncertainties is re- portedinTable 2.Thetotalstatisticalfractionaluncertaintyonthe branchingratiomeasurementis0.62%.

3.2.BRmeasurementwiththeKπ2normalizationsample

ThenormalizationsampleisgivenbyNtag=5171239 Kπ2tag- gingevents.

Thesignalselectiondescribed inSubsection3.1isalsoapplied tothesample taggedby 2 decays.The fittothemissingmass spectrumoftheselectedeventsgives NK3π=20063±186 sig- naleventswith

χ

2/ndf=42.9/45 (P(

χ

2)=0.56). Thesignalover background ratio in the missing mass window 10000<m2miss<

30000 MeV2isevaluatedwithMC:S/B84.

To evaluate the selection efficiency, we used the corrections measured with the control sample K+

π

X tagged by Kμ2 events. The selection efficiency for signal events tagged by 2 events,is:

sel=0.0866±0.0005.

Table 3

Summarytableofthefractionalsystematicuncertainties.

Source of systematic uncertainties Kμ2tags (%) Kπ2tags (%) DCA, DCA12, cos12)cuts 0.52 0.41

pmπ cut 0.08 0.11

m2misscut 0.05 0.14

fiducial volume 0.11 0.10

selection efficiency estimate 0.16 0.16

tag bias 0.16 0.32

K±lifetime 0.12 0.12

Total fractional systematic uncertainty 0.60 0.59

The summary of the fractional statistical uncertainties is re- ported in Table 2. The total statistical fractional uncertainty on the branching ratio measurement using the 2 tagging sample is0.95%.

4. Systematicuncertainties

Thefollowingsourcesofsystematicuncertaintiesonthebranch- ing ratios measured using both tags, 2 and 2, have been considered:

(1) thecutsusedtoselectthesignalsample;

(2) thefiducialvolume;

(3) thecutsusedtoselectthecontrolsample K+

π

X ; (4) thecutsusedtoselectthetaggingsamples 2andKπ2; (5) thechargedkaonlifetime.

ThecorrespondingsystematicuncertaintiesarelistedinTable 3.

The contributions to the systematic error due to points (1), (2), and(3) have been evaluated varying the selection cuts. The DCA,DCA12variablesandthefiducialvolume

ρ

xy havebeenvar- ied within fewsigmas, thecuts oncos12), pm

π andm2miss have been varied todecrease the S/B ratio to 64. The cutsused to selectthecontrolsample K+

π

X havebeenvariedtoincrease thebackgroundcontaminationupto20%.

Concerning the selection of the normalization samples (point (4))wehaveevaluatedtheeffectofaCTBvariationontheBRmea- surements.Thishasbeendonemodifyingtheselectionofthedata andMCnormalizationsamplesaddingacutontheopeningangle between the K track and the secondary track retaining events with cosK t)0, where t is the

μ

(

π

) track in case of the 2 (Kπ2) sample. Using MC we found that the fractional varia- tions of the tag bias corrections are δCTB/CTB(Kμ2)=0.26% and δCTB/CTB(Kπ2)=0.63%. Consequently the branching ratios mea- suredvalueschangeofδBR/BR(Kμ2)=0.32% andδBR/BR(Kπ2)= 0.64%;halfofthesevariationshavebeenassignedasconservative values for the fractional systematic uncertainties due to the tag bias(seeTable 3).

The BR(K+

π

+

π

+

π

(

γ

)) depends on the charged kaon lifetime

τ

K± through the detector acceptance, that is evaluated with MC simulation (point (5)). The systematic effect has been obtained varying

τ

K± within the uncertainty of the KLOE result

τ

K±=12.347±0.030 ns[1].Thishasbeendonere-weighting the MC events witha hit-or-miss procedure,both for the signal and the control sample selection procedures. The corresponding sis- tematicerrorsarelistedinTable 3.

Theanalysisisfullyinclusiveofradiativedecays.Onlytheeffi- ciencyevaluationcouldbeaffectedbyasystematicuncertantydue tothecut Nclusters≤1 (seeSubsection3.1).WehaveusedPHOTOS [15] toevaluatesuch aneffectandwe obtaineda negligiblecon- tribution,beingO(106)thefractionofdecaysremovedbythecut Nclusters1.

(5)

Table 4

Resultsofthefit:K±BRsandcorrelationcoefficients.

Parameter Value Correlation coefficients BR(Kμ±2) 0.6372(11)

BR(Kπ±2) 0.2070(9) 0.55 BR±ππ+) 0.0558(4)0.230.05 BR(Ke3±) 0.0498(5) 0.420.15 0.06 BR(Kμ±3) 0.0324(4)0.39 0.140.050.58 BR±π0π0) 0.01764(25)0.13 0.050.02 0.040.04 τK± (ns) 12.344(29) 0.20 0.190.14 0.050.04 0.02

The fractionof K+ undergoing nuclearinteractions isnegligi- ble,∼ 105,asevaluatedusingtheMCsimulation,basedondata availableinliterature[14].Thereforetherelatedsystematicuncer- taintyisnegligible.

Furthermorewehavecheckedontwoindependentsub-samples ofabout88 pb1 and86 pb1 thattheefficiencycorrectionsand theBRevaluationsarenotcorrelated.

Finallythestabilityofthemeasurementswithrespecttodiffer- entdatatakingperiodsandconditionshasbeenchecked.

5. Results

With a sample of K

μ

ν

¯(

γ

) tagging events Ntag=12065087 we found NK3π=48032±286 signal events.

UsingEq.(1),weobtainthebranchingratio:

BR



K+

π

+

π

π

+

( γ ) 

Tag Kμ2

=

0

.

05552

±

0

.

00034stat

±

0

.

00034syst

.

(2) Withasampleof K

π

π

0(

γ

)taggingeventsNtag=5171239 wefoundNK3π=20063±186 signalevents,correspondingto:

BR



K+

π

+

π

π

+

( γ ) 

Tag Kπ2

=

0

.

05587

±

0

.

00053stat

±

0

.

00033syst

.

(3) Averagingthesetworesults,accountingforcorrelations,weobtain:

BR



K+

π

+

π

π

+

( γ ) 

=

0

.

05565

±

0

.

00031stat

±

0

.

00025syst

.

(4) This absolute branching ratio measurement is fully inclusive of final-state radiation and has a 0.72% accuracy, a factor 5 bet- terwithrespecttothepreviousmeasurement[6].

We fit the six largest K± BRs and the lifetime

τ

K± using the KLOE measurements of

τ

K± [1], BR(K+μ2) [2], BR(Kπ+2) [5], BR(K+

π

+

π

π

+(

γ

)) (Eq. (4)), BR(Kl3±) [3], and BR(K±

π

±

π

0

π

0) [4], with their dependence on

τ

K±, and imposing the constraint 

BR(K±f)=1. The fit results, with

χ

2/ndf= 0.24/1 (CL=0.63),showacoherentsetofmeasurements(seeTa- ble 4).

TheNA48experimentobservedinthe

π

0

π

0invariantmassdis- tributionacusp-likeanomalyatM00=2mπ+ [16],whichhasbeen interpretedasmainlyduetothefinalstatecharge–exchangereac- tion

π

+

π

π

0

π

0 in K±

π

±

π

+

π

decay[17,18].Thefitto theM200 distribution[19]withtwodifferentmodels[20]and[21, 22] determines a0a2, the difference between the S-wave

π π

scatteringlengthsintheisospinI=0 andI=2 states.Inthiscal- culationthe main source of uncertaintyis the ratio ofthe weak amplitudesof K±

π

±

π

π

+andK±

π

±

π

0

π

0 decay,thatis obtainedfromtheratio R ofthebranchingratiovalues.Usingthe BR(

π

±

π

π

+), BR(

π

±

π

0

π

0) and their correlation shown in Ta- ble 4weevaluateR=3.161±0.049,inagreementwiththevalue

R=3.175±0.050 obtained byNA48[19]withBRsfromthePDG fit[7].

6. Conclusions

We havemeasured theabsolute branchingratio ofthe K+

π

+

π

π

+(

γ

)decay,inclusiveoffinal-stateradiation,usingtwoin- dipendentnormalizationsamplesfrom2andKπ2 tags:

BR



K+

π

+

π

π

+

( γ ) 

=

0

.

05565

±

0

.

00031stat

±

0

.

00025syst withanoverallaccuracyof0.72%.Thismeasurementcompletesthe KLOE program ofprecision measurements of the dominant kaon branchingratios.

Acknowledgements

We warmly thank our former KLOE colleagues for the access to the data collected during the KLOE data taking campaign.

We thank the DANE team for their efforts in maintaining low background running conditionsand their collaboration during all data taking. We want to thank our technicalstaff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring efficient op- eration of the KLOE computing facilities; M. Anelli for his con- tinuous attentiontothe gassystemanddetector safety;A.Balla, M. Gatta, G. CorradiandG. Papalinoforelectronicsmaintenance;

M. Santoni, G. Paoluzzi andR. Rosellinifor generaldetectorsup- port; C.Piscitelli forhis help during major maintenance periods.

This work was supported in part by the EU Integrated Infras- tructure Initiative Hadron Physics Project under contract number RII3-CT-2004-506078;bytheEuropeanCommissionunderthe7th Framework Programme through the ‘Research Infrastructures’ ac- tion of the ‘Capacities’ Programme, Call: FP7-INFRASTRUCTURES- 2008-1, GrantAgreementNo. 227431;by thePolishNationalSci- ence Centre through the Grants No. DEC-2011/03/N/ST2/02641, 2011/01/D/ST2/00748,2011/03/N/ST2/02652,2013/08/M/ST2/00323, and by the Foundation ForPolish Science through the MPD pro- grammeandtheprojectHOMINGPLUSBIS/2011-4/3.

References

[1]KLOECollaboration,F.Ambrosino,etal.,J.HighEnergyPhys.01(2008)73.

[2]KLOECollaboration,F.Ambrosino,etal.,Phys.Lett.B632(2006)76.

[3]KLOECollaboration,F.Ambrosino,etal.,J.HighEnergyPhys.02(2008)98.

[4]KLOECollaboration,A.Aloisio,etal.,Phys.Lett.B597(2004)139.

[5]KLOECollaboration,F.Ambrosino,etal.,Phys.Lett.B666(2008)15.

[6]I.H.Chiang,etal.,Phys.Rev.D6(1972)1254.

[7]PDG,Phys.Rev.D86(2012)010001.

[8]W.T.Ford,etal.,Phys.Rev.Lett.25(1970)1370.

[9] A.Drago,etal.,LNF-03/012,2003.

[10]KLOECollaboration,M.Adinolfi,etal.,Nucl.Instrum.Methods488(2002)51.

[11]KLOECollaboration,M.Adinolfi,etal.,Nucl.Instrum.Methods482(2002)364.

[12]KLOECollaboration,F.Ambrosino, etal.,Nucl.Instrum.Methods534(2004) 403.

[13]KLOECollaboration,M.Adinolfi,etal.,Nucl.Instrum.Methods492(2002)134.

[14]C.B.Dover,G.E.Walker,Theinteraction ofkaonswith nucleonsand nuclei, Phys.Rep.89(1982)1–177.

[15]E.Barberio,B.vanEijk,Z.Was,Comput.Phys.Commun.66(1991)115.

(6)

[16]NA48Collaboration,J.R.Batley,etal.,Phys.Lett.B633(2006)173.

[17]P.Budini,L.Fonda,Phys.Rev.Lett.6(1961)419.

[18]N.Cabibbo,Phys.Rev.Lett.93(2004)121801.

[19]NA48Collaboration,J.R.Batley,etal.,Eur.Phys.J.B64(2009)589.

[20]N.Cabibbo,G.Isidori,J.HighEnergyPhys.0503(2005)21.

[21]G.Colangelo,J.Gasser,B.Kubis,A.Rusetsky,Phys.Lett.B638(2006)187.

[22]M.Bissegger,A.Fuhrer,J.Gasser,B.Kubis,A.Rusetsky,Nucl.Phys.B806(2009) 178.

Cytaty

Powiązane dokumenty

Additionally, the upper limit of the preliminary total cross section was determined for the first time for the ( 4 He–η) bound production in dd → 3 Henπ 0 reaction [15]2. This

In the analysis pre- sented here we have produced an acceptance-corrected Dalitz plot and extracted experimental values for parameters describing the density distribution..

The effects of background rejection cuts on the various data components are visible in Fig. Systematics on the Monte Carlo description of photon conversion have been studied

33 ( a ) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ( b ) Department of Modern Physics, University of Science and Technology of China, Anhui; ( c

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

The global efficiency, which ranges from 0.086 at 0.605 GeV to 0.27 at 0.975 GeV, has been obtained from a μ + μ − γ events gen- eration with PHOKHARA interfaced with the

Distributions of  and R min discriminating variables for six-photon events: data (black points), background simulations (red curves).. (For interpretation of the references to color

Moreover, status of direct tests of T and CPT in transitions of neutral kaons performed with the φ → K S K L → πeν, 3π 0 (2π ) processes will be reported, followed by the search