• Nie Znaleziono Wyników

FEM for stationary heat flow

N/A
N/A
Protected

Academic year: 2021

Share "FEM for stationary heat flow"

Copied!
54
0
0

Pełen tekst

(1)

FEM for stationary heat flow

Piotr Pluciński e-mail: pplucin@L5.pk.edu.pl

Jerzy Pamin

e-mail: jpamin@L5.pk.edu.pl

(2)

Lecture contents

1 Stationary heat flow in 3D Model - strong formulation Model - weak formulation FE equations

2 Selection of approximation functions

Shape functions for 1D problems

Shape functions for 2D problems

Shape functions for 3D problems

(3)

Stationary heat flow in 3D

q n

q n = q T n

∇ =

∂x

∂y

∂z

cold hot

q ∇T

Fundamental unknown - temperature T

Fourier’s law of heat conduction q = −D ∇T

heat flux density vector q = {q x q y q z } [W/m 2 ] temperature gradient gradT = ∇T = n

∂T

∂x

∂T

∂y

∂T

∂z

o [K/m]

heat conduction matrix D = {k ij } [W/(mK)]

Flux density grows with temperature gradient.

Heat flows from higher to lower temperature.

(4)

Stationary heat flow in 3D

q n

q n = q T n

cold hot

q ∇T

Fundamental unknown - temperature T

Fourier’s law of heat conduction q = −D ∇T

heat flux density vector q = {q x q y q z } [W/m 2 ] temperature gradient gradT = ∇T = n

∂T

∂x

∂T

∂y

∂T

∂z

o [K/m]

heat conduction matrix D = {k ij } [W/(mK)]

Flux density grows with temperature gradient.

Heat flows from higher to lower temperature.

(5)

Heat energy balance

Heat generated equal to heat flowing out

Z

V

f dV = Z

S

q n dS ∀ V

f – heat source density – energy supplied to the body per unit volume and time [W/m 3 ]

V

S

Using Green-Gauss-Ostrogradsky theorem about integration by parts

Z

S

q n dS = Z

S

q T n dS = Z

V

divq dV = Z

V

 ∂q x

∂x + ∂q y

∂y + ∂q z

∂z

 dV Z

V

f dV = Z

V

T q dV ∀ V ⇒ ∇ T q = f ∀x ∈ V

(6)

Heat energy balance

Heat generated equal to heat flowing out

Z

V

f dV = Z

S

q n dS ∀ V

f – heat source density – energy supplied to the body per unit volume and time [W/m 3 ]

V

S Using Green-Gauss-Ostrogradsky theorem about integration by parts

Z

S

q n dS = Z

S

q T n dS = Z

V

divq dV = Z

V

 ∂q x

∂x + ∂q y

∂y + ∂q z

∂z

 dV Z

V

f dV = Z

V

T q dV ∀ V ⇒ ∇ T q = f ∀x ∈ V

(7)

Heat flow equations

Heat conduction equation (strong formulation)

T (D∇T ) + f = 0 ∀x ∈ V + boundary conditions

q n = q T n = b q on S q – natural b.c. (Neumann) T = b T on S T – essential b.c. (Dirichlet)

V

S T S q

Conduction matrix for isotropic materials D = kI

2 T

∂x 2 + ∂ 2 T

∂y 2 + ∂ 2 T

∂z 2 + f

k = 0 – Poisson equation For isotropic materials without heat source

2 T

∂x 2 + ∂ 2 T

∂y 2 + ∂ 2 T

∂z 2 = 0 – Laplace equation

(8)

Heat flow equations

Heat conduction equation (strong formulation)

T (D∇T ) + f = 0 ∀x ∈ V + boundary conditions

q n = q T n = b q on S q – natural b.c. (Neumann) T = b T on S T – essential b.c. (Dirichlet)

V

S T S q

Conduction matrix for isotropic materials D = kI

2 T

∂x 2 + ∂ 2 T

∂y 2 + ∂ 2 T

∂z 2 + f

k = 0 – Poisson equation

For isotropic materials without heat source

2 T

∂x 2 + ∂ 2 T

∂y 2 + ∂ 2 T

∂z 2 = 0 – Laplace equation

(9)

Heat flow equations

Heat conduction equation (strong formulation)

T (D∇T ) + f = 0 ∀x ∈ V + boundary conditions

q n = q T n = b q on S q – natural b.c. (Neumann) T = b T on S T – essential b.c. (Dirichlet)

V

S T S q

Conduction matrix for isotropic materials D = kI

2 T

∂x 2 + ∂ 2 T

∂y 2 + ∂ 2 T

∂z 2 + f

k = 0 – Poisson equation For isotropic materials without heat source

2 T

∂x 2 + ∂ 2 T

∂y 2 + ∂ 2 T

∂z 2 = 0 – Laplace equation

(10)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

(11)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

− Z

V

(∇w) T D∇T dV + Z

S

w (D∇T ) T ndS + Z

V

wf dV = 0

(12)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

− Z

V

(∇w) T D∇T dV + Z

S

w  D∇T

−q

 T ndS +

Z

V

wf dV = 0

(13)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

− Z

V

(∇w) T D∇T dV − Z

S

wq T ndS + Z

V

wf dV = 0

(14)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

− Z

V

(∇w) T D∇T dV − Z

S

w q T n q n

dS + Z

V

wf dV = 0

(15)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

− Z

V

(∇w) T D∇T dV − Z

S

wq n dS + Z

V

wf dV = 0

(16)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

− Z

V

(∇w) T D∇T dV − Z

S

wq n dS + Z

V

wf dV = 0 Z

V

(∇w) T D∇T dV = − Z

S q

w qdS − b Z

S T

wq n dS + Z

V

wf dV ∀w

(17)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

− Z

V

(∇w) T D∇T dV − Z

S

wq n dS + Z

V

wf dV = 0 Z

V

(∇w) T D∇T dV = − Z

S q

w q dS − b Z

S T

w q n dS + Z

V

wf dV ∀w

natural b.c. secondary unknown

(18)

Stationary heat flow in 3D

V

S T S q

Weak formulation Z

V

w ∇ T (D∇T ) + f  dV = 0 ∀w 6= 0

− Z

V

(∇w) T D∇T dV − Z

S

wq n dS + Z

V

wf dV = 0 Z

V

(∇w) T D∇T dV = − Z

S q

w qdS − b Z

S T

wq n dS + Z

V

wf dV ∀w + boundary condition

T = b T on S T

(19)

Stationary heat flow in 3D

Strong formulation

T (D∇T ) + f = 0 ∀x ∈ V + boundary conditions

q n = q T n = q b on S q

T = b T on S T

V

S T S q

Weak formulation

Z

V

(∇w) T D∇T dV = − Z

S q

w q dS − b Z

S T

wq n dS + Z

V

wf dV ∀w 6= 0

+ boundary condition

T = b T on S T

(20)

Stationary heat flow in 3D

Strong formulation

T (D∇T ) + f = 0 ∀x ∈ V + boundary conditions

q n = q T n = q b on S q

T = T b on S T

V

S T S q

Weak formulation

Z

V

(∇w) T D∇T dV = − Z

S q

w q b dS − Z

S T

wq n dS + Z

V

wf dV ∀w 6= 0

+ boundary condition

T = T b on S T

(21)

Stationary heat flow in 3D

Set of FE equations

T = NΘ – approximated temperature function N – shape function vector

Θ – nodal temperature (dof) vector

∇T = BΘ – approximated temperature gradient function B = ∇N – shape function derivative matrix

Z

V

(∇w) T D∇T dV = − Z

S q

w qdS − b Z

S T

wq n dS + Z

V

wf dV ∀w 6= 0

KΘ = f b + f K =

Z

V

B T DBdV, f b = − Z

S q

N T q dS− b Z

S T

N T q n dS, f = Z

V

N T f dV

(22)

Selection of approximation functions

Fundamental steps in FE procedure

1 Build a strong formulation of a problem

2 Convert the formulation into a weak format

3 Select approximation of unknown function

4 Select weighting function

(23)

Selection of approximation functions

Fundamental steps in FE procedure

1 Build a strong formulation of a problem

2 Convert the formulation into a weak format

3 Select approximation of unknown function

4 Select weighting function

(24)

Selection of approximation functions

Fundamental steps in FE procedure

1 Build a strong formulation of a problem

2 Convert the formulation into a weak format

3 Select approximation of unknown function

4 Select weighting function

(25)

Selection of approximation functions

Fundamental steps in FE procedure

1 Build a strong formulation of a problem

2 Convert the formulation into a weak format

3 Select approximation of unknown function

4 Select weighting function

(26)

Selection of approximation functions in 1D

1 Strong formulation d

dx Ak dT dx

!

+ f = 0 + boundary conditions

q x = q b at x q ( e.g. x q = 0) T = b T at x T ( e.g. x T = l)

x q = 0 x T = l

2 Conversion into weak formulation

Z l 0

dw

dx Ak dT dx

!

dx = −(wAq x ) x=l

+ (wA) x=0

q + b Z l

0

wf dx = 0

+ b.c.

T = b T at x T ( e.g. x T = l)

(27)

Selection of approximation functions in 1D

3 Selection of approximation functions Linear function

T e (x) = α 1 + α 2 x = Φα e Φ = [1 x], α e =

 α 1

α 2



T e (x) = N i e (x e )T i + N j e (x e )T j = N e Θ e N e = [N i e (x e ) N j e (x e )], Θ e =

 T i

T j



dT e

dx e = B e Θ e , B e = dN e dx e =

" dN i e

dx e dN j e

dx e

#

x T

T i

T j

x i x j l e

x e

0 e l e

1

N i e (x e )

x e

0 e l e

1

N j e (x e )

(28)

Selection of approximation functions in 1D

3 Selection of approximation functions Linear function

T e (x) = α 1 + α 2 x = Φα e Φ = [1 x], α e =

 α 1

α 2



T e (x) = N i e (x e )T i + N j e (x e )T j = N e Θ e N e = [N i e (x e ) N j e (x e )], Θ e =

 T i

T j



dT e

dx e = B e Θ e , B e = dN e dx e =

" dN i e

dx e dN j e

dx e

#

x T

T i

T j

x i x j l e

x e

0 e l e

1

N i e (x e )

x e

0 e l e

1

N j e (x e )

(29)

Selection of approximation functions in 1D

3 Selection of approximation functions Linear function

T e (x) = α 1 + α 2 x = Φα e Φ = [1 x], α e =

 α 1

α 2



T e (x) = N i e (x e )T i + N j e (x e )T j = N e Θ e N e = [N i e (x e ) N j e (x e )], Θ e =

 T i

T j



dT e

dx e = B e Θ e , B e = dN e dx e =

"

dN i e dx e

dN j e dx e

#

x T

T i

T j

x i x j l e

x e

0 e l e

1

N i e (x e )

x e

0 e l e

1

N j e (x e )

(30)

Selection of approximation functions in 1D

3 Selection of approximation functions Quadratic function

T e (x) = α 1 + α 2 x + α 3 x 2 = Φα e Φ = [1 x x 2 ], α e =

 α 1

α 2

α 3

T e (x) = N i e (x e )T i + N j e (x e )T j + N k e (x e )T k

= N e Θ e

N e = [N i e (x e ) N j e (x e ) N k e (x e )], Θ e =

 T i T j

T k

dT e

dx e = B e Θ e , B e = dN e dx e =

" dN i e

dx e dN j e

dx e

#

x T

T i

T j

T k

x i x j x k

l e

x e 0 e x e j l e 1 N i e (x e )

x e 0 e x e j l e

1 N j e (x e )

x e 0 e x e j l e

1

N k e (x e )

(31)

Selection of approximation functions in 1D

3 Selection of approximation functions Quadratic function

T e (x) = α 1 + α 2 x + α 3 x 2 = Φα e Φ = [1 x x 2 ], α e =

 α 1

α 2

α 3

 T e (x) = N i e (x e )T i + N j e (x e )T j + N k e (x e )T k

= N e Θ e

N e = [N i e (x e ) N j e (x e ) N k e (x e )], Θ e =

 T i T j T k

dT e

dx e = B e Θ e , B e = dN e dx e =

"

dN i e dx e

dN j e dx e

dN k e dx e

#

x T

T i

T j

T k

x i x j x k

l e

x e 0 e x e j l e 1 N i e (x e )

x e 0 e x e j l e

1 N j e (x e )

x e

1

N k e (x e )

(32)

Selection of approximation functions in 2D

1 Strong formulation

T (D∇T ) + f = 0 ∀x ∈ A + boundary conditions

q n = q T n = q b on Γ q

T = b T on Γ T Γ T

Γ q

2 Conversion into weak formulation (h - configuration thickness)

Z

A

(∇w) T Dh∇T dA = − Z

Γ q

wh qdΓ − b Z

Γ T

whq n dΓ + Z

A

whf dA

+ boundary condition

T = b T on Γ T

(33)

Selection of approximation functions in 2D

3 Selection of approximation functions Three-node element

T e (x, y) = α 1 + α 2 x + α 3 y = Φα e

Φ = [1 x y], α e =

 α 1 α 2 α 3

T e (x, y) = N i e (x e , y e )T i + N j e (x e , y e )T j + + N k e (x e , y e )T k = N e Θ e

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e )], Θ e =

 T i

T j

T k

y T (x, y)

x T i

T k

T j

i

k

j

y e x e

i k

j

e

(34)

Selection of approximation functions in 2D

Pascal triangle

– element

1

x y

x 2 xy y 2

x 3 x 2 y xy 2 y 3

x 4 x 3 y x 2 y 2 xy 3 y 4

(35)

Selection of approximation functions in 2D

Pascal triangle – three-node element 1

x y

x 2 xy y 2

x 3 x 2 y xy 2 y 3

x 4 x 3 y x 2 y 2 xy 3 y 4

(36)

Selection of approximation functions in 2D

Pascal triangle – six-node element 1

x y

x 2 xy y 2

x 3 x 2 y xy 2 y 3

x 4 x 3 y x 2 y 2 xy 3 y 4

(37)

Selection of approximation functions in 2D

Convergence conditions - requirements for FE approximation

completeness – approximation must be able to represent a constant field and a constant field gradient

continuity (conforming FE) – approximation must be continuous

along interelement edges

(38)

Selection of approximation functions in 2D

Convergence conditions - requirements for FE approximation

completeness – approximation must be able to represent a constant field and a constant field gradient

continuity (conforming FE) – approximation must be continuous

along interelement edges

(39)

Selection of approximation functions in 2D

3 Selection of approximation functions Three-node element

T e (x, y) = α 1 + α 2 x + α 3 y = Φα e

Φ = [1 x y], α e =

 α 1 α 2 α 3

T e (x, y) = N i e (x e , y e )T i + N j e (x e , y e )T j + + N k e (x e , y e )T k = N e Θ e

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e )], Θ e =

 T i

T j

y T (x, y)

x T i

T k

T j

i

k

j

y e x e

i k

j

e

(40)

Selection of approximation functions in 2D

3 Selection of approximation functions Three-node element

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e )]

y e N i (x e , y e )

x e 1 i

k

j

y e N j (x e , y e )

x e 1

i k

j y e

N k (x e , y e )

x e

1 i

k

j

Determination of shape functions N i (x e , y e ) = α 1i + α 2i x e + α 3i y e

1 x i y i

1 x j y j

1 x k y k

 α 1i

α 2i

α 3i

 =

 1 0 0

=⇒

α 1i = x j y k 2P −x k y j

4

α 2i = y 2P j −y k

4

α 3i = x 2P k −x j

4

(41)

Selection of approximation functions in 2D

3 Selection of approximation functions Three-node element

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e )]

e.g. for N i (x e , y e ) N i (x e i , y i e ) = 1 N i (x e j , y j e ) = 0 N i (x e k , y e k ) = 0

y e N i (x e , y e )

x e 1 i

k

j

y e N j (x e , y e )

x e 1

i k

j y e

N k (x e , y e )

x e

1 i

k

j

Determination of shape functions N i (x e , y e ) = α 1i + α 2i x e + α 3i y e

1 x i y i

1 x j y j

1 x k y k

 α 1i

α 2i

α 3i

 =

 1 0 0

=⇒

α 1i = x j y k 2P −x k y j

4

α 2i = y 2P j −y k

4

α 3i = x 2P k −x j

4

(42)

Selection of approximation functions in 2D

3 Selection of approximation functions Three-node element

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e )]

e.g. for N i (x e , y e ) N i (x e i , y i e ) = 1 N i (x e j , y j e ) = 0 N i (x e k , y e k ) = 0

y e N i (x e , y e )

x e 1 i

k

j

y e N j (x e , y e )

x e 1

i k

j y e

N k (x e , y e )

x e

1 i

k

j

Determination of shape functions N i (x e , y e ) = α 1i + α 2i x e + α 3i y e

1 x i y i

1 x j y j

1 x k y k

 α 1i

α 2i

α 3i

 =

 1 0 0

=⇒

α 1i = x j y 2P k −x k y j

4

α 2i = y 2P j −y k

4

α 3i = x 2P k −x j

4

(43)

Selection of approximation functions in 2D

3 Selection of approximation functions Three-node element

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e )]

e.g. for N i (x e , y e ) N i (x e i , y i e ) = 1 N i (x e j , y j e ) = 0 N i (x e k , y e k ) = 0

y e N i (x e , y e )

x e 1 i

k

j

y e N j (x e , y e )

x e 1

i k

j y e

N k (x e , y e )

x e

1 i

k

j

Determination of shape functions N i (x e , y e ) = α 1i + α 2i x e + α 3i y e

1 x i y i

1 x j y j

1 x k y k

 α 1i

α 2i

α 3i

 =

 1 0 0

 =⇒

α 1i = x j y 2P k −x k y j

4

α 2i = y 2P j −y k

4

α 3i = x 2P k −x j

(44)

Selection of approximation functions in 2D

3 Selection of approximation functions Four-node element

T e (x, y) = α e 1 + α e 2 x + α e 3 y + α e 4 xy = Φα e

Φ = [1 x y xy], α e =

 α e 1 α e 2 α e 3 α e 4

T e (x, y) = N i e (x e , y e )T i + N j e (x e , y e )T j + + N k e (x e , y e )T k + N l e (x e , y e )T l = N e Θ e N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e ) N l e (x e , y e )] Θ e = {T i T j T k T l }

y T (x, y)

x T j

T k

T i

T l

j

i

k l

y e x e

j

i

k

e l

(45)

Selection of approximation functions in 2D

Pascal triangle – four-node element 1

x y

x 2 xy y 2

x 3 x 2 y xy 2 y 3

x 4 x 3 y x 2 y 2 xy 3 y 4

(46)

Selection of approximation functions in 2D

Pascal triangle – eight-node element 1

x y

x 2 xy y 2

x 3 x 2 y xy 2 y 3

x 4 x 3 y x 2 y 2 xy 3 y 4

(47)

Selection of approximation functions in 2D

Pascal triangle – nine-node element 1

x y

x 2 xy y 2

x 3 x 2 y xy 2 y 3

x 4 x 3 y x 2 y 2 xy 3 y 4

(48)

Selection of approximation functions in 2D

3 Selection of approximation functions Four-node element

T e (x, y) = α e 1 + α e 2 x + α e 3 y + α e 4 xy = Φα e

Φ = [1 x y xy], α e =

 α e 1 α e 2 α e 3 α e 4

 T e (x, y) = N i e (x e , y e )T i + N j e (x e , y e )T j +

+ N k e (x e , y e )T k + N l e (x e , y e )T l = N e Θ e N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e ) N l e (x e , y e )]

Θ e = {T i T j T k T l }

y T (x, y)

x T j

T k

T i

T l

j

i

k l

y e x e

j

i

k

e l

(49)

Selection of approximation functions in 2D

3 Selection of approximation functions Four-node element (rectangular)

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e ) N l e (x e , y e )]

y e N i (x, y) = (x−x j ab )(y−y l )

x e 1

i

j

k l b a

y e N l (x, y) = − (x−x k ab )(y−y i )

x e i 1 j

k l

b a

y e N j (x, y) = − (x−x i ab )(y−y k )

x e 1 j i

l b a

y e N k (x, y) = (x−x l ab )(y−y j )

x e 1

i j

k l

b a

∇T e = B e Θ e

B e =

∂N e

∂x e

∂N e

∂y e

(50)

Selection of approximation functions in 2D

3 Selection of approximation functions Four-node element (rectangular)

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e ) N l e (x e , y e )]

e.g. for N i (x e , y e ) N i (x e i , y i e ) = 1 N i (x e j , y j e ) = 0 N i (x e k , y e k ) = 0 N i (x e l , y l e ) = 0

y e N i (x, y) = (x−x j ab )(y−y l )

x e 1

i

j

k l b a

y e N l (x, y) = − (x−x k ab )(y−y i )

x e i 1 j

k l

b a

y e N j (x, y) = − (x−x i ab )(y−y k )

x e 1 j i

k l b a

y e N k (x, y) = (x−x l )(y−y j )

ab

x e 1

i j

k l

b a

∇T e = B e Θ e

B e =

∂N e

∂x e

∂N e

∂y e

(51)

Selection of approximation functions in 2D

3 Selection of approximation functions Four-node element (rectangular)

N e = [N i e (x e , y e ) N j e (x e , y e ) N k e (x e , y e ) N l e (x e , y e )]

e.g. for N i (x e , y e ) N i (x e i , y i e ) = 1 N i (x e j , y j e ) = 0 N i (x e k , y e k ) = 0 N i (x e l , y l e ) = 0

y e N i (x, y) = (x−x j ab )(y−y l )

x e 1

i

j

k l b a

y e N l (x, y) = − (x−x k ab )(y−y i )

x e i 1 j

k l

b a

y e N j (x, y) = − (x−x i ab )(y−y k )

x e 1 j i

l b a

y e N k (x, y) = (x−x l )(y−y j )

ab

x e 1

i j

k l

b a

∇T e = B e Θ e

B e =

∂N e

∂x e

∂N e

∂y e

(52)

Selection of approximation functions in 3D

1 Strong formulation

T (D∇T ) + f = 0 ∀x ∈ V + boundary conditions

q n = q T n = q b on S q

T = b T on S T

V

S T S q

2 Conversion to weak formulation

Z

V

(∇w) T D∇T dV = − Z

S q

w b qdS − Z

S T

wq n dS + Z

V

wf dV + boundary condition

T = b T on S T

(53)

Selection of approximation functions in 3D

3 Selection of approximation functions Tetrahedral element

T e (x, y, z) = α e 1 + α e 2 x + α e 3 y + α e 4 z

Hexahedral element

T e (x, y, z) = α 1 e + α e 2 x + α e 3 y + α 4 e z+ + α e 5 xy + α e 6 yz + α e 7 xz + α e 8 xyz

y z

x i

j

k l

y z

x i

j k

l m

n o

p

(54)

Selection of approximation functions in 3D

3 Selection of approximation functions Tetrahedral element

T e (x, y, z) = α e 1 + α e 2 x + α e 3 y + α e 4 z

Hexahedral element

T e (x, y, z) = α 1 e + α e 2 x + α e 3 y + α e 4 z+

+ α e 5 xy + α e 6 yz + α e 7 xz + α e 8 xyz

y z

x i

j

k l

y z

x i

j k

l m

n o

p

Cytaty

Powiązane dokumenty

In the present paper we give some theorems on approximation of 2n-periodic continuous functions by general linear means of their Fourier series in metrics

This lecture was prepared within project ”The development of the didactic potential of Cracow University of Technology in the range of modern construction”, co-financed by the

As the first step towards comprehensive brain stem model neural rhythm generators controlling the upper and lower lung muscles responsible for breathing patterns are studied..

So, a search is on for considering various polynomial (polynomial operators) so that they maintain the zero- free property of f. One of the polynomial best suited in the situation

The basic result asserts the relation between compact convex subsets of a locally convex Hausdorff space and their extreme points.. Theorem 3 (Krein-Milman, see [3, 9,

Next, we show that even imposing restrictive geometric constraints on the outer functions may not suffice to assure that their Taylor approximants will inherit their

In this paper the assumptions on a(t, r) are chosen in such a manner that they imply continuity of the transforms and are satisfied for a number of

„Jeśli zaś obawiacie się mieczów Italii i wojen, powinniście skwapliwie przy- jąć do wiadomości, jak wielka jest opieka błogosławionego Piotra, Księcia Apostołów (beati