• Nie Znaleziono Wyników

Application of Fisher-Riesz-Kupradze method to solving the second Fourier problem

N/A
N/A
Protected

Academic year: 2021

Share "Application of Fisher-Riesz-Kupradze method to solving the second Fourier problem"

Copied!
9
0
0

Pełen tekst

(1)

ANNALES SOCIETAT1S MATHEMATICAE P O I O N A E Series I COM MENT ATIO N ES M A T H E M ' T I C A E XXVII (1988) ROCZNIKI POLSKIEGO TOWARZ YSTW A MA TEM AT YC ZN EG O

Séria I PRACE MATEM 'T Y C Z N E XXVII (1988)

Z. Do m a n s k i and Z. Ro j e k (Warsaw)

Application of Fisher-Riesz-Kupradze method to solving the second Fourier problem

Abstract. In this work we construct the solution o f the second Fourier problem using Fisher-Riesz-Kupradze method.

1. Introduction. Let Q be a bounded domain in Euclidean space Е ъ the boundary o f which (*) is a closed surface S of class C 2,A. W e shall denote the points of Q as x = (x ,, x 2, x 3), у = (у,, y 2, y3), . the point o f the surface S as £ = (<^, £2, £3), d = (Vu Ч2, Чз)> ••• The symbol |x-y| denotes the Eu­

clidean distance between points x and y: QT = Q x(0, 7); ST = S x(0, T);

= t^i (//), ot2(r}), x3(»/)] is the inner unit normal to surface S at //.

Let у be a function defined in the domain Q and let this function have partial derivatives dx/dxj, j = 1, 2, 3, uniformly continuous in Q. (x) will be the function defined on the surface S by

( X ) ( r j ) = lim x(x).

xeQ

De f i n i t i o n 1. Let a function /< defined on surface S be given and let (x) = ц. We define the derivatives Dxn , j = 1, 2, 3, of the function ц (see [3],

p. 15-20) by the formula

The function /r for which Dx p , j = 1, 2, 3, exist will be said to be differentiable in Hugoniot-Hadamard sense, simply in H -H sense.

О For the definition o f the surface o f class C 2,A see [3 ], p. 96-98, where L 2(B, X) = C 2 X.

2 — Prace M atem atyczne 27.2

(2)

216 Z. D o m a n s k i and Z. R o j e k

W e know that (see [3 ], p. 19)

(2 ) I o C j D ^ f i = 0 .

j = i

Instead o f using Dx. we shall use Dj. If the function g defined on ST has in H -H sense derivatives of order l ^ 0 with respect to space variables satisfying Holder condition with exponent h with respect to these variables, 0 ^ h < 1, and if the function g satisfies the Holder condition with exponent x, 0 ^ x ^ 1, with respect to time variable, we shall say that g e C l,h,x(ST).

II. Properties of the Poisson-Weierstrass integral and heat potentials. We know (see [5], p. 529) that for the equation

(3) A u - ~ = g

we have the fundamental formula

t

(4) ju(y, 0) v ( x - y , t)dy— J$g(y, x ) v { x - y , t - x ) d y d x -

(2 0 Q

1 r du

— f — v(x — rj,t — x) dS„dx + b'sdn„

f dv

+ f f “ (»7, t) — (x - rj, t - x) dSndx

os d n ti

Г0 for хфй, t > 0,

■=<U u (£, 0 for (^, î)eSt , lu(x, t) for (x, t )e Q T, where

(5) ',<X’ ,) = ( 4 J p eXP( “ ^ ) f O r , > 0 '

The integrals in (4) play the main role when initial value problems are concerned with (3). Some properties o f these integrals will be given.

De f i n i t i o n 2. The Poisson-Weierstrass integral with density q> is (see [11], p. 21-23; [9], p. 282-283) the integral o f the form

(6) I ( x , t) = $ (p (y )v {x -y , t)dy.

Q

Th e o r e m 1. I f the function (p belongs to Cq(Q), then the Poissonr-Weier- strass integral /(£, t) for set ST belongs to the class C 2,0;1(ST).

W e can prove this theorem using the classical method.

(3)

Application o f Fisher-Riesz-Kupradze method 217

De f i n i t i o n 3. The heat volumen potential with density g is (see [11], p.

23-34) the integral of the form

t

(7) J{x, t) = t) v { x - y , t-x )d y d x .

о h

Th e o r e m 2. I f g(-, t) eCq(Q) for every t e(0, T) and g(x, )e C ((0 , T)) for every xeQ, then J( -, •) e C 2,0:1 (5r ).

The proof of this theorem is analogous to the proof o f Theorem 1.

De f i n i t i o n 4. The heat potential of the simple layer with density ф is (see [10], p. 81-112) the integral of the form

t

(8) U (x, t) = j j i /ф1,t)v (x — rj, t — x)dSndx.

o s

Th e o r e m 3. I f the function ф is defined on ST and if ф (•, t) is differentiable in H -H sense at any value x e(0, T) and if the derivatives D j ф , j = 1,2,3, are bounded and integrable on ST, then the derivatives D jU , j = 1 ,2 ,3 , exist and satisfy the Holder condition with respect to space variables with an exponent arbitrarily smaller than 1.

P r o o f. If x<£S, then

dU r dv(x — rj,t — x)

(x, t) = J jФ{г}, т )--------dSndx

Яу . ^ J Яу

V X j O S U X j

Using formula (1), we obtain ÔU{x, t) = -

os

OS ° 4 j

dv (9) 75—(*, 0 = - т)Я;1*ЙчЛт-ЯаД»/Ж»/, T) — dS^dx.

V X j O S O S a n ti

Taking into account the equality £ ak (rj) = 1 and that £ ak(r])Djak(rj) = 0, we have

k= 1

i

3

k= 1

( 10 )

Dj

0 И = £ a*

DJ

( af c

Ф»)

k= 1

3

Using the equality £ ak Dk ^ v ) = 0 (see (2)), we get k= 1

3

£ a7l ° k (<** Ф и) - ф и ° к a * ] = о.

k= 1

(И)

(4)

218 Z. D o m a r i s k i and Z. R o je k

ij/DjV = Djiij/i^ — vDiiJ/: therefore from (10) and (11) we get

t t 3

(12) — ( |if/Dj vdSn dx = f {(Dji/s — c/iji/j X Dkcck) vdSndx +

as a s к = l

t 3 3

+ J I l aJ X ° k ( a k Ф » ) - x a k d j (a * Ф М d s n d x

bs fc= 1 k=1

From the Stokes theorem and from the fact that S is a closed surface we see that the last integral in (12) vanishes. Therefore we can write (9) in the form

dU ' 3 1 dv

(13) (x, t) = U ( D j t - o L j t X DkoLk)vdS4d x - \\^(г})ф(г1, x) dS4dx.

dX; os k= i os a n n

The first of these integrals is the heat potential o f the simple layer with

3

density Djij/ — cCjift X and the second o f these integrals is the heat

к — 1

potential o f the double layer with density а/ф. Using the known boundary property of the heat potential of the double layer (see [11], p. 13-21), we get

ÔU

Therefore

(14)

dU

d x j

lim ^— (x, t) = (^ — )(£, t) = f f ( D , > - a 7> X DkoLk)vdSvdx -

OS k = 1

- jS aljф Y-dSчdx + faj(Ç)ф(Çt t) = l s- W} + ф.

0 S dnn

D j U = l j - X j У « „ h - l W j - a j £ Щ Wt).

k = 1 k = 1

The heat potential of the simple layer f and the heat potential of the double layer Wj satisfy the Holder condition (see [11], p. 6-10, 18-21) with respect to the space variable with an arbitrary exponent smaller than 1 with the previously given assumptions about function ф, therefore (14) we see that Dj U satisfies the Holder condition with the same exponent.

Th e o r e m 4. I f the density ф is a bounded integrable function in ST and satisfies the Holder condition with respect to the time variable t with exponent x, 0 < x ^ 1, and the condition

lim ф(п, t) = ф(р, 0) = 0, t - o +

then the heat potential of the simple layer U(Ç, t) satisfies the Holder condition with respect to the variable t with exponent x.

The proof o f this theorem is easy.

(5)

Application of Fisher-Riesz-Kupradze method 219

III. Problem. Using Fisher-Riesz-Kupradze method, we shall solve the following Fourier problem:

We seek the function u(x, t) satisfying in QT the equation

(15) du

Ли— — = g

dt У

and the following conditions:

(16)

(17)

lim u{x, t) = tp(x), l-*0 '

lim — du(x, t) = ф(£, t).

x -*£, dïlç x e Q

We assume that S is of class С 2Д,

g{-, t)e C l{ Q ) for any f e ( 0, T), g{x, -)e C ((0 , T)) for any x gQ, (peCl(Q),

il/eCl ’0:X(ST) and 0) = 0.

S o lu t io n o f th e p ro b le m . Using the basic formulas (4) we can write the solution (if it exists) in the form

t

(18) u(x, t) = j’ (p (y )v (x - y , t)dy— Ц д {у , z ) v ( x - y , t - z ) d y d z -

b on

1 1 dv

- J $Ф(г}, z ) v ( x - r j , t - T ) d S 4dT+ JJ/to, t — z)dSndz,

0s 0 s

where the known function / (g, z) is the solution of the functional equation

(19) i i f ( g , z ) ^ - ( x - r i , t - z ) d S t,dz = F ( x , t ) ( x f Ü , t e(0, T)).

os <4

In (19) we denoted

t

(20) F (x , t) = - (< p (y )v (x - y , t)d y + f f g (y , z ) v ( x - y , t-z )d y d z +

b о n

t

+ I \ф(т], z )v (x —rj, t — z)dSndz.

o s

Th e o r e m 5. The functional equation (19) has exactly one solution be­

longing to class C l,h:/(ST).

P r o o f. Let us assume that (19) has got a solution. Using the properties of the*heat potential o f the double layer (see [11], p. 15), we get the integral

(6)

220 Z. D o m a n s k i and Z. R o j e k

equation

(2 1 ) 1 dv

- V ( L t ) + JJ/fo, t t - x ) d S ndx = F d , t).

Л Я Я

OS u n r\

The integral equation (21) is a Volterra equation with a continuous right side; it has exactly one continuous solution (see [12], p. 129-135). Taking into account the assumptions, we infer on the basis of Theorems 1-4 that the function F(Ç, t ) e C 1,h’x(ST) and F ( Ç , 0) = 0, W e shall show that the solution of the integral equation (19) is o f class C 1,h;X(ST).

W e shall use the following lemmas.

Le m m a 1. I f a function F is continuous and bounded on ST, it satisfies the Holder condition with exponent A with respect to variable t and F(Ç, 0) = 0 for ÇeS, then the solution of the integral equation (21) satisfies the Holder condition with the same exponent A with respect to variable t.

We get the proof o f Lemma 1 by showing that any o f the terms o f the Neumann series (which is the solution o f (21)) satisfies the Holder condition with respect to variable t with exponent A, and that the sum o f the Neumann series satisfies the Holder condition with respect to variable t with expo­

nent A.

Lemma 2. I f the function F ( - , ' t ) e C 1,h{S) for any te(0, T), then the solution f { - , t) of the integral equation (21) belongs to class C l,h(S) for any t e {0, T).

Lemma 2 is proved by application o f a localization principle based on the appropriate partition of unity (see [1], p. 63-88).

The function F(£, t) satisfies assumptions o f Lemmas 1 and 2, therefore on the basis o f these lemmas we conclude that the solution o f the integral equation (21) is o f class C 1,h:X(ST). W e shall show that the solution / o f the integral equation (21) is a solution o f the functional equation (19).

Let us suppose that the function / is not a solution o f the functional equation (19). Let us denote

where the function / (rj, x) is a solution o f the integral equation (21). W e have Ф(х, t) f it ) for хфй. It is easy to check that

0 S u n f)

(22)

(23) И т Ф ( х , t) = 0 ,

(7)

Application of Fisher-Riesz-Kupradze method 221

(24) НшФ(х, 0 = 0,

x$Q

(25) lim Ф(х, t) = 0.

Ijcf -►+ GO

Looking for the solution o f problems (22), (23), (24), (25) in the form o f the heat potential of the double layer with continuous and bounded density p

* dv

(26) Ф{х, t) = j jp(rj, t) — ( x - r j , t~z)dSqdz

o s d n n

and using condition (24) and the property of the heat potential of the double layer, we get an integral equation o f the form

1 dv

(27) ~ ? p ( £ , f) + J j> (? 7 , t) — - t - z ) d S vdz = 0.

0 S a n n

The equation (27) has exactly one solution p(rj, т) = 0. Therefore, Ф{х, t) = 0. The contradiction we arrived at ends the proof of Theorem 5.

Because the solution o f (19) belongs to class C 1,h,x(ST) the Lapunov- Taubers theorem is valid for the function и given by formula (18) (see [2], corollary, p. 142). Taking the above into account, it is easy to check that the function и is a solution o f problems (15), (16), (17).

C o n s t r u c t io n o f th e s o lu tio n . Let S1 be an arbitrary closed Lapunov’s surface which is the boundary of a domain Q1 which includes Q in its interior.

Let us write

Q\ = Q 1 x (0, T ); SlT = S1 x (0, T).

Let us take a countable dense set o f points {(£*, rf) } , k , i = 1, 2, ..., on the surface Sj and let us consider the set of the functions

ГКО rtpk , 4 J for T < t h

(28) r { C - r j , f -т) = < dn„

[ 0 for f ^ t< T, k, i = 1, 2, ...

Ordering the set (28) in a certain way, we write (29) Г (i ki - 4, t, . - t) = r t((/, t), 7 = 1 ,2 ,...,

and consider the space L 2(ST) with the norm

||ф|| T)\2dS„dx)1/2.

os

Le m m a 3. The set of functions {T j( -, •)}, j = 1, 2, ..., is linearly indepen­

dent.

(8)

222 Z. D o m a r ï s k i and Z. R o je k

Lemma 4. The set of functions {T j { -, •){, j = 1 , 2 , . . . , is complete in the domain L 2{ST).

The proofs o f Lemmas 3 and 4 are similar to those in [7], [8].

Subjecting the set {//•(*, •)] to the process of orthonormalization, we get the set \cûj(-, •)] o f orthonormal functions. The elements of the set [to/-, •){, 7 = 1 ,2 ,. . ., are linear combinations o f the elements of the set {ГД-, •)) and

vice versa (see [4], p. 72-73), i.e.,

CO 0 = £ A k j T k ( t i , t); Гj(rj, r ) = £ Bkjcok(rj, i ) .

k = 1 k = 1

We denote Fourier coefficients of the function / ( •, •) with respect to the set

\a)j(\ •);, j = 1, 2, ..., by

T

Ф] = ï I f(r i, ?)Mj(th ^dS^dx, j = 1 ,2 ,...

0s

Putting x = c J, Л ; t = t(j into equation (19), multiplying this equation by Ar and taking the sum from r equal one to r equal j, we get

T

Jо s

JJ/to, t) £ Arjr r(tt, r)dS„dx = £ Arj F(£kr, g r = 1

and therefore

Ф,

= I

A , j F ( p , t,J.

r = 1

Because F (x , r) is a given function the coefficients Arj are the normalization constants, therefore all Fourier coefficients Ф, are determined. Since f e L 2{ST), we have

(30)

Let us write

(31)

lim Ц/- X Фко)к|| = 0.

fc= l

/ * ( > 7 , 0 = X Ф к ю к (>1, т), l

(32) и * / * , /) = f t) —dv(.y- ; ; , t — x)dSndx F( x, t) .

о s dn

Th e o r e m 6. For any x e Q and for any t from the interval (0 , T) and for any £ > 0 there exists a N 0 such that for N > N 0 we have

(33) \u(x, t) — uN(x, t)\ < 8.

P r o o f. W e have

dv (34) \u(x, t ) - u N(x, 01 ^ JJ|f i n , t) - f N(r],t)|

os dn. (x tj, t -t) dSqdx.

(9)

Application of Fisher-Riesz-Kupradze method 223

Using the estimate dv

dn,( x - r j , t -t) ^ M [ ( t - z ) vab- 2vT \

where 0 < v < 1, a = inf|x — rj\ and M is a positive constant, we get

f/ e S

(35)

И

os dvdn( x - r ) , X -t) dS„dx ^ (mes S ) M T l ~v

r6 — 2v

(1 — v) = M\.

On the basis of (30) we can choose an N such that

(36) IJ If ( 4 , T ) - / w(4, t)|2dSndx W f - r w 1 S)

os M i

Using the Schwarz inequality in (34) and taking into account (35) and (36), we get (33).

On the basis of Theorem 6 we get the solution of problems (15), (16), (17)

1 N dv

(37) u{x, t ) = lim J j ( X 4>kcok(ri,T)) — ( x - r i , t - T ) d S 4d T - F ( x , t ) . N ~*OD Cl S k= 1 Xln„

References

[1 ] M. S. A g r a n о v i с. M. I. Vi s i k, Èlipticeskie zadaci s paramétrant i paraboliceskie zadaci obscego vida, Usp. Mat. Nauk 19 (3) (117) (1964) (in Russian) ^

[2 ] Z. D o m a n s k i , A. P i s k o r e k i Z. R o j e k , О primenenii metod,■ 'Fisera-Rissa-Kupradze dlja resenija perroj zadaci Fare, Ann. Soc. Math. Polon. Ser. 1, Comment. Math. 16 (1972),

137-147 (in Russian).

[3 ] N. M. G i u n t e r , Teoria potencjalu, P W N , Warszawa 1957.

[4 ] W . K o l o d z i e j , Wybrane rozdzialy analizy matematycznej, P W N , Warszawa 1970.

[5 ] M. K r z y z a n s k i , Râwnania rôzniczkowe czqstkowe rzçdu drugiego, T. 1, P W N , Warszawa 1957.

[6 ] V. D. K u p r a d z e , Metody potenciala v teorii uprugosti, Moskwa 1963 (in Russian).

[7 ] —, Ob odnom met ode priblizennogo resenija predeX nych zadac matematiceskoj fiziki, 2.V.M . i M.F. 6 (1964) (in Russian).

[8 ] —, О priblizennom resenii zadac matematiceskoj fiziki, Usp. Mat. Nauk 22 (2) (134) (1967), 59-107 (in Russian).

[9 ] A. P i s k o r e k . Râwnania calkowe. Element y teorii i zastosowania, W N T , Warszawa 1980.

[10] —, 0 pewnych wlasnosciach pochodnych potencjalow cieplnych w teorii râwnania przewod- nictwa, Biuletyn W A T nr 29, Warszawa 1957.

[11] W. P o g o r z e l s k i , Wlasnosci potencjalow cieplnych w teorii râwnania przewodnictwa, ibidem nr 29, Warszawa 1957.

[12] —, Râwnania calkowe i ich zastosowania, T. 2, P W N , Warszawa 1958.

Cytaty

Powiązane dokumenty

An infinite family of T -factorizations of complete graphs K 2n , where 2n = 56k and k is a positive integer, in which the set of vertices of T can be split into two subsets of the

Optimal control problems for linear and nonlinear parbolic equations have been widely considered in the literature (see for instance [4, 8, 18]), and were studied by Madatov [11]

Odpowiedź na pytanie «co się zdarzyło», «jak to było na­ prawdę», domaga się dopiero hipotetycznej rekonstrukcji, z szeregu odm iennych przekazów i form

Mapping technique in particular. The idea of such algorithms is to optimize a model with a minimum number of each objective function evaluations using a less accurate but faster

After the initial analysis of the Russian legislation, an inventory of possible use cases in Russia, and the examination of 3D Cadastre ‘solutions’ in other countries, the project

the method of text analysis, used primarily in biblical, liturgical and patristic studies (2); while in the last part we will present the latest studies on the methods adopted in

Chistyakov, Superposition operators in the algebra of functions of two variables with finite total variation, Monatshefte Math.. Adams, On definitions of bounded variation for

We propose the Galerkin method with finite-dimensional spaces based on the Lagrangean finite element of degree k £ N (see Sec.. In the case of strong ellipticity