• Nie Znaleziono Wyników

Modelling of multipeaked directional wave spectra

N/A
N/A
Protected

Academic year: 2021

Share "Modelling of multipeaked directional wave spectra"

Copied!
10
0
0

Pełen tekst

(1)

Applied Ocean Research 31 (2009) 1 3 2 - 1 4 1

ELSEVIER

Contents lists available at ScienceDirect

Applied Ocean Research

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / a p o r

O C E A N R E S E A R C H

Modelling of multipeaked directional wave spectra

A.V. Boukhanovsky, C. Guedes Soares*

Centre/or Marine Teclmoiogy and Engineering. Technical Umversity of Lisbon. Instituto Superior Técnico. Av. Rovisco Pais. W49-001. Lisbon. Portugal

A R T I C L E I N F O A B S T R A C T

Article histo,y A n a p p r o a c h f o r m o d e i i i n g o f m u l t i p e a k e d d i r e c t i o n a l w a v e s p e c t r a is p r o p o s e d For m o d e l i d e n t i f i c a t i o n Received 17 December 2008 a n u m e r i c a l o p t i m i z a t i o n t e c h n i q u e t h a t uses t h e r a n d o m l i n e a r s e a r c h ^ g o n t h m ,s a p p h e d . T h Received in revised f o r m t e c h n i q u e a l l o w s t h e fitting o f s p e c t r a l m o d e l s t o m e a s u r e d o r h m d c a s t d a t a . T h e HIPOCAS h m d c a s t d a t a 20 May 2009 f o r N o r t h A t l a n t i c are u s e d f o r a n a p p l i c a t i o n S t u d y . . , ^ » „

Accepted 14June 2009 © 2 0 0 9 E l s e v i e r L t d . A l l r i g h t s r e s e r v e d . Available online 7 July 2009

Keywords:

Multipeaked spectra Double peak spectra Wave spectra Direcdonal specta

1. Introduction

Design o f m a r i n e s t r u c t u r e s is based o n e s t i m a t e s o f t h e w a v e i n d u c e d loads g e n e r a l l y c a l c u l a t e d i n t h e f r e q u e n c y (ƒ) a n d d i r e c t i o n ( 0 ) d o m a i n s , w h i c h r e q u i r e i n f o r m a t i o n a b o u t t h e d i r e c t i o n a l w a v e s p e c t r u m S ( f , 9). The f o r m o f t h e d i r e c t i o n a l w a v e s p e c t r u m reflects t h e p h y s i c a l processes t h a t g o v e r n t h e e n e r g y balance b e t w e e n t h e local w i n d stress o f sea surface, i n t e r a c t i o n b e t w e e n w i n d w a v e s ( W ) a n d t h e s w e l l s (S) c o m i n g f r o m o t h e r areas, g e n e r a t e d at earlier t i m e s a n d b y o t h e r w i n d fields. Hence, t h e t r a d i t i o n a l a p p r o a c h f o r s p e c t r a l m o d e l l i n g as S ( f , 0 ) = S ( J ) ( l ( f , 6 ) , w h e r e t h e f r e q u e n c y s p e c t r u m

S ( f ) is a p p r o x i m a t e d b y t h e o n e - p e a k e d P i e r s o n - M o s k o w i t z s p e c t r u m f o r d e v e l o p e d sea states a n d b y a JONSWAP s p e c t r u m f o r d e v e l o p i n g seas (see [ 1 ] ) , a n d t h e d i r e c t i o n a l s p r e a d i n g d i s t r i b u t i o n (l(J, 9) is s i n g l e - p e a k e d also (see [ 2 ] ) .

M o s t studies o f w a v e s p e c t r a l m o d e l l i n g t h a t have b e e n d o n e i n t h e past have addressed o n l y single peaked spectra. O c h i a n d H u b b l e [ 3 ] a n d Guedes Soares [ 4 ] have p r o p o s e d s p e c t r a l m o d e l s t o describe t h e c o m b i n e d s i t u a t i o n o f s w e l l a n d w i n d sea. Guedes Soares [ 5 ] , a m o n g o t h e r s , has s h o w n t h a t t h e t w o peaked spectra s t i l l occur w i t h a r e l a t i v e l y h i g h f r e q u e n c y , w h i c h m a k e s i t i m p o r t a n t t o use t h e m i n t h e d e s i g n a p p r o a c h . Guedes Soares a n d Nolasco [ 6 ] have p r o p o s e d r e p r e s e n t a t i v e values f o r t h e 4 p a r a m e t e r s o f t h e d o u b l e peak m o d e l o f Guedes Soares [ 4 ] r e l e v a n t f o r t h e sea states o f t h e Portuguese coastal c l i m a t e .

* Corresponding author. TeL: +351 218417957.

E-mail address: guedessOmar.ist.utl.pt (C. Guedes Soares).

T o r s e t h a u g e n [ 7 ] has f u r t h e r g e n e r a l i z e d t h e m o d e l o f Guedes Soares [ 4 ] , also a d o p t i n g t h e JONSWAP m o d e l s f o r each o f t h e w a v e systems, b u t i n s t e a d o f u s i n g a c o n s t a n t (average) peak e n h a n c e m e n t f a c t o r i n each m o d e l , he a l l o w e d t h i s t o v a r y , l e a d i n g t o a m o d e l w i t h seven p a r a m e t e r s , w h o s e r e p r e s e n t a t i v e values he d e t e r m i n e d f o r t h e c o n d i t i o n s o f t h e N o r w e g i a n coast.

It has t a k e n m a n y years b e f o r e t h e ship a n d o f f s h o r e i n d u s t r y r e a l i z e d t h e i m p o r t a n c e o f a c c o u n t i n g f o r this c o m b i n e d seas s i t u a t i o n i n t h e d e s i g n a p p r o a c h , b u t r e c e n t years have seen a n i n c r e a s i n g i n t e r e s t i n t h e a d o p t i o n o f these cases i n i n d u s t r i a l a p p l i c a t i o n s , as i n d i c a t e d i n [ 8 - 1 1 ]. This i n t e r e s t has m o t i v a t e d t h e p r e s e n t paper, w h i c h deals w i t h a m e t h o d to i d e n t i f y t h e e x i s t i n g w a v e systems i n a g i v e n w a v e s p e c t r u m a n d t o f i t p a r a m e t r i c m o d e l s to each o f t h e i n d i v i d u a l systems. I t w i l l be s h o w n t h a t t h e r e s u l t i n g m o d e l o f t h e w a v e s p e c t r u m is capable o f d e s c r i b i n g c o m p l e x sea c o n d i t i o n s i n t h e f r e q u e n c y a n d d i r e c t i o n d o m a i n s t h a t r e p r e s e n t s e x i s t i n g w i n d w a v e s a n d s w e l l c o m b i n a t i o n s .

This m e t h o d generalizes t h e o n e o f Guedes Soares [ 4 ] , w h i c h d e a l t o n l y w i t h f r e q u e n c y spectra, by e x t e n d i n g t h e search o f w a v e s y s t e m s t o t h e d i r e c t i o n d o m a i n . T h i s g e n e r a l i z a t i o n is n o w possible because, p r e s e n t l y , m o s t o f t h e m e a s u r e d w a v e data is m t h e f o r m o f d i r e c t i o n a l spectra, w h i l e i n t h e 1980's o n l y f r e q u e n c y spectra w a s g e n e r a l l y available. Generally, t h e s p e c t r a l m o d e l o f c o m b i n e d seas is p r e s e n t e d as t h e s u m o f w i n d a n d s w e l l s p e c t r a l c o m p o n e n t s Sw,Ss ( f o r single o r several s w e l l s y s t e m s ) . I n t h e f r e q u e n c y d o m a i n , t h e i n d i v i d u a l s p e c t r a l c o m p o n e n t s are d e s c r i b e d u s i n g Sw, Ss as a t r a d i t i o n a l a p -p r o x i m a t i o n t o t h e s i n g l e - -p e a k e d s -p e c t r u m . The s w e l l c o m -p o n e n t o f t h e m u l t i p e a k e d s p e c t r u m w a s d e s c r i b e d b y a Gaussian f u n c -t i o n i n [ 1 2 ] w h i l e O c h i a n d H u b b l e [ 3 ] used a G a m m a -t y p e spec-t r u m a n d Guedes Soares [ 4 ] a n d laspec-ter T o r s e spec-t h a u g e n [ 7 ] a d o p spec-t e d spec-t h e

0141-1187/$ - see front matter © 2009 Elsevier Ltd. A l l rights reserved. doi:ia.1016/j.apor.2009.06.001

(2)

A.V. Boukhanovsky, C. Guedes Soares/Apphed Ocean Research 31 (2009) 132-141 133

JONSWAP m o d e l . As s w e l l o f t e n has a n a r r o w s p e c t r u m , t h e JON-SWAP s p e c t r u m w i t h a p p r o p r i a t e peak e n h a n c e m e n t f a c t o r has b e e n s h o w n b y Goda [ 1 3 ] to be able t o r e p r e s e n t s w e l l . F u r t h e r -m o r e , as s w e l l results f r o -m a w i n d sea t h a t propagates a w a y f r o -m t h e g e n e r a t i o n area, i t is n a t u r a l t h a t a y o u n g s w e l l is d e s c r i b e d b y t h e same spectral m o d e l as w i n d sea (JONSWAP).

O c h i [ 1 4 ] a n a l y z e d 8 0 0 spectra o f w i n d w a v e s at n i n e Ocean W e a t h e r Stations i n t h e N o r t h A t l a n t i c , a n d s h o w e d t h a t t h e m o s t g e n e r a l r e p r e s e n t a t i o n f o r s u c h spectra w o u l d be c o m p o s i t i o n o f t h e set o f o n e - p e a k e d spectra d e f i n e d b y a s i m p l e set o f p a r a m e t e r s .

Guedes Soares [ 4 ] has separated t h e w a v e c o m p o n e n t s f r o m t h e analysis o f scalar spectra, w h i c h w a s t h e i n f o r m a t i o n available t h e n . This g e n e r a l a p p r o a c h w a s f u r t h e r d e t a i l e d i n [ 6 ] , w h i l e Ro-d r i g u e z a n Ro-d GueRo-des Soares [ 1 5 ] Ro-d e v i s e Ro-d a m e t h o Ro-d t h a t w o u l Ro-d l e n Ro-d i t s e l f to a n easier i m p l e m e n t a t i o n i n a n a u t o m a t e d i d e n t i f i c a t i o n process. Basically these m e t h o d s go t h r o u g h a l l s p e c t r a l o r d i n a t e s a n d d e t e r m i n e t h e i r local m a x i m a ( s p e c t r a l peaks) as w e l l as t h e m i n i m a b e t w e e n peaks. The s e p a r a t i o n is d o n e at t h e m i n i m a , a l -t h o u g h a f -t e r f i -t -t i n g s p e c -t r a l m o d e l s fixed a-t -t h e peak f r e q u e n c i e s , t h e i r tails w o u l d c o n t r i b u t e t o t h e spectral e n e r g y at h i g h e r f r e -quencies t h a n t h e s e p a r a t i o n f r e q u e n c y . W a n g a n d H w a n g [ 1 6 ] p r o p o s e d a n i n t e r e s t i n g a l t e r n a t i v e t h a t w a s based o n t h e c o n s i d e r a t i o n s t h a t t h e s p e c t r a l steepness above a g i v e n f r e q u e n c y w o u l d be m a i n l y d e p e n d e n t o n t h e w i n d sea. T h e r e f o r e , c a l c u l a t i n g this p a r a m e t e r as a f u n c t i o n o f f r e q u e n c y a n d d e t e r m i n i n g its m a x i m u m w o u l d i d e n t i f y t h e s e p a r a t i o n p o i n t b e t w e e n t h e t w o w a v e systems. I n t h e i r e x a m p l e s , t h e y have s h o w n t h a t t h e i r s e p a r a t i o n p o i n t w o u l d c o i n c i d e w i t h t h e one t h a t w o u l d be d e t e r m i n e d b y t h e a l g o r i t h m o f Guedes Soares [ 4 ] . They a r g u e d t h a t t h e i r a p p r o a c h w a s b e t t e r because t h e y w o u l d a v o i d g o i n g t h r o u g h all s p e c t r a l o r d i n a t e s to d e t e r m i n e local m a x i m a a n d m i n i m a . H o w e v e r , t h e y have t o use all s p e c t r a l o r d i n a t e s t o c a l c u -late t h e i r f r e q u e n c y d e p e n d e n t steepness f u n c t i o n , a n d a f t e r w a r d s t h e y have t o d e t e r m i n e its m a x i m a . T h e r e f o r e , a l t h o u g h b e i n g a n e l e g a n t a p p r o a c h , i t does n o t p r o v i d e a n y d i f f e r e n t r e s u l t t h a n w h a t Guedes Soares [ 4 ] w a s o b t a i n i n g .

The i m p r o v e m e n t i n t h e t e c h n o l o g y o f m e a s u r i n g w a v e s , m a d e d i r e c t i o n a l w a v e spectra m o r e w i d e l y available at a l a t e r stage, a n d o t h e r approaches w e r e d e v i s e d t o take advantage o f t h e d i r e c t i o n a l i n f o r m a t i o n also. T h i s is t h e case o f t h e a p p r o a c h o f G e r l i n g [ 1 7 ] , f u r t h e r e x t e n d e d b y H a n s o n a n d Philips [ 1 8 ] . T h e m a i n a p p r o a c h is s i m i l a r , as i t starts b y l o o k i n g f o r local m a x i m a n o w i n t h e c o m p l e t e space o f f r e q u e n c y a n d d i r e c t i o n . A f t e r w a r d s , s t a r t i n g f r o m t h e m a x i m a , t h e s p e c t r a l o r d i n a t e s associated w i t h i t are i d e n t i f i e d . Some h e u r i s t i c rules are d e v e l o p e d f o r t h e m i n i m u m d i s t a n c e b e t w e e n peaks a n d m i n i m u m e n e r g y i n c o m p o n e n t s i n a w a y s i m i l a r t o w h a t is d e s c r i b e d i n [ 6 ] f o r t h e case o f scalar spectra. The a p p r o a c h o f H a n s o n a n d Philips [ 1 8 ] a l l o w s t h e t r a c k i n g o f t h e source o f s t o r m s b u t i t r e q u i r e s i n f o r m a t i o n a b o u t t h e w i n d a n d r e q u i r e s a g r i d o f data p o i n t s . I t is w e l l a d a p t e d t o t r e a t data p r o d u c e d b y w a v e m o d e l s b u t i t is less a d e q u a t e t o analyze data c o l l e c t e d b y a single d i r e c t i o n a l b u o y .

Ewans et a l . [ 1 9 ] have c o m p a r e d b o t h m e t h o d s a p p l i e d t o m e a -s u r e d w a v e -spectra a n d have c o n c l u d e d t h a t t h e y give c o m p a r a b l e results, a l t h o u g h i n s o m e cases t h e m e t h o d o f Guedes Soares [ 4 ] w a s m o r e accurate t h a n t h e o n e o f H a n s o n a n d P h i l i p s [ 1 8 ] .

This p a p e r presents t h e g e n e r a l i z a t i o n o f t h e m o d e l l i n g o f Guedes Soares [ 4 ] f o r d i r e c t i o n a l spectra o f c o m p l e x seas, w h i c h does n o t r e q u i r e m o r e i n f o r m a t i o n t h a n t h e s p e c t r a l o r d i n a t e s . I t is d e m o n s t r a t e d h o w one can fit t h e m o d e l t o m e a s u r e d or h i n d c a s t data, a n d t h e d i f f e r e n c e b e t w e e n t h e m o d e l l i n g t e c h n i q u e s f o r d i r e c d o n a l spectra a n d f o r t h e f r e q u e n c y d o m a i n o n l y are s h o w n . The HIPOCAS h i n d c a s t data [ 2 0 , 2 1 ] are used as a n e x a m p l e o f a p p l i c a t i o n o f t h e m e t h o d .

2. Formulation of multipeaked directional wave spectra

A general sea state consists o f a l o c a l l y g e n e r a t e d w i n d sea a n d one or m o r e s w e l l s y s t e m s . I f t h e n o n - l i n e a r i n t e r a c t i o n b e t w e e n t h e w i n d waves a n d t h e s w e l l are n e g l i g i b l e , t h e n t h e t o t a l d i r e c t i o n a l s p e c t r u m is expressed as: S ( f , 0 ) = £ s , ( / , 0 ) ( 1 ) 1=0 w h e r e t h e i n d e x value i = 0 is associated w i t h w i n d w a v e s , a n d N is t h e s w e l l systems n u m b e r . The f u n c t i o n s S i ( f , 6) a n d S j ( f , 9) at

i ^ j a l l o w f o r o v e r l a p p i n g over s o m e values o f (ƒ, 0 ) . Each s p e c t r a l c o m p o n e n t S, is c h a r a c t e r i z e d b y t h e set o f t h e i r m o m e n t s mu,

w h i c h are c o r r e s p o n d i n g to characteristics o f sea state, e.g. w a v e h e i g h t h (as t h e m e a n w a v e h e i g h t h o r s i g n i f i c a n t w a v e h e i g h t hs), z e r o - c r o s s i n g w a v e p e r i o d T a n d m e a n w a v e d i r e c t i o n 6 [ 2 2 ] . The t o t a l w a v e characteristics o f Eq. ( 1 ) are expressed f r o m t h e characteristics o f t h e s p e c t r a l c o m p o n e n t s , e.g. f o r d o u b l e p e a k e d s p e c t r u m o f w i n d w a v e s ( I V ) a n d t h e s w e l l ( S ) : ( 2 ) ( 3 ) H e r e , t h e w e i g h t c o e f f i c i e n t s 7]w, o f t h e w i n d w a v e s a n d s w e l l c o m p o n e n t s are: 'Is hi

The m e a n w a v e d i r e c t i o n o f a c o m p l e x sea is expressed as: ( 4 ) ( 5 ) ( 6 ) e = a r g ( c o s 0 - F i s i n e ) , w h e r e s i n e = r]w sin9w + m s i n 0 s ,

cos

9 = rivj

cos 0w -F

r]s

cos

9$.

The Eqs. ( 2 ) ( 6 ) a l l o w one to o b t a i n t h e d i r e c t i o n a l c h a r a c t e r i s -tics o f c o m p l e x seas b y m e a n s o f o p e r a t i o n s w i t h characteris-tics o f t h e s p e c t r a l c o m p o n e n t s , o n t h e a s s u m p t i o n t h a t t h e y have b e e n c o r r e c t l y s e p a r a t e d .

U n f o r t u n a t e l y , t h e clear s e p a r a t i o n o f t h e c o m p o n e n t s i n Eq. ( 1 ) is s o m e t i m e s a d i f f i c u l t p r o b l e m . I n t h i s case Eqs. ( 2 ) - ( 6 ) are c o n s i d e r e d as a n u n d e r d e t e r m i n e d n o n l i n e a r e q u a t i o n s y s t e m , as t h e n u m b e r o f u n k n o w n variables i n t h e right side o f Eqs. ( 2 ) - ( 6 ) is g r e a t e r t h a n t h e n u m b e r o f c o m p l e x sea c h a r a c t e r i s t i c s . T h e a d d i t i o n a l d e s c r i p t i o n o f t h e s p e c t r a l shape, u s i n g t h e a n a l y t i c a l m o d e l s o f sea w a v e s p e c t r u m , is r e q u i r e d f o r s o l v i n g t h a t p r o b l e m . T h e m o d e l o f single s p e c t r u m S ( / , 0 ) i n Eq. ( 1 ) is r e p r e s e n t e d as a p r o d u c t [ 2 3 ]

SiS, 9)= Sana, 9),

( 7 ) o f t h e f r e q u e n c y s p e c t r u m S(J) a n d t h e d i r e c t i o n a l s p r e a d i n g d i s -t r i b u -t i o n (l(J, 9), w h i c h s i m p l i f i e s t h e p a r a m e t e r i z a t i o n p r o c e -d u r e . T r a -d i t i o n a l l y , t h e m o s t c o m m o n is t h e S(J) r e p r e s e n t a t i o n b y m e a n s b y t h e g e n e r a l i z e d JONSWAP s p e c t r u m :

Si!) = Af-"

e x p

[-Bf-"] Y^^^

( 8 )

w h e r e A a n d B are t h e scale a n d t h e s h i f t c o e f f i c i e n t s , w h i c h d e -p e n d o n w a v e h e i g h t a n d -p e r i o d ; -p o s i t i v e values (I<, n) are t h e shape c o e f f i c i e n t s , y is t h e peakedness c o e f f i c i e n t a n d S ( f ) is t h e peak i n t e n s i t y f u n c t i o n . Eq. ( 8 ) is t h e g e n e r a l i z a t i o n o f a l o t o f w e l l k n o w n s p e c t r a l a p p r o x i m a t i o n s . I f y = 1 , t h e Eq. ( 8 ) is t h e t r a d i -tional W a l l o p s s p e c t r u m [ 2 4 ] f o r d i f f e r e n t c o n d i t i o n s . For t h e case

(3)

134 AV. Boukhanovsky. C. Cuedes Soares / AppUed Ocean Research 31 (2009) 132-141

k = n + 1, t h e f r e q u e n c y s p e c t r u m is a p p r o x i m a t e d w i t h t h e s o -c a l l e d G a m m a - s p e -c t r u m :

S r ( f . mojp, n) = mo exp . ( 9 )

N o t e t h a t S r ( f j p , n ) d f = mo, a n d t h a t t h e spectral peak occurs f o r ƒ = fp. The h i g h - f r e q u e n c y t a i l o f t h e s p e c t r u m is p r o p o r t i o n a l to ƒ " " . The peakedness a n d w i d t h o f t h e s p e c t r u m are g o v e r n e d b y the v a l u e o f n. W e l l - k n o w n w i n d w a v e s p e c t r u m o f t h i s f o r m is P i e r s o n - M o s k o w i t z s p e c t r u m f o r n = 5 [ 2 5 ] a n d t h e D a v i d a n - M a s s e l s w e l l s p e c t r u m [ 2 6 ] f o r n = 6. I f y > 1, t h e s p e c t r a l shape depends o f t h e S ( f ) f u n c t i o n . For n = 5 Eq. ( 8 ) b e c o m e s t h e w e l l k n o w n JONSWAP s p e c t r u m [ 2 7 ] . For t h e a p p r o x i m a t i o n o f Q ( f , Ö) i n Eq. ( 7 ) t h e f o l l o w i n g e x p r e s s i o n is u s e d : a ( f , 0 , 0 , s ) = | Q c o s 2 ^ ^ ' ( 0 - 0 ( / ) ) , | e - 0 ( f ) | < 7 r / 2 , [ 0 , \9-ë(f)\>7v/2, w h e r e Cs is a n o r m a l i z i n g p a r a m e t e r such t h a t :

£

Q ( 0 , ö p , s ) d e = 1 . ( 1 0 ) (11)

Eq. ( 1 0 ) is close to t h e w e l l - r e c o g n i z e d cos-2s d i r e c t i o n a l d i s t r i b u t i o n w h i c h is c o n s i d e r e d by L o n g u e t - H i g g i n s e t al. [ 2 2 ] a n d M i t s u y a s u et al. [ 2 8 ] . H o w e v e r , i n d e p e n d e n t l y o f t h e values o f s t h e Eq. ( 1 0 ) does n o t a l l o w s p r e a d i n g m o r e t h a n 180 degrees, w h i c h is essential f o r the s e p a r a t i o n o f i n d e p e n d e n t w a v e systems i n c o m p l e x sea spectra (see Section 3).

The p a r a m e t e r s reflects t h e range o f d i r e c t i o n a l s p r e a d i n g . The v a l u e o f s is increasing w i t h t h e o v e r a l l i n t e n s i t y o f sea w a v e s . The d e p e n d e n c y o f 6 ( f ) and s ( f ) o n t h e f r e q u e n c y are expressed as

ê ( f ) = 9 p + A , ( f - f p } a n d s ( f ) f ( 1 2 )

w h e r e 6p, Sp are t h e values o f p a r a m e t e r s a t t h e peak o f a w a v e s y s t e m . Here /S > 0 f o r ƒ < fp, a n d ^ < 0 i n t h e o p p o s i t e case. It is a p p r o p r i a t e t o p o i n t o u t t h a t t h e r e are several a l t e r n a t i v e r e p r e s e n t a t i o n s o f s p r e a d i n g f u n c t i o n s , e.g. b y means o f w r a p p e d n o r m a l d i s t r i b u t i o n , S e c h - 2 s - d i s t r i b u t i o n , Poisson a n d V o n Mises d i s t r i b u t i o n s [ 2 ] . But t h e s m a l l d i f f e r e n c e b e t w e e n t h e m [ 2 9 ] a l l o w s u s i n g Eq. ( 1 0 ) as t h e s i m p l e a n d t h e f a v o r i t e d i r e c t i o n a l d i s t r i b u t i o n w i t h a l o t o f a p p l i c a t i o n s i n e n g i n e e r i n g practice. Thus, t h e c o n s t r u c t i o n o f t h e p a r a m e t r i c m o d e l b y Eq. ( 1 ) r e q u i r e s t h e k n o w l e d g e o f t h e t o t a l n u m b e r o f w a v e systems N. M o r e o v e r , f o r each s y s t e m i = 0, N t h e set o f p a r a m e t e r s Si = ( m ^ ' \ 9l,'\ n,, s|,'*, Af,l3i) is r e q u i r e d f o r t h e G a m m a -based m o d e l ( o n Eq. ( 9 ) ) , a n d S , = (mf,/p"', , y,-, s<'*, A f , A ) -f o r t h e JONSWAP-based m o d e l ( o n Eq. ( 8 ) ) .

3. Model identification through fitting

There are d i f f e r e n t approaches f o r t h e e s t i m a t i o n o f the spectral p a r a m e t e r s i n Eq. ( 1 ) , u s i n g t h e t e c h n i q u e of f i t t i n g to data (see e.g. [ 3 0 ] ) . For t h e r e d u c t i o n o f d i m e n s i o n a l i t y , consider t h e s i m p l i f i e d p r o b l e m , w h e r e t h e d i r e c t i o n a l p a r a m e t e r s s, 9 are n o t d e p e n d e n t o n t h e f r e q u e n c y , e.g. s = Sp,ö = öp a n d Ap = P = 0. T r a d i t i o n a l l y , t h e clearest a p p r o a c h is t h e explicit o n e , w h o s e idea is t h e fitting o f t h e s p e c t r a l c o m p o n e n t s , w h e r e t h e p a r a m e t e r s o f peaks ( m o , / p , ö p ) are o b t a i n e d d i r e c t l y f r o m t h e spectra, a n d t h e shape p a r a m e t e r s ( n , s ) or ( y , s ) are fixed i n accordance t o t r a d i t i o n a l r e c o m m e n d a t i o n s , e.g. n = 5 , s = 2 a n d y = 3.3 f o r w i n d w a v e s . T o d a y this m e t h o d is p o p u l a r t o

a p p r o x i m a t e m u l t i p e a k e d spectra, because i t does n o t r e q u i r e t h e c o m p l i c a t e c o m p u t a t i o n a l p r o c e d u r e s o f G e r l i n g [ 1 7 ] , o r H a n s o n a n d Philips [ 1 8 ] .

The first step i n t h e p r e s e n t a p p r o a c h ( a n d i n t h e p r e v i o u s ones) is t o locate t h e peaks ( / p " , 0 p ' ) i n t h e t w o - d i m e n s i o n a l s p e c t r u m . It is possible to use l i n e a r search f o r i d e n t i f y i n g local m a x i m a o n t h e g i v e n s p e c t r u m . A local m a x i m u m is d e f i n e d i f t h e v a l u e o f t h e m a t r i x e l e m e n t is h i g h e r t h a n t h e v a l u e o f a l l its n e i g h b o r s . H o w e v e r , s o m e t i m e s l i t t l e fluctuations are d e f i n e d as local m a x i m u m . So i t is necessary to define i f t h e r e is a s i g n i f i c a n t m a x i m u m o r n o t . This task becomes easier after c o m p l e t i o n o f second s t e p — i s o l a t i n g peaks.

I s o l a t i n g peaks a l l o w s t h e d e f i n i t i o n o f t h e area f o r each m a x -i m u m -i n w h -i c h every p o -i n t belongs to a c o r r e s p o n d -i n g peak. T o d i v i d e t h e w h o l e s p e c t r u m i n t o s u c h areas, i t is possible t o use t h e f o l l o w i n g a l g o r i t h m . T h e s p e c t r u m is p r e s e n t e d as a s p e c t r a l m a -t r i x w h i c h c o n -t a i n s -t h e values o f spec-tral d e n s i -t y i n -t h e g r i d p o i n -t s for t h e d i f f e r e n t frequencies a n d d i r e c t i o n s ( i n r o w s a n d c o l u m n s , c o r r e s p o n d i n g l y ) . To decide t o w h a t m a x i m u m each e l e m e n t o f t h e s p e c t r u m m a t r i x belongs to, i t is c o m p a r e d w i t h all its e i g h t n e i g h -bors i n t h e g r i d t o d e t e r m i n e w h i c h one is higher. I f all o f t h e m are l o w e r , t h e n t h e s t a r t i n g e l e m e n t is a local m a x i m u m , or else i t b e -longs to t h e m a x i m u m t o w h i c h be-longs its highest n e i g h b o r , a n d t h i s step s h o u l d be r e p e a t e d f o r it. So f o r each p o s i t i o n , a p a t h t o o n e local m a x i m u m can be d e f i n e d . A f t e r t h e second step, each peak's area, as t h e set o f the p o i n t s , w h i c h are associated w i t h t h e same local m a x i m u m , is d e f i n e d . A f t e r w a r d s , t h e values o f t h e s p e c t r a l m o m e n t s m ^ are c o m p u t e d b y i n t e g r a t i o n o v e r each area.

In fact, t h e values o f t h e s p e c t r a l shape p a r a m e t e r s ( n , s, y ) v a r y s t r o n g l y a m o n g t h e w a v e systems and t h e g e o g r a p h i c a l c o n -d i t i o n s . Hence, t h e q u a l i t y o f fitting m a y be i m p r o v e -d b y m e a n s o f an a d d i t i o n a l p r o c e d u r e f o r n u m e r i c a l o p t i m i z a t i o n o f these p a -r a m e t e -r s , w h e n t h e w a v e s y s t e m n u m b e -r N a n d t h e p a -r a m e t e -r s

( m f , f p ' \ ö p ' ) are o b t a i n e d d i r e c t l y f r o m t h e s p e c t r u m . The m e a -sure o f fit w i t h respect t o Eq. ( 1 ) is t h e f u n c t i o n a l t o be m i n i m i z e d :

r ( 3 )

n

2 [ s * ( j , e ) - s ( f , i S ) ] ' d / d ö ^ m i n . N.S

( 1 3 ) Here S * ( » ) is t h e t a r g e t s p e c t r u m , a n d S ( f , 9,S)is t h e p a r a m e t r i c m o d e l o f s p e c t r u m b y Eq. ( 1 ) . N u m e r i c a l l y , S*(/i(, 9i) = S^, are t h e values o f t h e target s p e c t r u m at r e g u l a r g r i d p o i n t s . This t e c h n i q u e is k n o w n as semi-explicit a p p r o a c h .

In s o m e cases, i t is possible to o b t a i n t h e p a r a m e t e r s

m f , fp'^, ö p ' d i r e c t l y f r o m the s p e c t r u m w i t h r a t h e r h i g h p r e c i s i o n , b u t f o r m u l t i - p e a k e d spectra w i t h some s m o o t h e d peaks, t h e results o f t h e p a r t i t i o n i n g and peak i s o l a t i o n by an e x p l i c i t m e t h o d , can be u n r e a l i s t i c a n d even i n c o r r e c t (see [ 3 1 ] ) . For t h i s p u r p o s e , t h e f u l l y implicit t e c h n i q u e is used, w h e r e all t h e p a r a m e t e r s o f Eq. ( 1 ) , i n c l u d i n g N w a v e s y s t e m s , are o b t a i n e d b y m e a n s o f n u m e r i c a l o p t i m i z a t i o n o f Eq. (13). H o w e v e r , i n t h i s case, a single s o l u t i o n o f p r o b l e m by Eq. ( 1 3 ) is o n l y achievable w h e n t h e f o l l o w i n g a u x i l i a r y c o n s t r a i n t s are c o n s i d e r e d :

? ^ : | / p " ' - / p ^ ' ' | > 5 ; v | ö < " - ö , ^ ' ' | > 5 « ,

i , j = Ö r N , i ^ J . ( 1 4 ) Physically Eq. ( 1 4 ) means t h a t t h e peaks i,j are separated e i t h e r i n

f r e q u e n c i e s o r i n d i r e c t i o n s b y an offset l a r g e r t h a n a p r e d e f i n e d l i m i t S. I f t h e s p e c t r u m S* is d e f i n e d o n a r e g u l a r g r i d , t h e values Sf, SH are i n t e r p r e t e d as t h e m a x i m u m g r i d steps o v e r t h e f r e q u e n c y a n d t h e d i r e c t i o n , respectively.

Eq. ( 1 3 ) includes b o t h discrete ( N ) a n d c o n t i n u o u s ( S )

p a r a m e t e r s . I t assumes a s e q u e n t i a l o p t i m i z a t i o n p r o c e d u r e o f c o n t i n u o u s p a r a m e t e r s S f o r t h e values N = 0, 1 , 2, . . . . There

(4)

A.V. Boukhanovsky, C. Guedes Soares/ AppUed Ocean Research 3J (2009) 132-141 135

are m a n y o p t i m i z a t i o n s t e c l i n i q u e s available [ 3 2 ] , b u t ttie f a m i l y o f g r a d i e n t m e t h o d s is t h e m o s t o b v i o u s classical choice. H o w e v e r , f o r t h e p r o b l e m o f Eq. ( 1 3 ) w i t h w a v e spectra data, t h e r a n d o m search m e t h o d s are m o r e c o n v e n i e n t due t o t h e i r l i n e a r ( n o t p o w e r ) s c a l a b i l i t y w i t h r e s p e c t t o t h e n u m b e r o f p a r a m e t e r s . A l s o , t h e r a n d o m search a l g o r i t h m s also take i n t o a c c o u n t t h e r e s t r i c t i o n s o f the Eq. ( 1 4 ) r a t h e r s i m p l y . H e r e t h e a l g o r i t h m o f c o o r d i n a t e - w i s e l i n e a r r a n d o m search is u s e d : Sk+i =Sk--^\ [ f o r y N ( S k + , ) <Jn(Sk), i n case o f " s u c c e s s f u l " k + 1 - i t e r a t i o n , a n d o t h e r w i s e : '^k+X randici) i=Tjn f o r ; ( S t + i ) > ; ( S ' k ) V Sfc+, 6 m. ( 1 5 ) ( 1 6 ) H e r e is t h e v a r i a b l e step o f t h e i t e r a t i o n s , is t h e r a n d o m d i r e c t i o n ( m e a n i n g i n c r e a s i n g (-1-1) o r d e c r e a s i n g ( - 1 ) o f one o f the c o m p o n e n t s o f t h e v e c t o r S). The o p e r a t o r rand(») is t h e r a n d o m choice p r o c e d u r e s e l e c t i n g s o m e o t h e r d i r e c t i o n i n t h e m -d i m e n s i o n a l space o f p a r a m e t e r s , a n -d 3^ is t h e c o n s t r a i n t s area. The p a r a m e t e r s •^|/^, xj/2 d e f i n e t h e r e l a x a t i o n degree i n t h e n e i g h b o r h o o d o f t h e l o c a l e x t r e m e . T h e o r e t i c a l l y , t h e r e l a t i o n ilr^^f^^"''^ = 1, w i t h p = 0 . 2 7 , leads to t h e " b e s t " r e l a x a t i o n f o r a n y f o r m u l a t i o n d e f i n e d b y t h e Eq. ( 1 3 ) [ 3 3 ] . I n t h e c o m p u t a t i o n s b e l o w , t h e v a l u e s o f i/f] = 1.50 a n d 1/^2 = 0.86 are u s e d . The v a l u e o f t h e i n i t i a l s t e p e ' " ' is e q u a l t o 10% o f t h e i n i t i a l v a l u e o f t h e c o r r e s p o n d i n g c o m p o n e n t o f S. I t e r a t i o n s i n Eqs. ( 1 5 ) a n d ( 1 6 ) are p e r f o r m e d u n t i l t h e v a l u e o f J is m i n i m i z e d , h a v i n g achievecl t h e l o c a l m i n i m u m w i t h t h e r e q u i r e d t o l e r a n c e , w h i c h is 0 . 1 % i n t h e p r e s e n t c o m p u t a t i o n s . The a b o v e m e n t i o n e d p r o c e d u r e p r o v i d e s o p t i m a l v a l u e s o f t h e p a r a m e t e r s f o r S ( f , 6, a ) at a n y fixed n u m b e r N o f w a v e s y s t e m s . I n fact, t h e r e are n o clear f o r m a l a l g o r i t h m s f o r i d e n t i f y i n g t h e e x a c t n u m b e r N o f w a v e systems i n a g i v e n s p e c t r u m . O n l y t h e m a i n s p e c t r a l p e a k 6^^^ can be d e f i n e d w i t h c e r t a i n t y f o r a n y S(J, 9). Hence, t h e fitting p r o c e d u r e is c o n s t r u c t e d u s i n g t h e s e q u e n t i a l i n c r e m e n t o f t h e n u m b e r o f w a v e s y s t e m s i n t h e i n i t i a l s p e c t r u m . O n t h e f i r s t stage, t h e p r o b l e m b y Eq. ( 1 3 ) is s o l v e d f o r o n e - p e a k e d spectra ( N = 0 ) a n d t h e c o u p l e {Sp°\ 0 p ° ' ) is c o n s i d e r e d as a n i n i t i a l a p p r o x i m a t i o n o f t h i s p a r t o f t h e p a r a m e t e r s v e c t o r S. For t h e shape p a r a m e t e r s n, s ( f o r t h e G a m m a - b a s e d m o d e l ) t h e i n i t i a l values a d o p t e d are n'°^ = 5, s^"^ = 4 w h i c h c o r r e s p o n d t o the P i e r s o n - M o s k o w i t z s p e c t r u m f o r s t o r m w a v e s , o r ( f o r JONSWAP-based m o d e l ) = 3.3, s'") = 4 . Physical c o n s i s t e n c y o f t h e i t e r a t i o n s c h e m e i n Eqs. ( 1 5 ) a n d ( 1 6 ) r e q u i r e s s o m e a d d i t i o n a l c o n s t r a i n t s : e.g. n > 2 , s > 1 a n d y > 1 t o assure r e a l i s t i c m o m e n t s o f a n y s p e c t r u m h a v i n g t h e s t r u c t u r e d e f i n e d b y Eqs. ( 7 ) - ( 9 ) . M o r e o v e r , a n u p p e r l i m i t can be set f o r t h e shape p a r a m e t e r s n, s, y f r o m p r a c t i c a l reasons. A t t h e n e x t i t e r a t i o n , t h e significance o f t h e (N F 1 ) -t h -t e r m i n -t h e Eq. ( 1 ) is c h e c k e d b y a p p l y i n g -t h e c o n d i -t i o n / ' ^ ' ( i 5 ' ) / J ^ ^ + " ( S ' ) < a. N u m e r i c a l e x p e r i m e n t s s h o w e d t h a t t h e best v a l u e is a = 1.5, w h i c h means t h a t i f t h e d i s c r e p a n c y i n Eq. ( 1 3 ) f o r N -F 1 t e r m s is less t h e n 1.5 t i m e s f o r N t e r m s , t h e n N t e r m s are e n o u g h f o r t h e a p p r o x i m a t i o n . The i n i t i a l values

( f p ' ^ \ fip*^') f o r N > 1 are o b t a i n e d d i r e c t l y f r o m t h e s p e c t r u m , i f s e c o n d a r y peaks are c l e a r i y v i s i b l e . I n o t h e r cases, these i n i t i a l v a l -ues are r e c a l c u l a t e d as / p ' ^ ' =f^''-'^ + Sf, 9^ = + So w i t h respect t o c o n s t r a i n t s b y Eq. ( 1 4 ) .

A l l steps o f t h i s p r o c e d u r e are s h o w n i n t h e Fig. 1. The t a r g e t d i r e c t i o n a l s p e c t r u m (Fig. 1(a)) has t h r e e c l e a r peaks, b u t t h e

f r e q u e n c y s p e c t r u m S { f ) a n d i n t e g r a t e d d i r e c t i o n a l s p r e a d i n g f u n c t i o n ( 2 ( 0 ) h a v e t w o peaks each o n l y . I n t h e first step ( N = 0) t h e i m p l i c i t a p p r o a c h p r o d u c e d the u n r e a l i s t i c a p p r o x i m a t i o n (Fig. 1(b)), w h e r e the s i n g l e - p e a k e d s p e c t r u m is s m o o t h e d a m o n g t h e data peaks. N e v e r t h e l e s s , i n t h e s e c o n d step ( N = 1) t h e p o s i t i o n s o f the t w o m a i n w a v e systems are l o c a l i z e d i n t h e d i r e c t i o n a l d o m a i n (Fig. 1(c)). I n the t h i r d s t e p ( N = 2 ) all t h r e e peaks are a p p r o x i m a t e d a d e q u a t e l y (Fig. 1(d)). A d d i t i o n a l l y i n Fig. 1 t h e values o f the n o r m a l i z e d d i m e n s i o n l e s s a p p r o x i m a t i o n e r r o r

E r r o r : ( 1 7 )

are s h o w n . It is seen t h a t , i n t h e first step, the i n i t i a l e r r o r is d e c r e a s i n g m o r e t h a n 3.7 times, a n d i n s e c o n d s t e p i t is decreasing 3 t i m e s ( w h e n t h e s e n s i t i v i t y p a r a m e t e r a i n t h e c o m p u t a t i o n a l p r o c e d u r e is e q u a l t o 1.5).

W i t h respect t o t r a d i t i o n a l d e t e r m i n i s t i c o p t i m i z a t i o n m e t h o d s (e.g. g r a d i e n t t e c h n i q u e s ) the r a n d o m search m e t h o d does n o t n e e d g r a d i e n t c a l c u l a t i o n because i t uses r a n d o m steps for m o v i n g the c u r r e n t p o s i t i o n i n t h e space o f p a r a m e t e r s . Since i t uses a r a n d o m s t e p , i t is p o s s i b l e t o d e f i n e a g l o b a l m a x i m u m . M o r e o v e r , t h i s m e t h o d r e q u i r e s o n l y one t a r g e t f u n c t i o n (see Eq. ( 1 3 ) ) c a l c u l a t i o n p e r step. W h i l e this c a l c u l a t i o n takes time, i t is a n i m p o r t a n t b e n e f i t t o the a l g o r i t h m .

4. Comparative analysis with other multipeaked spectral

models

Guedes Soares [ 4 ] has p r o p o s e d a f r e q u e n c y s p e c t r a l m o d e l t o describe t h e c o m b i n e d s i t u a t i o n o f s w e l l a n d w i n d sea o n t h e basis o f Eq. ( 1 ) , w h e r e t h e c o m p o n e n t s are t h e JONSWAP spectra. T h e l e a d i n g c o n t r o l v a r i a b l e f o r t h i s m o d e l is t h e r a t i o b e t w e e n s p e c t r a l peaks o f s w e l l (S) a n d w i n d w a v e s ( W ) c o m p o n e n t s , i.e.:

Sr = ( 1 8 )

I n t h e f r a m e o f m o d e l i d e n t i f i c a t i o n , t h e v a l u e o f Sn a n d t h e f r e -quencies fp^'^^ are e s t i m a t e d d i r e c t l y f r o m t h e m e a s u r e d spec-t r u m , a n d hR = (hs/hw)^ is r e c a l c u l a t e d t h r o u g h Eq. ( 1 8 ) . T h i s p a r a m e t e r i z a t i o n is e n o u g h for t h e case w h e n t h e f r e q u e n c y spec-t r u m has spec-t w o clear peaks.

I n Fig. 2 t h e r e are e x a m p l e s o f f r e q u e n c y s p e c t r a fitting b y Eqs. ( 1 ) , ( 8 ) a n d ( 1 8 ) i n c o m p a r i s o n w i t h t h e above d e s c r i b e d d i r e c t i o n a l m o d e l o n t h e base o f Eqs. ( 1 3 ) - ( 1 6 ) . T h e h i n d c a s t w a v e d a t a f r o m HIPOCAS dataset [ 3 4 ] near Canaries are u s e d for case s t u d i e s . T h e r e w e r e t w o sorts o f d i r e c t i o n a l m o d e l c o m p o n e n t s i n Eq. ( 1 ) : as G a m m a - s p e c t r u m (Eq. ( 9 ) w i t h t h e v a r i a b l e p a r a m e t e r n), a n d as JONSWAP s p e c t r u m (Eq. ( 8 ) w i t h t h e fixed p a r a m e t e r n = 5 a n d v a r i a b l e p a r a m e t e r y). For q u a n t i t a t i v e c o m p a r i s o n , t h e D e v i a t i o n I n d e x (D.I.), p r o p o s e d b y L i u [ 3 5 ] a n d a d o p t e d b y Guedes Soares a n d H e n r i q u e s [ 3 6 ] is e s t i m a t e d as: 100 S*(fi) S*(fi)(fi+i - f i ) m o ( 1 9 )

I n t h e Table 1 t h e values o f D.I., associated w i t h t h e Fig. 2 ( a ) - ( c ) are p r e s e n t e d .

I n Fig. 2(a) t h e s i m p l e t w o - p e a k e d s p e c t r u m w i t h clear s e p a r a t i o n o f w i n d w a v e s a n d s w e l l c o m p o n e n t s is s h o w n . F r o m the Table 1 i t is c l e a r l y seen t h a t t h e D.I. f o r all t h e cases is l o w e r t h a n 16. U s u a l l y , i f t h e v a l u e s o f D.I. are l o w e r t h a n 2 5 - 3 0 t h e m o d e l fitting is c o n s i d e r e d s a t i s f a c t o r y [ 3 5 ] . T h u s , all t h e t h r e e m o d e l fittings are r a t h e r close w i t h each o t h e r a n d w i t h t h e i n i t i a l d a t a .

(5)

136 A.V. Boukhanovsky, C. Guedes Soares/ Applied Ocean Research 31 (2009) 132-141

b ,

ƒ

O 90 180 2 7 0 3 6 0 0 0.2 0.4 O 9 0 180 2 7 0 3600 0.1 0.2

180 270 3 6 0 0 0.2 0.4

Fig. 1. Example of multi-peaked directional wave spectrum fitted by means of the i m p l i c i t technique by Eqs. ( 1 3 ) - ( 1 6 ) . (a) Initial example ( N o r t h Atlantic coast of Portugal, HIPOCAS data), ( b ) , ( c ) , ( d ) Sequential steps of method ( N = 0, 1, 2).

Table 1

Deviation Index for comparison of multipeaked spectral models.

Case study Models

Directional model by Eqs. (1) and ( 1 3 ) - ( 1 6 ) Model by Guedes Soares 14|

Gamma-spectrum (9) J0NSW?AP(8) 01.02.1999 0:00 (Fig. 2(a)) 09.02.1999 9:00 (Fig. 2(b)) 11.02.1999 0 : 0 0 ( F i g . 2(c)) 15.9 14.6 11.3 11.3 21.6 21.1 13.1 33.8 66.0

I n Fig. 2 ( b ) , (a) a m o r e c o m p l i c a t e d case o f t w o - p e a k e d w a v e s p e c t r u m w i t h d o m i n a t e d s w e l l a n d w e a k w i n d w a v e s is s h o w n . The second peak is l a t e n t - o n l y the l o n g s p e c t r a l tail is observable. For this case S r = 0 by Eq. ( 1 8 ) , a n d o n l y a s i n g l e - p e a k m o d e l is a d o p t e d . N e v e r t h e l e s s , u s i n g Eqs. ( 1 3 ) - ( 1 6 ) a l l o w s one t o o b t a i n m o r e r e l i a b l e e s t i m a t i o n s w h i c h c o n t a i n b o t h t h e w i n d sea a n d t h e s w e l l c o m p o n e n t s . The f i t t i n g s b y Eqs. ( 1 3 ) - ( 16), w h e r e D.1. = 14.6, are closer to t h e i n i t i a l data t h a n t h e m o d e l by Eqs. ( 1 ) , ( 8 ) a n d ( 1 8 ) , w h e r e D.I. = 33.8.

I n Fig. 2 ( c ) t h e c o m p l e x sea case w i t h t w o s w e l l s a n d the w i n d w a v e s is s h o w n . O n l y a single s p e c t r a l peak is v i s i b l e i n t h e s p e c t r u m . The second s w e l l c o m p o n e n t a n d t h e w i n d w a v e s c o m p o n e n t f o r m t h e l o n g s m o o t h e d s h e l f o n t h e t a i l o f the s p e c t r u m . For this case, the m o d e l by Eqs. ( 1 ) , ( 8 ) a n d ( 1 8 ) leads to u n s a t i s f a c t o r y f i t t i n g ( D . I . = 6 6 . 0 ) , b u t a d o p t i n g t h e p r o p o s e d m o d e l o n t h e basis o f Eqs. ( 1 3 ) - ( 1 6 ) a l l o w s one t o select a l l the

peaks a n d to o b t a i n a r a t h e r g o o d r e p r e s e n t a t i o n o f t h e s p e c t r a l shape ( D . I . = 11.3).

W h i l e this c o m p a r i s o n is u s e f u l to s h o w t h e f l e x i b i l i t y o f t h e p r e s e n t l y p r o p o s e d m e t h o d , it m u s t be n o t e d t h a t the c o m p a r i s o n w i t h t h e m o d e l o f Guedes Soares [4] is s t r e t c h i n g i t b e y o n d its scope, w h i c h is t o m o d e l d o u b l e peaked spectra. I n t h e o r i g i n a l p a p e r , i t is suggested t h a t a s i m i l a r a p p r o a c h c o u l d be a d o p t e d for spectra w i t h m o r e c o m p o n e n t s b u t , i n t h a t case, a d d i t i o n a l r a t i o s S r (Eq. ( 1 8 ) ) w o u l d n e e d t o be c o n s i d e r e d .

Fig. 2 s h o w s t h a t t h e p r i n c i p a l advantage o f t h e t e c h n i q u e based o n Eqs. ( 1 3 ) - ( 1 6 ) is i n v o l v i n g t h e d i r e c t i o n a l i n f o r m a t i o n for f i t t i n g o f c o m p l e x - s h a p e m u l t i p e a k e d spectra. For a d e t a i l e d e x p l a n a t i o n o f this f e a t u r e . Fig. 3 s h o w s a c o m p a r i s o n o f t h r e e d i f f e r e n t approaches ( e x p l i c i t , s e m i - e x p l i c i t a n d i m p l i c i t , w h i c h are d e s c r i b e d i n Section 3) for d i f f e r e n t types o f d i r e c t i o n a l m u l t i p e a k e d spectra. I n the c o l u m n Fig. 3 ( a ) ( l - 4 ) the e x a m p l e o f

(6)

A V . Boukhanovsky, C. Guedes Soares / Applied Ocean Research 31 (2009) 132-141 137 Table 2

Characteristics of wave spectra occurrence for different regions of North A t l a n t i c

/?s, m Ps,% P2P,% Pm.%

North of the Britain (64N, 6 W )

0 - 2 2.2 0.5 7.9 3.9 9.1 1.10 2 - 4 12.5 4.6 22.3 10.5 24.4 1.01 4 - 7 14.6 1.3 10.4 1.5 8.5 1.05 > 7 5.0 - 2.2 0.7 2.3 0.88 34.3 6.4 42.8 16.6 44.3 1.01 Azores (40N, 26W) 0 - 2 0.9 3.8 9.8 12.5 16.8 0.91 2 - 4 14.5 6.4 17.7 15.2 26.9 1.08 4 - 7 11.4 2.4 3.5 0.2 3.1 1.46 > 7 1.7 > 7 1.7 Ep 28.5 12.6 31.0 27.8 46.8 1.15 Sines (38N, 9W) 0 - 2 0.1 37.2 13.9 4.0 6.6 1.14 2 - 4 1.2 29.9 7.3 2.2 3.3 1.17 4 - 7 0.8 2.1 0.5

-

-

1.23 >7 0.5

-

0.1

-

-

1.22 Ef 2.7 69.2 21.8 6.2 9.9 1.19 Canaries (29.25N, 15.25W) 0 - 2 0.2 4 3 17.2 2.7 6.9 1.34 2 - 4 12.1 13.6 3 4 9 5.2 12.8 1.18 4 - 7 2.4 3.5 3.0 0.4 0.4 0.96 >7 0.4

-

-

-

-

-Ep 15.1 21.5 55.1 8.3 20.1 1.16 w e l l - s e p a r a t e d d o u b l e - p e a k e d s p e c t r u m is p r e s e n t e d . It is clearly seen t h a t all t h r e e approaches a l l o w one t o o b t a i n r a t h e r r e l i a b l e s e p a r a t i o n o f c o m p o n e n t s . B u t the f i t t i n g by t h e e x p l i c i t a p p r o a c h seems r o u g h e r due t o t h e f i x i n g o f shape p a r a m e t e r s i n Eq. ( 1 ) .

I n t h e c o l u m n Fig. 3 ( b ) ( l - 4 ) t h e m o r e c o m p l i c a t e d case o f a t h r e e - p e a k e d s p e c t r u m is c o n s i d e r e d . H e r e , the q u a l i t y o f t h e a p p r o x i m a t i o n s by b o t h e x p l i c i t a n d s e m i - e x p l i c i t approaches is l o w e r , t h a n t h e i m p l i c i t one (Fig. 3 ( b ) ( 4 ) ) . I n t h e c o l u m n Fig. 3(c)( 1 - 4 ) t h e e x a m p l e o f " s m o o t h e d " d o u b l e - p e a k e d s p e c t r u m is s h o w n . This s p e c t r u m consists o f t w o w a v e c o m p o n e n t s , b u t o n l y t h e single s w e l l peak is c l e a r l y seen i n t h e g r a p h . As a result, o n l y t h e f u l l y i m p l i c i t a p p r o a c h by Eqs. ( 1 3 ) - ( 1 6 ) a l l o w s t h e f i t t i n g o f t h e m o d e l a d e q u a t e l y to data. T h u s , s u c h analysis a l l o w s one to a d o p t t h e i m p l i c i t a p p r o a c h b y Eqs. ( 1 3 ) - ( 1 6 ) as t h e m o s t r e l i a b l e t e c h n i q u e o f a u t o m a t i c s e p a r a t i o n a n d m o d e l i d e n t i f i c a t i o n f o r m u l t i p e a k e d d i r e c t i o n a l w a v e spectra.

5. Model study on the HIPOCAS data

For s t u d y i n g t h e p e r f o r m a n c e o f t h e f i t t i n g a p p r o a c h , t h e HIPOCAS 4 4 years h i n d c a s t data o v e r t h e N o r t h A t l a n t i c w e r e used [ 3 4 ] . Four d i f f e r e n t p o i n t s w i t h s i g n i f i c a n t l y d i f f e r e n t w a v e c o n d i t i o n s are c o n s i d e r e d . For each p o i n t , the dataset o f 2 9 2 0 d i r e c t i o n a l w a v e spectra ( f r o m 1 9 9 9 ) o n a d i s c r i m i n a t i o n o f 25 f r e q u e n c i e s a n d 2 4 d i r e c t i o n s w e r e f i t t e d to t h e m o d e l by Eq. ( 1 ) b y t h e f u l l y i m p l i c i t a p p r o a c h by Eqs. ( 1 3 ) - ( 1 6 ) . Such a m o u n t o f d a t a is n o t e n o u g h f o r q u a n t i t a t i v e c l i m a t i c c h a r a c t e r i z a t i o n , b u t i t is possible to o b t a i n s o m e q u a l i t a t i v e k n o w l e d g e a b o u t s p e c t r a l s t r u c t u r e o f c o m p l e x sea states i n d i f f e r e n t regions o f t h e N o r t h A t l a n t i c , w h i c h is u s e f u l f o r t h e assessment o f the m o d e l adequacy. I n Table 2 t h e e s t i m a t i o n o f several characteristics o f t h e dataset are p r e s e n t e d w i t h respect t o levels o f s i g n i f i c a n t w a v e h e i g h t hs

a n d t o t a l l y over all sea states (X'p). The values Pw a n d Ps d e n o t e t h e f r e q u e n c i e s o f o c c u r r e n c e (%) o f s i n g l e - p e a k e d s p e c t r u m o f w i n d w a v e s a n d t h e s w e l l , r e s p e c t i v e l y . It is seen t h a t these values v a r y a l o n g t h e ocean. For e x a m p l e , t h e v a l u e o f Pw varies f r o m 2.7% at t h e coast o f P o r t u g a l (Sines) t o 34.3% at t h e N o r t h e r n coast o f

1.2 0.8 0.6 0.4 0.2 1 j 1 1 1 * * * 1 2 _ 3 / r \v\ If, \\ \ ll \\\

A r \

-I l l l l 0.05 0.1 0.15 0.2 0.25 0.3 frequency, H z 0.35 1 I l l l l

• •• /

2 li i\l Ï l\\

• \ \

1 1 1 * -0.05 0.1 0.15 0.2 0.25 frequency, H z 0.3 0.35 0.15 0.2 0.25 frequency, H z

Fig. 2. Comparative analysis o f models for multipeaked frequency spectrum. 1 - l n i t i a l data (see Table 1), 2 - E q s . ( 1 3 ) - ( 1 6 ) w i t h Gamma-spectrum components, 3 - E q s . (13)-( 16) w i t h JONSWAP spectrum components, 4 - E q s . (1), ( 8 ) and (19).

B r i t a i n . For Ps v a l u e t h e r e is t h e o p p o s i t e b e h a v i o r — f r o m 69.2% at t h e coast o f P o r t u g a l (Sines) d o w n to 6.4% at t h e N o r t h e r n coast o f B r i t a i n . The t o t a l o c c u r r e n c e o f s i n g l e - p e a k e d spectra is 36.6%-71.9%.

The values P2P a n d P^p d e n o t e the f r e q u e n c i e s o f o c c u r r e n c e (%) o f d o u b l e - p e a k e d a n d m u l t i - p e a k e d ( t h r e e o r m o r e peaks) spectra, r e s p e c t i v e l y , w h i c h consist o f w i n d w a v e s a n d s w e l l , o r several s w e l l s y s t e m s . The P2P v a l u e varies f r o m 21.8% a t t h e coast o f P o r t u g a l (Sines) t o 5 5 . 1 % a r o u n d t h e Canaries. A n a l o g o u s l y , t h e P3P v a l u e varies f r o m 6.2% at t h e coast o f P o r t u g a l (Sines) t o 27.8% a r o u n d t h e A z o r e s . The ratio b e t w e e n t h e a m o u n t o f d o u b l e - p e a k e d spectra a n d m u l t i p e a k e d spectra also varies o v e r t h e ocean. For e x a m p l e , at t h e N E - p a r t o f N o r t h A t l a n t i c t h e P2P is t h r e e t i m e s g r e a t e r t h a n P^p. A t t h e same t i m e , at t h e A z o r e s t h e

(7)

138 AV. Boukhanovsky. C. Guedes Soares / AppUed Ocean Research 31 (2009) 132-141

0

. / : H Z

f .

Hz / H z / H z b ( l ) ƒ Hz b(2) / H z b(3) / Hz b(4) / Hz c ( l ) / Hz c(2) / H z c(3) / f Iz c(4) / Hz 360 270 90 270 180 90 270 90 2 7 0 180 90 O 0.05 0.10 0.15 0 . 2 0 0 . 3 0 0.40 0.05 0,10 0.15 0 . 2 0 0 . 3 0 0.40 0.05 0.10 0.15 0.20 0.30 0.40

Fig. 3. Comparison of explicit, semi-explicit and i m p l i c i t approaches to fit of multipeaked directional wave spectrum. Rows: 1 - i n i t i a l data example ( N o r t h Atlantic coast of

Portugal, HIPOCAS data), 2 - e x p l i c i t approach, 3 - s e m i - e x p l i c l t approach, 4 - i m p l i c i t approach by Eqs. ( 1 3 ) - ( 1 6 ) . Columns: ( a ) - t h e case of well-separation (all techniques are adequate), ( b ) - t h e case of moderate prevalence of i m p l i c i t approach by Eqs. ( 1 3 ) - ( 1 6 ) , ( c ) - t h e case of ultimate prevalence of implicit approach by Eqs. ( 1 3 ) - ( 1 6 ) .

values o f Pjp a n d P^P are v e r y close due t o the h i g h p o s s i b i l i t y t o observe several s w e l l systems s i m u l t a n e o u s l y .

The p a r a m e t e r K i n Table 2 d e n o t e s t h e i n d i c a t o r o f w i n d sea p r e v a l e n c e i n a c o m p l e x sea s p e c t r u m , K

= hw/hs =

V S S Ë R , w h e r e hs is c o m p u t e d o v e r all s w e l l s y s t e m s i n a c o m p l e x sea s p e c t r u m , a n d SSER is t h e s e a - s w e l l e n e r g y r a t i o [ 1 5 ] . The value o f K is i d e n t i f i e d o n l y for m u l t i p e a k e d c o m p l e x sea spectra w i t h t h e t o t a l p r o b a b i l i t y P2P + Pap.

A d i f f e r e n t b e h a v i o r o f K w i t h respect to w a v e h e i g h t for d i f -f e r e n t p o i n t s is clearly seen. For e x a m p l e , -for t h e NE p a r t o -f t h e N o r t h A t l a n t i c a n d the Portuguese coast, t h i s r a t i o is r a t h e r stable i n t h e range 1.0-1.2. For t h e Azores zone a n i n c r e a s i n g t e n d e n c y , a n d for Canaries zone a d e c r e a s i n g t e n d e n c y , are o b s e r v e d . A n a l o -g o u s l y , t h e r e -g i o n a l differences reflect t h e s t r u c t u r e o f t h e severe w a v e s i n s t o r m s . For t h e Canaries a n d t h e Azores f o r hs > 1 m e t e r s , o n l y s i n g l e - p e a k e d w a v e spectra are o b s e r v e d , b u t for t h e N o r t h e r n coast o f B r i t a i n a n d the Portuguese coast i t is also l i k e l y t h a t severe c o m p l e x sea s i t u a t i o n s w i t h m u l t i p e a k e d spectra w i l l occur.

Table 2 also p r e s e n t s the values o f m i s c l a s s i f i c a t i o n p r o b a -b i l i t i e s Pm for d i f f e r e n t regions a n d levels o f w a v e h e i g h t . This p r o b a b i l i t y is associated w i t h the o c c u r r e n c e o f m u l t i p e a k e d ( d o u b l e - t h r e e - o r m o r e ) spectra, w h e n the n u m b e r o f peaks i n t h e d i r e c t i o n a l s p e c t r u m is g r e a t e r t h a n the ones o f t h e c o r r e s p o n d i n g f r e q u e n c y s p e c t r u m . This l a t t e r one w o u l d o n l y i n c l u d e t h e c o m p o -n e -n t s d e t e c t e d b y t h e e a r l i e r m e t h o d t h a t w o u l d -n o t c o -n s i d e r t h e d i r e c t i o n a l i n f o r m a t i o n . These results w i l l be discussed i n d e t a i l in t h e S e c t i o n 5.

Thus, t h e s t u d y o f t h e features o f s p e c t r a l data f o r t h e d i f f e r e n t r e g i o n s o f the N o r t h A t l a n t i c s h o w s t h a t i t is i m p o s s i b l e t o f o r m u -late g e n e r a l and exact a s s u m p t i o n s a b o u t the s p e c t r a l c o m p o n e n t n u m b e r N . Hence, t h e s t r u c t u r e o f Eq. ( 1 ) m u s t be f l e x i b l e , w h i c h is r e f l e c t e d by t h e a u t o m a t e d i t e r a t i v e p r o c e d u r e f o r r e v e a l i n g o f s p e c t r a l c o m p o n e n t s by means o f t h e i m p l i c i t a p p r o a c h by Eqs. ( 1 3 ) - ( 1 6 ) . I n Table 3 t h e r e is a n o t h e r k i n d o f w a v e spectra p a r a m e t e r f o r t h e above m e n t i o n e d p o i n t s : t h e f i t t i n g e r r o r by Eq. ( 1 7 ) a n d t h e

(8)

A.V. Boukhanovsky. C. Guedes Soares / Apphed Ocean Research 31 (2009) 132-141 139

Table 3

Mean values ofspectral shape parameters for the (Gamma-2s)- and 0ONSWAP-2s)-based models of complex sea directional spectra.

hs, m (Gamma-2s)-approximation 0ONSWAP-2s)-approximation

Error Wind sea Swell Error Wind sea Swell

n s n s Y s Y s

North of the Britain (64N, 6 W )

0-2 0.08 4.8 2.1 5.9 5.7 0.08 1.6 2.1 2.1 5.7 2-4 0.30 5.1 2.6 6,2 5.6 0.31 1.7 2.9 2.2 5.8 4-7 0.17 5.2 2,9 6.1 5.4 0.18 1.8 3.2 2.2 5.5 >7 0.05 5.8 3.0 6.2 4.8 0.05 2.0 3.5 2.2 4.8 Azores (40N, 26W) 0-2 0.16 4.5 2.0 5.9 7.2 0.17 1.4 2.1 2.1 7.5 2-4 0.33 4.6 2.5 6.4 9.1 0.34 1.5 2.6 2.1 9.2 4-7 0.12 4.7 3.4 5.9 9.8 0.12 1.6 3.6 1.7 9.8 >7 n ni

fi

7 dfi nn9 n A i a — . . . .

Portuguese coast, Sines (38N, 9W)

0-2 0.39 6.2 2.9 5.6 7.3 0.40 2.1 3.0 1.9 7.2 2-4 0.29 4.3 3.0 6.1 7.1 0.29 1.2 3,0 1.9 7.5 4 - 7 0.02 3.9 3.2 6.5 9.8 0.03 1.2 3.2 2.1 10.3 > 7 0.01 3.7 3.6 5.4 8.7 <0.05 1.0 3.3 1.9 12.7 Canaries (29.25N, 15.25W) 0-2 0.16 4.8 2.2 5.9 10.2 0.17 1.5 2.3 2.0 10.2 2-4 0.44 4.7 2.4 6.0 11.2 0.45 1.5 2.5 2.0 11.1 4-7 0.07 5.2 3.1 6.7 10.7 0.08 1.8 4.0 2.1 11.2 >7 0.01 6.2 5.4 - - - 2.2 5.9 - -average e s t i m a t e s o f p a r a m e t e r s ( n , s) a n d ( y , s) f o r w i n d sea a n d s w e l l c o m p o n e n t s separately. T h e ( G a m m a - 2 s ) a p p r o x i m a t i o n b y Eqs. ( 9 ) a n d ( 1 0 ) a n d t h e 0ONSWAP-2s) a p p r o x i m a t i o n b y Eqs. ( 8 ) a n d ( 1 0 ) are c o n s i d e r e d c o n c u r r e n t l y .

I t is seen t h a t , g e n e r a l l y , f o r w i n d w a v e s n ^ 4 - 6 . For t h e s w e l l n « 5 - 7 a n d s ^ 4 - 1 1 due t o m o r e n a r r o w peak shape. M o r e o v e r , f o r w i n d w a v e s y ^ 1 . 0 - 2 . 0 , a n d f o r m o r e p e a k e d s w e l l spectra y « 2. These estimates o f peakedness are l o w e r t h a n t h e w e l l k n o w n averaged value y = 3.3 [ 2 7 ] . The reason f o r this d i f f e r e n c e m a y be r e l a t e d t o t h e fact t h a t this e s t i m a t e w a s o b t a i n e d f r o m m e a s u r e d spectra, b u t t h e Table 3 w a s based o n t h e h i n d c a s t d a t a w h i c h does n o t have such f i n e f r e q u e n c y d i s c r i m i n a t i o n . F u r t h e r m o r e , t h e value o f y = 3.3 w a s d e t e r m i n e d i n an e x p e r i m e n t a d d r e s s i n g d e v e l o p i n g seas, w h i l e t h e h i n d c a s t data w i l l i n c l u d e m a n y cases o f f u l l y d e v e l o p e d seas. The d e t a i l e d analysis o f s i m u l t a n e o u s l y h i n d c a s t a n d m e a s u r e d w a v e spectra is r e q u i r e d f o r r e l i a b l e a n s w e r i n g o n this q u e s t i o n .

For b o t h types o f m o d e l s , t h e values o f m e a n d i m e n s i o n l e s s e r r o r s b y Eq. ( 1 7 ) are v e r y close. This means t h a t , i n p r a c t i c e , f o r h i n d c a s t spectra, a s a t i s f y i n g f i t t i n g accuracy i n t h e p r o c e d u r e based o n Eqs. ( 1 3 ) - ( 16) m a y be achieved e i t h e r b y v a r y i n g o f shape p a r a m e t e r n i n Eq. ( 9 ) , o r b y v a r y i n g t h e peakedness p a r a m e t e r y i n Eq. ( 8 ) , a l t h o u g h u s i n g Eq. ( 9 ) has l o w e r c o m p u t a t i o n a l r e q u i r e m e n t s .

Analysis o f Table 3 s h o w s t h a t t h e d i m e n s i o n l e s s e r r o r b y Eq. ( 1 7 ) is decreasing w i t h t h e increase o f w a v e h e i g h t hs. This means t h a t i t is possible to o b t a i n m o r e r e l i a b l e results f o r severe s t o r m w a v e s , a n d t h e m a x i m u m u n c e r t a i n t y w i l l be f o r t h e w e a k a n d m o d e r a t e w a v e s d u e t o c o m p l e x spectral shape a n d possible i n t e r a c t i o n s b e t w e e n spectral c o m p o n e n t s , w h i c h are n o t c o n s i d e r e d i n t h e Eq. ( 1 ) .

6. Discussion

The p r o p o s e d t e c h n i q u e is based o n t h e f i t t i n g o f d i r e c t i o n a l spectra u s i n g a l l t h e i n f o r m a t i o n about peak l o c a t i o n s , b o t h i n t h e f r e q u e n c y a n d d i r e c t i o n a l d o m a i n s . This extends t h e w e l l k n o w n approaches f o r m o d e l l i n g o f d o u b l e - p e a k e d w a v e spectra o n t h e basis o f f r e q u e n c y data o n l y (see [ 4 ] ) . I n fact, t h e e x t e n s i o n o f t h e m o d e l f i t t i n g a p p r o a c h t o t h e d i r e c t i o n a l d o m a i n a l l o w s t a l d n g

i n t o account m a n y w a v e s i t u a t i o n s , i n w h i c h t h e c o m p l e x sea is c o m b i n e d b y t h e w i n d w a v e s a n d s w e l l w i t h t h e d i s t i n c t d i r e c t i o n s a n d close f r e q u e n c i e s , as s h o w n i n Fig. 4 ( a ) .

As r e s u l t o f t h e s u m i n Eq. (1), t h e f r e q u e n c y s p e c t r u m SiJ) can l o o k s i n g l e - p e a k e d , e v e n w h e n t h e d i r e c t i o n a l d i s t r i b u t i o n Q ( / , 6)

is m u l t i p e a k e d . T h u s , t h e a u t o m a t e d analysis o f such s p e c t r u m i n a f r e q u e n c y d o m a i n o n l y leads to misclassification, w h e n t h e s i n g l e - p e a k e d m o d e l is f i t t e d t o t h e c o m b i n a t i o n o f t w o o r m o r e spectral c o m p o n e n t s . T h e effect o f m i s c l a s s i f i c a t i o n is i l l u s t r a t e d i n Fig. 4 ( b ) - ( d ) , w h e n t h e m o d e l w i n d w a v e spectra b y Eq. ( 9 ) w i t h

hs = 3 m, Tp = 7.5 s a n d n = 5 are s h o w n i n c o m b i n a t i o n w i t h

s w e l l spectra, also a p p r o x i m a t e d b y Eq. ( 9 ) w i t h hs = 3 m, a n d n = 6. The s w e l l peak p e r i o d is v a r i e d f r o m 1 2 s ( b ) d o w n t o l O s ( d ) . Also, i n Fig. 4 , t h e r e s u l t o f fitting b y Eqs. ( 1 3 ) - ( 1 6 ) o f a s u m m a r i z e d w a v e s p e c t r u m b y t h e s i n g l e - p e a k e d m o d e l , Eq. ( 9 ) , is s h o w n . It is seen t h a t t h e peak p o s i t i o n o f t h e fitted spectra is s h i f t e d to a h i g h - f r e q u e n c y d o m a i n , a n d t h e shape p a r a m e t e r n ' o f fitted spectra becomes less t h a n t h e c o r r e s p o n d i n g p a r a m e t e r s f o r w i n d w a v e s a n d t h e s w e l l . This means t h a t t h e fitted spectra b e c o m e w i d e r t h a n t h e o r d i n a r y spectra o f w a v e s . Hence, t h e e f f e c t o f m i s c l a s s i f i c a t i o n m i g h t r e f l e c t o n t h e w r o n g e s t i m a t i o n o f t h e w a v e l o a d i n g s o n t h e m a r i n e s t r u c t u r e s , because t h e w i d e r s p e c t r u m leads t o d i f f e r e n t r e s o n a n t c o n d i t i o n s t h a n t h e n a r r o w e r one. I n Table 2 t h e m i s c l a s s i f i c a t i o n p r o b a b i l i t i e s are p r e s e n t e d f o r d i f f e r e n t regions a n d levels o f w a v e h e i g h t . This means t h a t t h e o c c u r r e n c e o f s u c h k i n d o f m u l t i p e a k e d ( d o u b l e - t h r e e - o r m o r e ) spectra, w h e n t h e peak n u m b e r N o f d i r e c t i o n a l spectra

S ( f , 9) is g r e a t e r t h a n N ' f o r t h e f r e q u e n c y spectra S ( f ) o n l y . For e x a m p l e , i n t h e Fig. 1(a) s u c h k i n d o f t h r e e - p e a k e d spectra is s h o w n , w h e n N' = 2 f o r c o r r e s p o n d e n t d i r e c t i o n a l spectra. It is c l e a r l y seen t h a t t h e m i s c l a s s i f i c a t i o n p r o b a b i l i t y v a l u e Pm varies f r o m 9.9% at t h e Portuguese coast o f N o r t h A t l a n t i c t o 46.8% at t h e Azores. C o n s i d e r i n g t h e r a t i o Pm/iPjp - f Pap) t o t h e w h o l e a m o u n t o f m u l t i p e a k e d spectra, this m e a n s t h a t a t least 30%-80%

( f o r d i f f e r e n t r e g i o n s ) o f m u l t i p e a k e d spectra are possible to be misclassifled o n t h e base o n t h e f r e q u e n c y s p e c t r a o n l y .

Thus, t h i s r e s u l t s h o w s t h e necessity t o i d e n t i f y a c o m p l e x sea spectral m o d e l b y Eq. ( 1 ) b o t h i n f r e q u e n c y a n d d i r e c t i o n a l d o m a i n s , a n d r e q u i r e t h e a p p l i c a t i o n o f t h e r a t h e r c o m p u t a t i o n a l l y i n t e n s i v e t e c h n i q u e based o n Eqs. ( 1 3 ) - ( 1 6 ) .

(9)

MO A.V, Boukhanovsky, C. Guedes Soares/Applied Ocean Research 31 (2009) 132-141

b

14r 12 / , H z Ajr=0.042Hz O 0.05 14 12 10 g 6 4 2 O / , H z 5 ( / ) , ' n A 1 1 1 - V Ay^=0.033Hz \ ii'=4.6

1

\ O 0.05 0.1 0.15 0.2 0.25 / , H z - 3

Fig. 4. Effect o f misclassification of double-peaked complex sea spectrum in a frequency domain. ( a ) - i l ! u s t r a t i o n i n directional d o m a i n ; ( b - d ) - e f f e c t of spectral fitting i n frequency domain only. Here 1 - i n i t i a l spectra of w i n d sea and the s w e l l ; 2 - c o m p l e x sea spectrum by Eq. (1) w i t h N = 1 ; 3 - f i t t i n g of single-peaked spectrum model by Eq.(9).

7. Conclusions

A n a p p r o a c h for m o d e l l i n g m u l t i p e a k e d d i r e c t i o n a l w a v e s p e c -t r a is p r o p o s e d . This a p p r o a c h is based o n a p a r a m e -t r i c d e s c r i p -t i o n , Eq. ( 1 ) , o f t h e d i r e c t i o n a l w a v e s p e c t r u m . A n u m e r i c a l o p t i m i z a t i o n p r o c e d u r e u s i n g t h e r a n d o m l i n e a r search a l g o r i t h m is p r o p o s e d f o r e s t i m a t i o n o f the s p e c t r a l p a r a m e t e r s . The n u m b e r o f w a v e s y s -t e m s i n -t h e s p e c -t r a is e v a l u a -t e d by a n i -t e r a -t i v e p r o c e d u r e .

The p r o p o s e d t e c h n i q u e , based o n Eqs. ( 1 3 ) ( 1 6 ) , a l l o w s f i t -t i n g o f s p e c -t r a l m o d e l s -t o m e a s u r e d o r h i n d c a s -t d a -t a . T h e HIPOCAS h i n d c a s t d a t a f o r N o r t h A t l a n t i c w e r e used f o r t h e case s t u d y . The analysis s h o w e d a s i g n i f i c a n t v a r i a b i l i t y o f s p e c t r a l p a r a m e t e r s f o r d i f f e r e n t r e g i o n s o f t h e o c e a n , w h i c h r e q u i r e s t h e a p -p l i c a t i o n o f a r a t h e r c o m -p u t a t i o n a l l y i n t e n s i v e t e c h n i q u e b y u s i n g E q s . ( 1 3 H 1 6 ) . The q u a l i t a t i v e a n a l y s i s o f t h e o c c u r r e n c e s o f m u l t i p e a k e d w a v e s p e c t r a f o r d i f f e r e n t r e g i o n s o f t h e oceans s h o w e d t h a t 30% t o 80% o f m u l t i p e a k e d w a v e s p e c t r a m a y be c o r r e c t l y m o d e l l e d b o t h i n f r e q u e n c y a n d d i r e c t i o n a l d o m a i n s t o g e t h e r . This is the m a i n a d v a n t a g e o f t h e a b o v e m e n t i o n e d a p p r o a c h i n c o m p a r i s o n w i t h t h e t e c h n i q u e s based o n l y o n t h e f r e q u e n c y s p e c t r u m s e p a r a t i o n .

Acknowledgment

The f i r s t a u t h o r has been f u n d e d b y t h e P o r t u g u e s e F o u n d a t i o n f o r Science a n d T e c h n o l o g y (FCT) u n d e r g r a n t nr. SFRH/BPD/ 2 0 9 8 1 / 2 0 0 4 .

References

[1] Guedes Soares C, IVloanT. Model uncertainty in the long t e r m d i s t r i b u t i o n of wave induced bending moments for fatigue design o f ship structures. Marine Struct 1991;4:295-315.

[21 Krogstad HE, Barstow SF, Haug 0 , Peters DJ. Directional distributions i n wave spectra. Ocean Meas and Anal 1997;2:883-95.

| 3 | Ochi MK, Hubble EN. Six-parameter wave spectra. Coastal Eng 1976:301-28. | 4 | Guedes Soares C. Representation of double-peaked sea wave spectra. Ocean

Engng 1984;11:185-207.

|51 Guedes Soares C. On the occurrence of double peaked wave spectra. Ocean Engng 1 9 9 1 ; 1 8 : 1 6 7 - 7 1 .

| 6 1 Guedes Soares C, Nolasco MC. Spectral m o d e l l i n g of sea states w i t h m u l t i p l e wave systems. J Offshore Mechanics and Arcric Eng 1992;114:278-84. [7] Torsethaugen K.. A t w o peak wave spectrum m o d e l . In; Proceedings o f the

12th international conference on offshore mechanics and arctic engineering (OMAE), vol. 2, NY (USA); ASME; 1993. p. 175-80.

[8] Yilmaz 0 , Incecik A. Effect o f double-peaked wave spectra on the behaviour of moored semi-submersibles. Oceanic Eng Int 1998;2:54-64.

|9] Lawford R, Bradon J, Barberon T, Camps C, Jameson R. Directional wave p a r t i t i o n i n g and its applications to the structural analysis of an FPSO. In: Proceedings of the 27th international conference on offshore mechanics and arctic engineering (OMAE). ASME; 2008 [Paper OMAE2008-57341 J. [10] Rognebakke 0 , Andersen OJ, Haver S, Oma N, Sado 0 . Fatigue assessment

of side shell details of an FPSO based on non-collinear sea and swell. In; Proceedings of the 27th international conference on offshore mechanics and arctic engineering (OMAE). ASME; 2008 (Paper OMAE2008-57241 ]. [11] Teixeira AP. Guedes Soares C. Reliability analysis o f a tanker subjected to

combined sea states. Prob Eng Mech. 2 0 0 9 : 2 4 : 4 9 3 - 5 0 3 .

[12] Strekalov S, Massel S. On the spectral analysis of w i n d waves. Arch Hydrot 1971:18:457-85.

[13] Coda Y. Analysis o f wave grouping and spectra o f long-travelled swell. Jpn; Rep. Port Harbour Res. Inst. 1983; 22; p. 3 - 4 1 .

[14] Ochi MK. Wave statistics for the design of ships and ocean structures. Trans Soc Naval Architects and Mar Eng 1978;86:47-76.

(10)

A.V. Boukhanovsky, C. Guedes Soares/Apphed Ocean Research 31 (2009) 132-141 141

|15] Rodriguez GR, Guedes Soares C. A criterion for tlie automatic identification of m u l t i m o d a l sea wave spectra. Appl Ocean Res 1999;21(6):329-33. 116] W a n g DV, Hwang PA. An operational method for separating w i n d sea and swell

f r o m ocean wave spectra. J A t m o s Oceanic Technol 2001;18:2052-62. [17] Gerling TW. Partitioning sequences and arrays of directional ocean wave

spectra into component wave systems. J Atmos Oceanic Technol 1992;9: 4 4 4 - 5 8 .

[18] Hanson JL, Philips OM. Automated analysis of ocean surface directional spectra. J A t m o s Oceanic Technol 2 0 0 1 ; 18:277-93.

[19] Ewans KC, Bitner-Gregersen EM, Guedes Soares C Estimation of wind-sea and swell components in a bimodal sea state. J Offshore Mechanics and Arctic Eng 2 0 0 6 ; 1 2 8 : 2 6 5 - 7 0 .

[20] Guedes Soares C, Weisse R, Alvarez E, Carretero JC A 40 years hindcast o f w i n d , sea level and waves in European waters. In: Proceedings of the 21st international conference on offshore mechanics and arctic engineering (OMAE 2002). NY (USA): ASME; 2002 ]Paper OMAE2002-28604).

]21 ] Guedes Soares C. Hindcast of dynamic processes of the ocean and coastal areas o f Europe. Coastal Eng 2 0 0 8 ; 5 5 : 8 2 5 - 6 .

122] Longuet-Higgins M, Cartwright D, Smith N. Observations of the directional spectrum of the sea waves using the motions of a floating buoy. In; Ocean wave spectra. Prentice-Hall; 1963.

]23] Tucker MJ. Waves i n ocean engineering: Measurement, analysis, and interpretation. Ellis N o r w o o d , LTD; 1991 l p . 4 3 1 ] .

[24] Huang NE, et al. A unified two-parameter wave spectral model for a general sea state. J Fluid Mech 1 9 8 1 ; 112:203-24.

]25] Pierson WJ, Moskowitz L A proposed spectral form for fully developed w i n d seas based on the s i m i l a n t y theory ofS. A. Kitaigorodskii.J Geophys Res 1964; 6 9 : 5 1 8 1 - 9 0 .

[26] Davidan IN, Lopatoukhin LJ, Rozhkov VA. W i n d waves as the probabilis-tic hydrodynamic process. Russia: Hydromet. Publishing; 1978. p. 232 ]in Russian].

]27] Hasselmann K, et al. Measurements of w i n d wave g r o w t h and swell decay d u n n g the Joint North Sea Wave Project UONSWAP). Dtsch Hydrogr Zeit 1973; A 8 : 1 - 9 5 .

]28] Mitsuyasu H, et al. Observations o f the directional spectrum of ocean waves using a cloverleaf buoy. J Phys Oceanogr 1975;5:750-60.

]29] Guedes Soares C, Cavaco P. Analysis of directional spectra f r o m the Portuguese coasL Mansard E. (ed.). In; Proceedings o f the 2 7 t h lAHR seminar on mulddirectional waves and their interaction w i t h structures. San Francisco: 1997. p. 3 0 9 - 2 2 .

]30] Kuik AJ, van Vledder GPh, Holthuijsen LH. A method for the routine analysis of pitch-and-roll buoy wave data.J Phys Oceanogr 1988:18:1020-34. [31 [ Rodriguez GR, Guedes Soares C, Machado U. Uncertainty of the sea state

parameters resulting f r o m the methods of spectral estimation. Ocean Eng 1999;26(10):991-1002.

(32[ Nocedal J, W n g h t S. Numerical optimization. NY: Springer; 2006 [p. 664). 1331 Tarasenko GS. Study of the adaptive random search a l g o r i t h m . Problems of the

random search, voL 5.1976. p. 1 1 9 - 2 4 ]Riga (USSR), in Russian].

[34] Pilar P, Guedes Soares C, Carretero JC. 44-Year hindcast for the north east Atlantic European coast. Coastal Eng 2 0 0 8 ; 5 5 : 8 6 1 - 7 1 .

]351 Liu PC. A representation for the frequency spectrum of the wind-generated waves. Ocean Eng 1 9 8 3 ; 1 0 ( 6 ) : 4 2 9 - 4 1 .

]36] Guedes Soares C, Hennques AC. Fitting a double-peak spectral model to measured wave spectra. In: Proceedings of the 17th international conference on offshore mechanics and arctic engineering (OMAE 1998). NY (USA); ASME; 1998]PaperOMAE98-1491].

Cytaty

Powiązane dokumenty

Si au lieu du dialogue avec Dieu, l’homme menait dans son intérieur uniquement un dialogue avec soi-même, son résultat ou bien ne serait pas engageant pour l’homme – car

[r]

To, co intencjonalnie miało usprawniać pracę samorządu, stało się jej największym hamulcem. Nie zapominajmy, że samorząd jest szkołą politycznego myślenia,

Significant support on the political scene has been obtained by groups who even call for direct democracy to play a more important role than before in the political system

mule chemicznej benzyny silnikowej jako paliwa do pojaz- dów o zapłonie iskrowym jest światowa polityka w zakresie ograniczania zanieczyszczenia powietrza atmosferycznego

that there is no data from the Soviet security services concerning M. But it does not indicate whether he tried to find or examine such acts by himself. It should be remem- bered

Analogicznie jak w przypadku innych zawodów medycznych usta- wodawca wskazał, że wykonywaniem zawodu fizjoterapeuty jest rów- nież  nauczanie  zawodu 

Wystarczy zajrzeć do spisu treści, by zauważyć, że cały materiał książki dzieli się na trzy Części, poświęcone kolejno: Liturgii Godzin, problematyce