• Nie Znaleziono Wyników

Powierzchnia Gaussa

N/A
N/A
Protected

Academic year: 2021

Share "Powierzchnia Gaussa"

Copied!
48
0
0

Pełen tekst

(1)

Powierzchnia Gaussa

Właściwości :

- jest to powierzchnia hipotetyczna – matematyczna konstrukcja myślowa, - jest dowolną powierzchnią zamkniętą – w praktyce powinna mieć kształt związany z symetrią pola,

- powierzchnia Gaussa przechodzi przez punkt, w którym obliczamy natężenie pola.

- w każdym punkcie powierzchni jest określone natężenie pola elektrycznego

- wektory E mają taka samą wartość - skierowane na zewnątrz

Aby obliczyć wypadkowy ładunek dodatni, objęty przez powierzchnię,

należy wiedzieć ile pola elektrycznego przenika przez powierzchnię

(2)

Dokładną definicję strumienia pola elektrycznego,

przenikającego przez zamkniętą powierzchnię otrzymujemy przez podejście do coraz mniejszych pól powierzchni kwadratów

Strumień elektryczny F przenikający przez

powierzchnię Gaussa jest proporcjonalny do całkowitej

liczby linii pola elektrycznego, przechodzącego przez tę powierzchnię

Strumień pola elektrycznego

(3)

Prawo Gaussa

q wew

0 F

Słuszne gdy ładunek znajduje się w próżni lub w powietrzu

Ładunek q

wew

– wypadkowy ładunek

q wew

S d

E  

 0

(4)

Prawo Gaussa a prawo Coulomba

Należy policzyć całkę po powierzchni S, E jest stałe

Całka jest równa sumie po polach powierzchni ds. elementów sfery i jest równa

polu powierzchni sfery

(5)

Zastosowanie prawa Gaussa – symetria walcowa

Wyznacz wartość natężenia pola elektrycznego w odległości r od pręta?

Wybieramy powierzchnię walca o promieniu r i wysokości h, współosiowego z prętem.

Powierzchnia musi być zamknięta.

Pole powierzchni bocznej walca 2πrh

(6)

Zastosowanie prawa Gaussa – symetria płaszczyznowa

1. Wybieramy powierzchnię Gaussa 2. Powierzchnia musi być zamknięta

Z symetrii wynika, że E musi być prostopadłe do płyty i do denek

Ładunek jest dodatni !!!

Linie pola nie przecinają powierzchni bocznej,

więc strumień pola przez tę część jest równy zero

(7)

Pojemność elektryczna

(8)

Pojemność elektryczna

CU

q

(9)

Obliczanie natężenia pola elektrycznego

q jest ładunkiem obejmowanym przez powierzchnię Gaussa, a całka jest wypadkowym

strumieniem elektrycznym przez tę powierzchnię. Założymy, że rozważana powierzchnia

Gaussa będzie taka, że jeśli przechodzi przez nią strumień elektryczny, to natężenie pola

Ma na niej jednakową wartość a wektory E i dS są do siebie równoległe

(10)

Obliczanie różnicy potencjałów

Różnica potencjałów między okładkami kondensatora jest związana z natężeniem pola elektrycznego E

Całkę liczymy po dowolnym torze, który zaczyna się na jednej okładce a kończy na drugiej.

Tor wzdłuż linii pola elektrycznego, od okładki ujemnej do okładki dodatniej.

Iloczyn EdS = -Eds

(11)

Kondensator płaski

Okładki są tak duże i blisko siebie, że można zaniedbać zakrzywienie linii pola przy

krawędziach okładek i traktować E jako stałe

(12)

Kondensator cylindryczny

- - -

- - -

- -

+ + + + +

a b r

b R r

Powierzchnia Gaussa:

powierzchnia walca zamkniętego denkami o długości L i promieniu r

Pole zakrzywionej części pow. Gaussa 4prL

(13)

Należy policzyć całkę po powierzchni S, E jest stałe

Całka jest równa sumie po polach powierzchni ds. elementów sfery i jest równa

polu powierzchni sfery

(14)

q S

2

S

1

Zastosowanie prawa Gaussa –

symetria sferyczna

(15)

Kondensator sferyczny

(16)

Kondensatory połączone równolegle

C CV

V C

V C

Q Q

Q

1

2

1

 

1

2

 

1

1

2

  C

1

C

2

V

C Q  

 

+

- +

-

- +

C

1

C

2

V

+ -

C

1

,q

1

C

2

, q

2

V

2

1

V

V

V    

 

N

i

i

N C

C C

C C

C

1 3

2

1 ...

(17)

Jeśli różnica potencjałów U jest przyłożona do kilku kondensatorów połączonych równolegle, to taka sama różnica potencjałów U występuje na każdym

kondensatorze. Całkowity ładunek q, zgromadzony w układzie jest sumą ładunków, zgromadzonych na poszczególnych kondensatorach.

Kondensatory połączone równolegle można zastąpić równoważnym kondensatorem

o takim samym całkowitym ładunku q i takiej samej różnicy potencjałów U, jak dla

kondensatorów układu.

(18)

2 2

1

1 ;

C V Q

C V Q

2

1 ΔV

ΔV ΔV

+ - + -

C

1

C

2

+ -

V

+ -

C

1

,Q

1

C

2

, Q

2

V

2 1

eq 2

1

eq

C

1 C

1 C

1 C

Q C

Q C

Q     

Kondensatory połączone szeregowo

N

1

i i

N 2

1

eq

C

1 C

... 1 C

1 C

1 C

1

(19)

Jeśli różnica potencjałów U jest przyłożona do kilku kondensatorów połączonych

szeregowo, to kondensatory mają identyczne ładunki q. Suma różnic potencjałów na

wszystkich kondensatorach jest równa przyłożonej różnicy potencjałów U.

(20)

20

Pomiar małych deformacji przy użyciu kondensatora płaskiego

d - d

ε S d C

ε S

C

1 0 2 0

 

  

 

 

 

 

 d d Δd

Δd d S d

Δd ε d

ε S d

ε S C

ΔC C

2 1 0 0 0

0

0

d

2

Δd ε S

Δd d

d

Δd ε S

ΔC 

 

Δd  d

2

d

~ 1

czułość rośnie

ε S ΔC d Δd

0

2

cm r

mm d

pF

C ~102 , ~ 0,5 , 2 ~ 5

 Dla

8

7

10

10

~

d

Kondensator powietrzny

próbka

(21)

21

Pomiar poziomu cieczy przy użyciu kondensatora cylindrycznego

Metoda umożliwiająca monitorowanie poziomu cieczy, szczególnie produktów z tendencją do tworzenia osadów, w aplikacjach wysokotemperaturowych/ wysokociśnieniowych oraz w procesach szybkozmiennych.

2

1

C

C C  

1 2 1

r ln r

ε x

C  2π  

1 2 0 2

r ln r

x ε L

C 2π 

Zalety:

- bardzo krótki czas odpowiedzi pomiarowej - wysoka dokładność pomiaru

- detekcja rozdziału faz cieczy niezależnie od obecności emulsji i zawiesin

(22)

Energia zmagazynowana w polu magnetycznym

Praca, potrzebna do przemieszczenia całkowitego ładunku q kondensatora

Praca jest zmagazynowana w postaci energii potencjalnej

Energia potencjalna naładowanego kondensatora jest zmagazynowana w polu

elektrycznym między okładkami kondensatora

(23)

E

f

E

Conduction band

Valence band (completely full)

Model pasmowy - metale

(24)

Model pasmowy -półprzewodniki

(25)

Model pasmowy -półprzewodniki

(26)

E

f

E

Conduction band

(completely empty)

Valence band (completely full)

Eenergy gap

Model pasmowy - izolatory

(27)

Kondensator z dielektrykiem

(28)

Kondensator z dielektrykiem

Pojemność wzrasta o czynnik r

Konieczność ograniczenia różnicy potencjałów, jaka może być przyłożona do okładek, do pewnej wartości Umax, zwanej napięciem przebicia.

Jeśli tę wartość istotnie przekroczymy, to nastąpi przebicie materiału dielektrycznego i między okładkami powstanie przewodząca ścieżka.

Każdy materiał dielektryczny ma charakterystyczną wytrzymałość na przebicie, która jest maksymalną wartością natężenia pola elektrycznego, jakie dielektryk może wytrzymać bez przebicia.

(29)

Atomy i cząsteczki w polu elektrycznym

1. Dielektryki polarne. Cząsteczki pewnych dielektryków, np. wody, mają trwałe elektryczne

momenty dipolowe. W takich materiałach (zwanych dielektrykami polarnymi) dipole elektryczne mają tendencję do ustawiania się wzdłuż zewnętrznego pola elektrycznego. Wskutek swego przypadkowego ruchu termicznego cząsteczki ciągle się potrącają nawzajem, a więc

uporządkowanie nie jest całkowite, ale staje się coraz pełniejsze wraz

ze wzrostem wartości natężenia przyłożonego pola (lub zmniejszeniem temperatury, a stąd liczby zderzeń). Uporządkowane dipole elektryczne wytwarzają pole elektryczne o natężeniu skierowanym przeciwnie do przyłożonego pola i mniejszej wartości.

(30)

2. Dielektryki niepolarne. Bez względu na to, czy cząsteczki mają trwałe

elektryczne momenty dipolowe, czy też nie, po umieszczeniu w zewnętrznym polu elektrycznym zyskują indukowane momenty dipolowe. Dzieje się tak, ponieważ zewnętrzne pole ma tendencję do „rozciągania" cząsteczek i przesuwa nieco środki ładnku dodatniego i ujemnego.

Atomy i cząsteczki w polu

elektrycznym

(31)

Dielektryki – obraz mikroskopowy

indukowane ładunki powierzchniowe na ścianach płyty wytwarzają pole elektryczne o natężeniu E', skierowanym przeciwnie do natężenia

przyłożonego pola elektrycznego E0. Wypadkowe natężenie pola E wewnątrz dielektryka (suma wektorowa natężeń E0 i E') ma kierunek natężenia E’ ale ma mniejszą wartość.

(32)

Dielektryki i prawo Gaussa

Całkowity ładunek otoczony przez powierzchnię Gaussa wynosi q-q’

S q E q

0

'

 

0

'

0

Ed S ESqq

r

q q

q '

S q E E

r

r 0

0

 

Ładunek indukowany Ładunek swobodny

(33)

1. Całka strumienia zawiera obecnie rE, a nie E. (Wektor 0rE jest nieraz nazywany indukcją elektryczną D).

2. Ładunek q otoczony przez powierzchnię Gaussa jest teraz tylko ładunkiem swobodnym.

3. stała 0 została zastąpiona przez r0

Dielektryki i prawo Gaussa

(34)

Ładunki w ruchu

Chociaż prąd elektryczny jest strumieniem poruszających się ładunków, to nie wszystkie poruszające się ładunki tworzą prąd elektryczny. Jeśli przez powierzchnię ma przepływać prąd elektryczny, to musi być wypadkowy przepływ, ładunku przez tę powierzchnię.

Podane niżej dwa przykłady wyjaśniają, co mamy tu na myśli.

Elektrony swobodne (elektrony przewodnictwa) w izolowanym kawałku przewodnika miedzianego poruszają się chaotycznie . Jeśli poprowadzimy umowną płaszczyznę przez taki przewodnik, to elektrony przewodnictwa przechodzą przez nią w obydwu kierunkach i stąd w przewodniku nie występuje wypadkowy przepływ ładunku i nie ma prądu

elektrycznego.

Jeśli jednak podłączymy końce przewodnika do źródła, to zakłócimy nieco przepływ w jednym kierunku i w wyniku tego nastąpi wypadkowy przepływ ładunku, czyli przepływ prądu elektrycznego w przewodniku.

Przepływ wody przez wąż ogrodowy jest ukierunkowanym przepływem ładunku dodatniego (protonów w cząsteczkach wody), z szybkością rzędu kilku milionów kulombów na sekundę. Nie ma jednak wypadkowego przepływu ładunku, ponieważ istnieje jednoczesny przepływ ujemnego o tej samej wielkości, w tym samym kierunku.

(35)

Natężenie prądu elektrycznego

dt Idq

t

Idt dq

q

0

1 amper = 1A = 1 kulomb na sekundę = 1C/s

2 1

0

I I

I  

(36)

Kierunek prądu elektrycznego

Strzałka prądu jest narysowana w kierunku, w którym

poruszałyby się dodatnio naładowane nośniki, nawet jeśli

rzeczywiste nośniki ładunku są ujemne i poruszają się

w przeciwnym kierunku.

(37)

37

Gęstość prądu elektrycznego

Gęstość prądu elektrycznego J, ma taki sam kierunek jak prędkość poruszających się ładunków, jeśli są dodatnie, i przeciwny kierunek, jeśli są ujemne.

J d s

I  

Jeśli gęstość prądu J jest stała i równoległa do ds, wtedy:

Js ds

J ds

J

I      

Jednostką gęstości prądu elektrycznego w układzie SI jest amper na metr

kwadratowy (A/m

2

).

Gęstość prądu elektrycznego

(38)

38

Prędkość unoszenia

Gdy przez przewodnik płynie prąd, elektrony w rzeczywistości poruszają się przypadkowo, ale z prędkością unoszenia (dryfu) v

d

w kierunku przeciwnym do natężenia przyłożonego pola elektrycznego, które wywołuje przepływ prądu.

Całkowity ładunek nośników, z których każdy ma ładunek e, w przewodniku o długości L wynosi

e nSL q  ( )

gdzie n jest liczbą nośników na jednostkę objętości.

Natężenie prądu jest równe:

ne J nSe

v I v nSev

L

nSLe t

I q d d

d

 /

Prędkość unoszenia

(39)

39

Opór elektryczny

Opór elektryczny (rezystancja) między dwoma dowolnymi punktami przewodnika określamy przez przyłożenie różnicy potencjałów U między tymi punktami i pomiar natężenia / powstałego prądu. Opór elektryczny R jest określony wzorem:

I RU

Jednostką oporu elektrycznego w układzie SI, jest om równy wolt na amper.

1 om = 1 Ω = 1 wolt na amper = 1V/A.

Opór elektryczny właściwy (rezystywność) ρ materiału:

J

E

m m

A V m

A

m V

J

E     

 

 

/ 2

/

Opór elektryczny

(40)

40

Opór elektryczny

Opór elektryczny jest właściwością ciała.

Opór elektryczny właściwy jest właściwością materiału.

L EU

J

E

S JI

S R   L

I

RU

(41)

41

Prawo Ohma Prawo Ohma:

Natężenie prądu, płynącego przez przewodnik jest zawsze wprost proporcjonalne do różnicy potencjałów, przyłożonej do przewodnika.

Element obwodu spełnia prawo Ohma, gdy jego opór nie zależy od wartości i polaryzacji przyłożonej różnicy potencjałów.

Opór elektryczny

(42)

42

Ruch elektronów przewodnictwa w polu elektrycznym o natężeniu E jest więc złożeniem ruchu, wynikającego z

przypadkowych zderzeń i ruchu

wywołanego polem E. Gdy rozważymy wszystkie elektrony swobodne, ich

przemieszczenia przypadkowe uśredniają się do zera i nie dają wkładu do prędkości unoszenia. Prędkość unoszenia jest

wynikiem oddziaływania pola elektrycznego na elektrony.

Szare linie ilustrują ruch elektronu od punktu A do punktu B z sześcioma zderzeniami po drodze. Zielone linie pokazują, jak mógłby wyglądać tor w obecności przyłożonego pola elektrycznego o natężeniu E.

Prawo Ohma

Prawo Ohma

(43)

43

Aby wytworzyć stały przepływ ładunku, potrzebujemy „pompy ładunku" - urządzenia, które wykonując pracę nad nośnikami ładunku, utrzymuje różnicę potencjałów między parą swych zacisków. Urządzenie takie nazywamy źródłem siły elektromotorycznej (źródłem SEM); powiedzenie, że źródło dostarcza siły elektromotorycznej L, oznacza, że wykonuje ono pracę nad nośnikami ładunku.

dq

dW ε

Siła elektromotoryczna źródła SEM jest pracą, przypadającą na jednostkę ładunku, jaką wykonuje źródło, przenosząc ładunek z bieguna o mniejszym potencjale, do bieguna o większym potencjale.

Jednostką siły elektromotorycznej w układzie SI jest dżul na kulomb [J/C].

Siła elektromotoryczna

(44)

Obliczanie natężenia prądu w obwodzie o jednym oczku

Obwód składa się z doskonałej baterii B o SEM L, opornika o oporze R i dwóch łączących je przewodów.

W przedziale czasu dt w oporniku energia I2R zamienia się a energię termiczną.

W tym samym czasie ładunek o wartości dq = Idt przepłynie przez baterię B i praca, wykonana przez baterię nad tym ładunkiem wynosi

Idt dq

dW  

Z zasady zachowania energii wynika, że praca wykonana przez baterię musi być równa energii termicznej wytworzonej w oporniku

Rdt I

Idt2

   IR

(45)

45

Algebraiczna suma zmian potencjału napotykanych przy pełnym obejściu dowolnego oczka musi być równa zeru.

 0

U   EIR

Reguła oporu: Gdy przemieszczamy się wzdłuż opornika w kierunku przepływu prądu, zmiana potencjału wynosi -IR, przy ruchu w przeciwną stronę wynosi +IR.

Reguła SEM: W doskonałym źródle SEM zmiana potencjału wynosi + ε , gdy po- ruszamy się zgodnie z kierunkiem strzałki SEM, a przy ruchu w przeciwną stronę wynosi - ε .

II prawo Kirchhoffa

(46)

Obliczanie natężenia prądu w obwodzie o jednym oczku

Obwód składa się z doskonałej baterii B o SEM L, opornika o oporze R i dwóch łączących je przewodów.

a

a IR V

V    

Idąc wzdłuż przewodu do górnego końca opornika, nie napotykamy żadnej zmiany potencjału,

ponieważ przewód ma znikomo mały opór; ma on zatem ten sam potencjał, co dodatni biegun baterii i górny koniec opornika Gdy przejdziemy przez opornik, potencjał ulegnie zmianie zgodnie Co więcej, potencjał musi zmaleć, ponieważ poruszamy się od końca opornika o większym potencjale. Zmiana potencjału wynosi więc —IR.

IR

(47)

47

Suma natężeń prądów wpływających do dowolnego węzła musi być równa sumie natężeń prądów wypływających z tego węzła.

 0

I

Reguła oporu: Gdy przemieszczamy się wzdłuż opornika w kierunku przepływu prądu, zmiana potencjału wynosi -IR, przy ruchu w przeciwną stronę wynosi +IR.

I prawo Kirchhoffa

(48)

W obwodzie są dwa węzły, b i d,i trzy gałęzie, łączące te węzły.

Gałęziami są: lewa gałąź (bad), prawa gałąź (bed) i środkowa gałąź (bd).

Ile wynoszą natężenia prądów w trzech gałęziach?

2 3

1 I I

I  

3 0

3 1

1

1  I RI R

  I 3 R 3  I 2 R 2   2  0

2 0

2 2 1

1

1     

I R I R

Cytaty

Powiązane dokumenty

W zadaniu, dosyć łatwe jest „odgadnięcie”, że mini- mum lokalnym jest stan symetryczny, w którym masy są rozłożone w wierzchołkach kwadratu wpisanego w okrąg..

▪ Jeżeli do przewodnika przyłożymy napięcie

Gdy przez przewodnik płynie prąd, elektrony w rzeczywistości poruszają się przypadkowo, ale z prędkością unoszenia (dryfu) v d w kierunku przeciwnym do natęŜenia

Gdy przez przewodnik płynie prąd, elektrony w rzeczywistości poruszają się przypadkowo, ale z prędkością unoszenia (dryfu) v d w kierunku przeciwnym do natężenia

Gdy przez przewodnik płynie prąd, elektrony w rzeczywistości nadal poruszają się przypadkowo, ale teraz przemieszczają się z prędkością unosze- nia (dryfu) v d w kierunku

Giętki przewodnik przechodzi między biegunami magnesu (pokazany jest tylko biegun, znajdujący się dalej). a) Gdy prąd nie płynie, przewodnik jest prosty. b) Gdy prąd pły- nie

Ujemny potencjał bramki G powoduje powstanie w strukturze tranzystora pola elektrycznego (stąd tranzystor polowy), które będzie starało się wypychać elektrony z kanału typu n

Laser (Light Amplification by Stimulated of Radiation - wzmocnienie światła przez wymuszoną emisję promieniowania) Jest to urządzenie emitujące promieniowanie elektromagnetyczne