• Nie Znaleziono Wyników

Radii of Convexity for some Classes of Close-to-convex Functions

N/A
N/A
Protected

Academic year: 2021

Share "Radii of Convexity for some Classes of Close-to-convex Functions"

Copied!
6
0
0

Pełen tekst

(1)

ANNALES

UNIVERSITATIS MARIAE C U R I E - S K Ł O D OWS K A LUBLIN-POLONIA

VOL. XX, 5 SECTIO A 1966

Z Katedry Funkcji Analitycznych Wydziału Mat. Fiz. Chem. UMCS Kierownik: prof. dr Jan Krzyż

JÓZEF MIAZGA, JAN STANKIEWICZ and ZOFIA STANKIEWICZ Radii of Convexity for some Classes of Close-to-convex Functions

Promienie wypukłości pewnych podklae funkcji prawie wypukłych Радиусы выпуклости некоторых подклассов почти выпуклых функций

1. Introduction

Let Р'т (т =1,2,3,...) be the class of functions pm regular and univalent in the unit disk with the power series expansion

(1) Рт(г) = ^0+ атгП+ a2m^m+ •••

which satisfy the conditions

(2) repOT(«)>0 for zeKx

|Рш(0)| = |«ol = 1, and let Pm be the class of functions with a0 = 1.

Let S' be the class of functions regular and univalent in Kr with the power series expansion

(3) /(«) = a1«+as«,+•••

where (4)

Let C'k (k = 1, 2,...) be the subclass of S' consisting of Л-symmetric convex functions

(5) q>k(z) = b1z+bk+1z?+1 + b2k+1z?k+l+ ...

The function / is said to be close-to-convex in if there exists <peC[

such that

(6) > 0 for ZeKx.

(2)

54 Józef Miazga, Jan Stankiewicz and Zofia Stankiewicz

The class of close-to-convex functions will be denoted L. Obviously feL, iff there exist the functions <p and p which belong to C[ and P[, resp.

and satisfy

(7) f'M =q>'(z)-p(z).

Let B be the subclass of L first introduced by I.E. Bazilevifi [1] and defined by the relation (7) with yeC-i, pePx.

We now consider some subclasses of L and B which are defined as follows.

The class of functions regular in Kx and such that

(8) /'(») = v'k(z)pm(z),

holds with <pkeG'k and pm(z)eP'm

The class B^ of functions regular in Kx and such that (8) holds with T’jteC* and pmePm.

In this paper we determine the radii of convexity within the classes Lfon and Bkm.

2. Radii of convexity for Z^ and Bkm

Theorem 1. If feL^ then f realizes a convex mapping of the disk

|»| < r{k, m), where r(k, m) is the unique root of the polynomial

(9) ^+k+r2m_2rn(rm+k+rm)-rJe+l =0

contained in (0; 1).

The number r(k, m) is best possible. The extremal function has the form

(10)

№) - f

(l + zm)(l + zk)2/k1-z” dz.

Proof. Suppose that feLkm. Hence (8) holds with pmeP'm and <pkeGk.

After differentiation we obtain from (8)

(ID «/"(«)

I + -47A2 = 1- /'(«) Since q>keC'k, we have (12)

WkW , «Pm(») . xr 1—7—7ZT»

<PkW pm(z)

Moreover, each pmcP'm has the representation

(13) (2) = ?m(«)cosa+isina; |a| < , where qmePm.

(3)

Radii of Convexity for some Classes of Glose-to-Convex Functions 55 Hence (11) takes the form

, «/"(«)

(14) = 1- zqm(z) cos a

/'(») * ‘ ?>*(«) ’ gm(«)cosa + isina Hence by taking real part of both sides we obtain

«&„(«) cos a

(16) te{1+^}- K {1+ ^} +

re

</OT(2)cosa+isinaZeK1.

+

Note that <fePl implies q(zm)ePm. Using this and (12) we obtain (16)

and thus (15) implies (17)

1-r*

1 + r*

gg^(g)cosa

</m(«)cosa+isina

lggm(g)cosal = 1-r* |sgm(z)l regOT(»)cosa 1 + r* reffm(z) * By our previous remark we obtain from the well known estimate of zg'(z)/g(2), gePi, see e.g. [3], the following inequality

(18) l*gm(*)l <

reg?n(z) 1-r2“ ' Thus (17) takes the form

(19) re 1-r*

1 + r*

2mrm 1-r2“’

Now, f is convex in |«| < r iff

(20) re|l+-y^-|>0; |z| < r

which certainly holds if

(21) 1— rk 2mrm

1 + r* 1-r2“

This implies the convexity of feLkm in the disk |«| < r(Zs, m), r(k, m) being the unique root of the polynomial (9) in (0; 1)

The value r(k, m) is best possible which is easily verified by the fact that the function (10) yields sign of equality in (19). Theorem 1 is proved.

(4)

56 Józef Miazga, Jan Stankiewicz and Zofia Stankiewicz

Theorem 2. If feB^, then f is convex in |«| < r(k, m) where r(k, m) is again the unique root of (9) situated in (0; 1).

The number r(k, m) is best possible. The extremal function has the form (10).

Proof. Obviously B^ c L^, hence the radius of convexity for Bkm is at least r{k, m). However the extremal function (10) belongs to B^

and this proves that radii of convexity for both classes are the same.

Suppose now that Lk is the subclass of L consisting of ^-symmetric functions fk'.

(22) /*(») = »+a*+i2fc+1 + a2*+i^fc+1+ •••

As shown by Z. Lewandowski and J. Stankiewicz [2], we have Lkk = Lk.

Using this fact we obtain as a corollary of Theorem 2 the following Theorem 3. If feLk, then f is convex in the disk

(23) |«| < r(k) = tyk+l-Vk(k+2) No larger disk of convexity does exist for the function

<24> - / [i‘?r» d‘-

Proof. Since Lk = Lkk, the equation (9) takes the form

(25) r2fc-2(&+l)r*+l = 0

whose smallest positive root is r(k).

In case k = m = 2 the extremal function has the form

/• 1—z2 z

(26) /(«) = --- dz =---.

' J

(1 + «Z)2 1 + 22

The function (26) is starshaped with respect to the origin and this means that the radius of convexity for odd close-to-convex functions is the same as that for odd starshaped functions and is equal to rc = r*

= /3—2/2.

REFERENCES

[1] Bazilevic, I. E., Ob odnorn sluchae integriruemosti v kvadraturach uravnenya Lyovnera-Kufareva,in Russian, Ona certain Integrability in Quadraturesof Lovner- -Kufarev Equations, Math. Sbor., 37 (1955), p. 471-476.

[2] Lewandowski, Z., Stankiewicz, J., Obszar zmienności funkcjonału lgf'(s) w pewnych podklasach funkcji prawie wypukłych, Ann. Univ. Mariae Curie Skło­ dowska, Sectio A, 20 (1966), p. 45-51.

[3] Robertson, M. S., Extremal Problems for Analytic Functions with Positive Peal Part and Applications, Tans. Amer. Math. Soc. 108 (1963), p. 236-253.

(5)

Badii of Convexity for some Classes of Close-to-Convex Functions 57 Streszczenie

Nieci]. oznacza klasę funkcji f regularnych w Kx i takich, że /'(«) = ń («)!>«.(»)

gdzie <pktC'k i pmeP'm, oraz Bkm klasę funkcji / regularnych w Kk takich, że /'(«) =%(«)!>»»(«)

gdzie <pktCk i pmePm.

W pracy tej podajemy promień wypukłości w klasach Lkm i Bkm, które to wyniki zawarte są w udowodnionych twierdzeniach.

Twierdzenie 1. Jeżeli feLkm to f realizuje odwzorowanie wypukłe koła

|«| < r(fc, m), gdzie r(k, m) jest jedynym pierwiastkiem równania (9) należącym do przedziału (0,1). Funkcją ekstremalną jest funkcja postaci (10).

Twierdzenie 2. Jeżeli feB^, to f jest wypukła w kole |«| < r(fc, m), gdzie r(k, m) jest jedynym pierwiastkiem równania (9) położonym w prze­

dziale (0,1). Funkcja ekstremalna ma postać (10).

Twierdzenie 3. Jeżeli feLk to / jest wypukła w kole |z| < r(k), gdzie r(k) dane jest równaniem (23). Funkcjami ekstremalnymi są funkcje postaci (24).

Резюме

Пусть обозначает класс функций /(г) регулярных в круге .К-!, отвечающих условию:

/'(«) = <Рк№-Рт&),

где (РкеС'к> РтеР'т> а класс функций/(г) голоморфных в круге отвечающих условию:

/'(«) = <р'к(г)рт(г),

где <ркеСк и Рте^т~ В работе дается радиус выпуклости в. классах Вкт и Вь™, результаты которого заключены в доказанных теоремах.

Теорема 1. Если /еТш, то / реализует выпуклое отображение круга |г| < г (к, т), где г (к, то) является единственным корнем урав­

нения (9), принадлежащим к промежутку (0, 1). Функциями экстре­

мальными являются функции вида (10).

Теорема 2. Еслито/ реализует выпуклое отображение круга

\г\<г{к, то), где г {1с, то) есть единственным корнем уравнения (9), принадлежащим к промежутку (0, 1). Экстремальными функциями являются функции вида (10).

Теорема 3. Пусть /еВк, то / является выпуклой в круге |г| < г(к), где г (А:) дано уравнением (23). Экстремальными функциями являются функции вида (24).

(6)

Cytaty

Powiązane dokumenty

• On Properties of Certain Subclasses of Close-to-Convex Functions 0 własnościach pownych podklas funkcji prawie wypukłych.. Об свойствах

Wilken [1] and others developed a very interesting theory of so-called extreme points of a given family of analytic functions and gave many applications to

In [2], we extended the Jahangiri’s result for all α, β ≥ 0 and effectively determined complete membership to Kaplan classes of polynomials with all zeros in T.. In this article,

Note that, this theorem is analogous to the Theorem E for functions meromorphic in the

The Radius of Convexity and Starlikeness for Certain Classes of Analytic Functions with Fixed Second Coefficients.. Promień wypukłości i gwiaździstości dla pewnych

If a, z and are given then the set D(a,z, Jf) = {w: w =f(z)l /(а)л/с Jf} is called the region of variability of the ratio f(z)/f(a) within.. the

The region D(r, k) of variability oj log/' (z) for a fixed z, zeK,, and f ranging over the class Lk of k-symmetric close-to-convex functions is a closed, convex domain symmetric

, On the domain of local univalence and starlikeness in a certain class of holomorphic functions, Demonstr. , Geometric Theory of Functions of a Complex