• Nie Znaleziono Wyników

On the Second-Harmonic Generation in Two-Level Quantum-Well Systems - Biblioteka UMCS

N/A
N/A
Protected

Academic year: 2021

Share "On the Second-Harmonic Generation in Two-Level Quantum-Well Systems - Biblioteka UMCS"

Copied!
7
0
0

Pełen tekst

(1)

A N N A L E S

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N - P O L O N I A

VOL. L/LI SECTIO AAA 1995/1996

Institute of Physics, M. Curie-Sklodowska University, 20-031 Lublin, pi. M. Curie-Skłodowskiej 1, Poland

MIROSŁAW ZAŁUZNY

[

On the Second-Harmonic Generation in Two-Level Quantum-Well Systems * 1

Generacja drugiej harmonicznej w dwupoziomowych studniach kwantowych

1. INTRODUCTION

The second-order nonlinear optical properties of asymmetric quantum wells (AQWs) (connected with the intersubband transitions) have been investigated experimentally and theoretically by several groups [1-3]. In most of the papers the authors neglect the dynamical screening. The effect of this screening on the linear response is well known. In the systems with parallel subbands it leads to a depolarization shift between the intersubband spacing and the intersubband infrared absorption resonance [3, 4].

Recently H ey m an et al. [3] have shown experimentally that in AQWs with two subbands the second harmonic generation (SHG) spectrum is also affected by the depolarization effect (DE) i.e. resonance in x ^ ( ^ u ) occurs when 2hu coincides with the depolarization shifted intersubband energy, and not the bar intersubband spacing. The authors also presented the analytical expression for Unfortunately, the details of the calculations were not given. In this paper we present the detailed derivation of x^H ^lj) for a two-subband system and show that the expression reported in Ref. [3] is not fully correct.

(2)

Our analysis is based on the density matrix formulation in the electric dipole approximation developed in our previous paper [6]

2. DENSITY-MATRIX FORMALISM

We start from the one band effective mass Hamiltonian given by H = p 2/2m-|-VscF(-z) where Vsc f(z) is the self-consistent quantum well potential and m is the effective mass of the electron. The eigenfunction of this Hamiltonian can be written as | i, ky) = exp(zkyry)<^;(z) where ky and ry are the wave vector and the position vector in the x-y plane. <Pi(z) is the solution of the one dimensional Schrodinger equation [p2/2m + V sc F ^ )]^ = Epp%

where E, is the minimum energy of the subband.

The equation of motion for the matrix elements of the density matrix p [in the representation of | i,ky) (z = 1,2)] is given by

&Pij dt

A p

(i) where V = V (z,t) is the effective perturbing Hamiltonian, r ^ 1 is the relaxation rate from the zth subband, rj^1 = r _1) is the off- diagonal elastic dephasing rate and Ap = p — where p(°) is the unperturbed density matrix. The diagonal element pj^ = Pj^jku e(l uals the thermal equilibrium occupation probability of the corresponding state.

The equilibrium surface density of the electrons in the jth subband is given b y t y = 2 £ k|1/>!•?•

The electric field E(t) = E ex p (—iu>t) + c.c. of the pumped radiation modifies the density distribution of electrons. The change of the distribution An(z, f) can be expressed through the density matrix as

An(z, t) = 2 ^ T r [ A ^ ( z - z ' ) ] . (2) kii

Modification of the carrier distribution leads to the modification of the effective perturbing potential V (z, t). In the electrostatic limit this potential can be written in the form [5, 6]

2 f

V{z,t) = eE(t)z — — j Z dz' [ Z dz"An(z", t) . (3) 6()£ J — oo J — oo

where e is the average dielectric constant neglecting any difference between the dielectric properties of the well and the barrier.

(3)

As in most of the previous papers we assume that the external pertur­

bation y ext(z, t) = eE(t)z is small. Then the self-consistent solution of Eqs.

(1-3) can be obtained perturbatively by expanding Ap, V and A n in powers of E as

A p = X > ( n ) , ( 4 )

n>0

v = Y v(n) - ( 5 )

n>0

A n = Y , ( 6 )

n > 0

Substituting Eqs. (4-6) into Eq. (1) and using the usual iterative method we get

dp( n )ij

dt k=l

( n )

Pa

( 7 )

The surface electronic polarization of the AQW can also be a series expan­

sion as Eqs. (4-6). We shall limit ourselves to the first two orders, i.e.,

Pa(t) = €0x^{u j)E e x p (-iu jt) +

+ e0x^'){2u)E2exp(-i2ut) + c.c. + c0X(2)(0)l^ l2 ,

(8)

where x ^ ( w)i and X ^(0) are Ihe lineari SHG and optical rectifi­

cation coefficients (per unit surface), respectively.

If we neglect, for simplicity, the effects connected with rectification then Eqs. (4-6) can be rewritten in the forms

A/o(f) = Y P(n)(^n)exp(-zw„f) + c.c., (9)

71=1,2

V(z, t) — Y V ^ ( z , u j n)exp(-iu>nt) +c.c. , (10)

71=1,2

A n ( z ,t) = Y n^nHz , u n) exp(-iujnt) + c.c.,

71=1,2

(4)

where u n = nu,

The nth order surface electronic polarization [Pj7^ (wn)] is given by [1]

/ ? n,(aO = ^ 2 5 > b < “>(<*,)*], (12)

‘° *1

From Eqs. (12) and (9) we find that the second-order surface electronic susceptibility can be written as

X{2)(2u) = - 4 ^ 2 J 2 p^ ( 2^ = (13)

e ° E k||,i,j

= — -Z~\p(2\2u)z2l + p $ (2(j)zn + p^2{2u)z22] , 6o E z

where z{j = Zji = <pi(z)z<pj(z)dz, p jf(v „ ) = 2 E k t PijHu n), and P(nHu n) = P u i ^ n ) + P{2 \ M -

Employing Eqs. (7-11) we find after some manipulations that

«(")/■ ' 1

= hujn E{j

T

(1\j with

i f ’K ) = + -j— £ L &r< *. OaE W . f°«°° kl

An)t

where

/ oo r f z I T/ *2

dz / dz'<pi(z')<pj(z') / dz’ipk(z')ifi(z')

-oo LJ — oo J L«/ —oo

(14)

(15)

(16) is the Coulomb matrix element, Eij = E{ — Ej and r\j = h r - 1.

One can see that Eqs. (14) and (15) form a set of algebraic equations for p \ ^ \ u n). In the next sections we will solve them and calculate x ^ ( 2 u )-

3. SECOND-HARMONIC SUSCEPTIBILITY

The application of Eq. (14) to n — 1 yields

(5)

_,I ) H

= J M l M

Ni.

Eij — hu - i r Eij — hu — iv

e2 2N12

(17) where a = 1(1, 2; 1,2), Nij = N{ - Nj and T = At"1.

The expression for p ^ { u ) , resulting from the above equation, can be written as

= (is)

e22! -

{hu

+ i r )2 ’

where E2\ = E 2i{1+ a ) x/ 2 is the depolarization shifted intersubband energy.

Since PiV(w) = Pt z{u ) = 0, Eq. (15) can be rewritten (for n = 1) in the form

V iS V ) = i,2)p(1> H

=

fO^oo

E g - {hu + zT)2

(19)

E%x - {hu + i r )2

where E[j = E’l J l + ^ j (a -a ^ )] and a,- = ^ |^ ^ - ^ . L ( 1 , 2 ; i , i ) . (We assume that za ^ 0.)

Taking n = 2 and assuming that Tn = ^ 2 = f we get from Eqs. (14) and (17) the following relations

p[ ?(2 u ) = 7 P1 2 H I =

2 hu + ir

Vfi*{u)2N i2 2(/>w + i f ) ^ 2! - (ftw + ir ) 2]

2hu + i f

[Eh

- {hu + i r )2]2

=(!)/ =(1)/

(20)

pg(2u;) = - p (12i)(2c^) , (21)

and for i ^ j

_(2)(2w) = [VxHu) ~ )M ]pjj)H - a n ^ P i h 2^ ) ~ o t ^ p W { 2 u )

“I- 2hu} -|- i r where a 12 = a i — a 2.

The last equation leads to the following expression for p(2\ u )

(6)

P,2)(2") = - " [V 'jj'H " W i’H l (23)

£,2! - (2hu + i v y

[ ( £ 2 1 + + ( £ 2 1 ~ 2fiu; - ŚT )/?^^)]

e

\

x

- (2hu

+ i r )2

Substituting Eq. (23) into Eq. (13) we get the final expression for the second-harmonic susceptibility

X (2) (2o>) —e32N l2z22 E 2X - (hoj+iT)2 to [ E l - (h w + ir y y

X ( z 2 2 - 2ll) (2h L j+ ir )(h u + ir)+ E l t hu>+ir

E l - (2hu+iF)2 + 2h u +ir

~ ~ ^21

9 Ofl 9 ---

12 E l - (hui+iT)2

(2^w+if)(^w-|-ir)-(-E21 E l - (ftw+ir)2 hu+iT

E l - {huj+iry E l - (2 h u + ir)2 + 2hu+ir (24) (In obtaining this equation we have used relations (17) and (18))

In limit a, a; —¥ 0 (i.e., when the DE is neglected) Eq. (24) reduces to th at derived by T s a n g et al. [7].

For comparison, the expression reported by H ey m a n et al. [3] is given by

X (2) (2w) - e 3N u z l { z 22 — z n)

£ 0

3(E21 + sT)2[(E21 + zr)2 - ( M 2]

[(E21 + zT)2 - (2^ ) 2][(E21 + ; r )2 -

(hu

)2]2 (25) Eqs. (24) and (25) have a rather different form. However, the numerical values (for |x ^(2 w )|) resulting from them do not differ substantially if we take into account the fact that usually T < C E 2\ and neglect, in our expression, the term containing a \ 2. We would like to note that the correction to the SHG connected with omitting this term can be substantial only when 2Tiu> « E 21-

(7)

REFERENCES

[1] Rosencher E., Bois Ph., Phys. Rev. B, 44 (1991) 11315 and references therein.

[2] Capasso F., Sirtori C. and Cho Y., IEEE J. Quantum Electron., 30 (1994) 1313.

[3] Heyman J. N., Craig K., Galdrikian B., Sherwin M. S., Campman K., Hopkins P. F., Fafard S. and Gossard A. C., Phys. Rev. Lett., 72 (1994) 2183.

[4] Allen S. J., Tsui D. C. and Vinter B. Sol. State Commun., 20 (1976) 425.

[5] Ando T., Fowler A. and Stem F., Rev. Mod. Phys., 54 (1982) 437.

[6] Zalużny M., Phys. Rev., B 51 (1995) 9757.

[7] Tsang L., Ahn D. and Chuang S. L., Appl. Phys. Lett., 52 (1988) 697.

STRESZCZENIE

W niniejszym artykule analizowano od strony teoretycznej wpływ efektu depolaryza- cyjnego na kształt widmowy x^2*(2u>) w dwupoziomowych studniach kwantowych. Otrzy­

mane wyniki porównano z danymi literaturowymi.

Cytaty

Powiązane dokumenty

Przecież, gdy po cudownym rozmnożeniu chlcba chciano Go okrzyk­ nąć królem , usunął się w odosobnienie.. C okolw iek Jezus czynił, czyn ił

Together with our results, the paleomagnetic data from the Moesian platform indicates that some local rotations ( ∼15° clockwise) may have occurred during Eocene compression but

Autor zgadza się z poglądami obydwu badaczy, które sprowadzają się do tezy, że wspólna tradycja ustna z pewnoś­ cią poprzedziła okres, kiedy postanowiono opowiadania przez nią

Consequentially, it will improve our understanding of the role design can play in building organisational structures that can successfully carry out and balance both exploration

 Long-Term Orientation – short-term orientation (Sweden, Austria, Australia, Arab countries, black South Africa) implies impatience for achieving quick results,

У поемі Байки світовії образ-концепт „Бог” омовлено абсолютно позитивно, що демонструє вживання як позитивно конотованих іменувань Господа

Przez pewien czas utrzymywano, że Kopernik usunął człowieka z central- nego miejsca w świecie, bo: po pierwsze Ziemia nie jest centrum Kosmosu, po dru- gie Darwin dopełnił

W świetle doniesień i sprawozdań gadzinówki stwierdzić należy, że w latach 1941– –1942 odbywały się w mieście gościnne koncerty pianisty–wirtuoza Franciszka