• Nie Znaleziono Wyników

Limit on the production of a low-mass vector boson in $e^{+}e^{-} \rightarrow U\gamma$, $U\rightarrow e^{+}e^{-}$, with the KLOE experiment

N/A
N/A
Protected

Academic year: 2022

Share "Limit on the production of a low-mass vector boson in $e^{+}e^{-} \rightarrow U\gamma$, $U\rightarrow e^{+}e^{-}$, with the KLOE experiment"

Copied!
5
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Limit on the production of a low-mass vector boson in e + e U γ , U → e + e with the KLOE experiment

A. Anastasi

e,d

, D. Babusci

d

, G. Bencivenni

d

, M. Berlowski

t

, C. Bloise

d

, F. Bossi

d

,

P. Branchini

q

, A. Budano

p,q

, L. Caldeira Balkeståhl

s

, B. Cao

s

, F. Ceradini

p,q

, P. Ciambrone

d

, F. Curciarello

e,b,k

, E. Czerwi ´nski

c

, G. D’Agostini

l,m

, E. Danè

d

, V. De Leo

q

, E. De Lucia

d

, A. De Santis

d

, P. De Simone

d

, A. Di Cicco

p,q

, A. Di Domenico

l,m

, R. Di Salvo

o

,

D. Domenici

d

, A. D’Uffizi

d

, A. Fantini

n,o

, G. Felici

d

, S. Fiore

r,m

, A. Gajos

c

, P. Gauzzi

l,m

, G. Giardina

e,b

, S. Giovannella

d

, E. Graziani

q

, F. Happacher

d

, L. Heijkenskjöld

s

,

W. Ikegami Andersson

s

, T. Johansson

s

, D. Kami ´nska

c

, W. Krzemien

t

, A. Kupsc

s

, S. Loffredo

p,q

, G. Mandaglio

e,f

, M. Martini

d,j

, M. Mascolo

d

, R. Messi

n,o

, S. Miscetti

d

, G. Morello

d

, D. Moricciani

o

, P. Moskal

c

, A. Palladino

d,∗,1

, M. Papenbrock

s

, A. Passeri

q

, V. Patera

i,m

, E. Perez del Rio

d

, A. Ranieri

a

, P. Santangelo

d

, I. Sarra

d

, M. Schioppa

g,h

, M. Silarski

d

, F. Sirghi

d

, L. Tortora

q

, G. Venanzoni

d,∗

, W. Wi´slicki

t

, M. Wolke

s

aINFNSezionediBari,Bari,Italy bINFNSezionediCatania,Catania,Italy

cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

eDipartimentodiFisicaeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy fINFNGruppocollegatodiMessina,Messina,Italy

gDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy hINFNGruppocollegatodiCosenza,Rende,Italy

iDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy jDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy kNovosibirskStateUniversity,630090Novosibirsk,Russia

lDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy mINFNSezionediRoma,Roma,Italy

nDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy oINFNSezionediRomaTorVergata,Roma,Italy

pDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy qINFNSezionediRomaTre,Roma,Italy

rENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy

sDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden tNationalCentreforNuclearResearch,Warsaw,Poland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received2September2015

Receivedinrevisedform25September 2015

Accepted2October2015 Availableonline8October2015 Editor:M.Doser

Keywords:

Darkmatter Darkforces

TheexistenceofanewforcebeyondtheStandardModeliscompellingbecauseitcouldexplainseveral strikingastrophysicalobservationswhichfailstandardinterpretations.Wesearchedforthelightvector mediatorofthisdarkforce,theU boson,withtheKLOEdetectorattheDANEe+e collider.Usingan integratedluminosityof1.54 fb1,westudiedtheprocesse+eUγ,withUe+e,usingradiative returntosearchforaresonant peakinthedielectroninvariant-massdistribution.Wedidnotfindev- idenceforasignal,andseta90% CLupperlimitonthemixingstrengthbetweentheStandardModel photonandthedarkphoton,ε2,at106–104inthe5–520 MeV/c2massrange.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthors.

E-mailaddresses:palladin@bu.edu(A. Palladino),graziano.venanzoni@lnf.infn.it(G. Venanzoni).

1 Presentaddress:DepartmentofPhysics,BostonUniversity,Boston,USA.

http://dx.doi.org/10.1016/j.physletb.2015.10.003

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

The StandardModel (SM)of particlephysics hasreceived fur- ther confirmation with the discovery of the Higgs boson [1–3], however,thereare stronghintsofphysicsit cannotexplain, such asneutrinooscillations[4]andthemeasuredanomalousmagnetic momentof themuon [5].Furthermore, theSM does notprovide adarkmatter(DM)candidateusuallyadvocatedasanexplanation ofthenumerousgravitationalanomaliesobservedintheuniverse.

Manyextensions ofthe SM [6–10] considera WeaklyInteracting MassiveParticle(WIMP)asaviableDMcandidateandassumethat WIMPsarechargedunderanewkindofinteraction.Themediator of the new force would be a gauge vector boson, the U boson, alsoreferredtoasadarkphotonorA.Itwouldbeproduceddur- ingWIMPannihilations,haveamasslessthantwoprotonmasses, andaleptonicdecaychannelinordertoexplaintheastrophysical observationsrecentlyreportedbymanyexperiments[11–21].

In theminimal theoretical model,the U boson isthe lightest particleofthedarksectorandcancoupletotheordinarySMpho- tononlythroughloopsofheavydarkparticleschargedunderboth SM U(1)Y and dark U(1)D symmetries [6,22–26]. These higher- orderinteractionswouldopenaso-calledkineticmixingportalde- scribedinthetheorybytheLagrangiantermLmix= −ε2Fi jEWFDarki j , where Fi jEW is the SM hypercharge gauge field tensor and FDarki j is the dark field tensor. The

ε

parameter represents the mixing strengthandistheratioofthedarkandelectromagneticcoupling constants.Inprinciple,thedarkphotoncouldbe producedinany processinwhicha virtualorrealphoton isinvolvedbuttherate is suppressed dueto the very smallcoupling (

ε

<102). In this respect,high-luminosityO(GeV)-energye+ecollidersplayacru- cialroleindarkphotonsearches[27–29].

We investigated the e+eUγ process by considering the U bosondecayingintoe+e.Atthelevelofcouplingaccessibleby KLOEin thischannel theU boson isexpected todecaypromptly leavingitssignalasaresonantpeakintheinvariant-massdistribu- tionoftheleptonpair.Theenergyscanwasperformedbyapplying theradiativereturnmethodwhichconsistsofselectingtheevents inwhicheitherelectronorpositronemitsaninitial-stateradiation (ISR) photon which carries away a part ofthe energy andeffec- tivelychangestheamountoftheenergyavailableforU bosonpro- duction.Theselectedinitial- andfinal-stateparticlesarethesame asintheradiativeBhabhascatteringprocesssowereceivecontri- butionsfromresonants-channel,non-resonantt-channel U boson exchanges, andfroms–t interference. The finite-width effectsre- latedto s-channelannihilationsub-processes,scatteringt-channel and s–t interference are of order of U/mU for the integrated crosssection andcan be neglected withrespect to anypotential resonancewe wouldobserve; U107–102MeV forthe cou- plingstrengths to which we aresensitive [30].The non-resonant t-channeleffectswouldnotproducea peakintheinvariant-mass distributionbutcould, inprinciple, appearinanalyses of angular distributionsorasymmetries.Wearegoingtoreportexclusivelyon resonants-channelU bosonproduction.

Usingasample ofKLOEdatacollectedduring 2004–2005,cor- responding to an integratedluminosity of 1.54 fb1, we derived anewlimitonthekinetic mixingparameter,

ε

2,approachingthe dielectronmassthreshold.

Fig. 1. Cross section of the KLOE detector.

2. KLOEdetector

The Frascati φ factory, DANE, is an e+e collider running mainlyatacenter-of-massenergyof1.0195 GeV,themassofthe φ meson. Equalenergyelectron andpositronbeamscollideatan angleof∼25 mrad,producingφmesonsnearlyatrest.

The KLOE detector consists of a large cylindricalDrift Cham- ber(DC)[31]witha25 cminternal radius,2 mouter radius,and 3.3 mlength,comprising∼56,000wiresforatotalofabout12,000 drift cells. It is filled with a low- Z (90% helium, 10% isobutane) gas mixture and provides a momentum resolution of

σ

p/p≈ 0.4%. The DC is surrounded by a lead-scintillating fiber electro- magnetic calorimeter (EMC) [32] composed of a cylindrical bar- rel and two end-caps providing 98% coverage of the total solid angle. Calorimeter modules are read out at both ends by 4880 photomultiplier tubes, ultimately resulting in an energy resolu- tion of

σ

E/E =5.7%/

E(GeV) and a time resolution of

σ

t = 57 ps/

E(GeV)100 ps.AsuperconductingcoilaroundtheEMC providesa0.52 Tfieldtomeasurethemomentumofchargedpar- ticles.AcrosssectionaldiagramoftheKLOEdetectorisshownin Fig. 1.

The trigger[33]usesenergydeposition inthecalorimeterand drift chamber hit multiplicity.Tominimize backgrounds the trig- gersystemincludesasecond-levelcosmic-raymuonvetobasedon energydeposition inthe outermostlayers ofthe calorimeter,fol- lowedby asoftwarebackgroundfilterbasedon thetopologyand multiplicity of energy clusters and drift chamber hits to reduce beambackground.Adownscaledsampleisretainedtoevaluatethe filterefficiency.

3. Eventselection

Using 1.54 fb1 of KLOE data we have searched for U boson productionintheprocesse+eUγ followedbyUe+e.The

(3)

Fig. 2. (Coloronline.) Thetrackmassdistributionbeforeeventselectionformea- surementand expectedbackgroundsimulations.Someofthe simulationshad a prescalingforMtrack<80 MeV/c2,whichhasbeenaccountedforinthebackground evaluation.ThemeasurementdatasetwasprescaledforMtrack>85 MeV/c2.The trackmassvariablepeaksatthe massofthechargedtrackinthefinalstatefor eventswithtwo chargedtracks and aphoton.The selection regionis Mtrack<

70 MeV/c2.

center-of-massenergyofthecollision dependsonthe amountof energycarriedawaybytheinitial-stateradiation(ISR)photon.The irreduciblebackgroundoriginatesfromthe e+ee+eγ radia- tive Bhabha scatteringprocess, havingthe same three final-state particles. The reducible backgrounds consist of e+e→ μ+μγ, e+e→ π+πγ, e+e→ γγ (where one photon convertsinto an e+e pair), ande+e→ φ→ ρπ0→ π+ππ0, aswell asother φ decays.Theexpected U bosonsignal wouldappearasa resonant peakintheinvariant-massdistributionofthee+epair,mee.This searchdiffers fromtheprevious KLOE searches[34–36]in itsca- pabilitytoprobethelowmassregionclosetothedielectronmass threshold.

Weselectedeventswiththreeseparate calorimeterenergyde- positscorrespondingto twooppositely-charged leptontracksand a photon. The final-stateelectron, positron,and photon were re- quired to be emitted at large angle (55< θ <125) with re- spectto the beam axis,such that they are explicitly detected in thebarrelofthecalorimeter,see Fig. 1.The large-angleselection greatlysuppressesthet-channelcontributionfromtheirreducible Bhabha-scattering background which is strongly peakedat small angle.Since we are interested mostly in the low invariant-mass region,weselectonly eventswithahard photon, Eγ>305 MeV, chosen toselecta subsampleofthe eventsgenerated byour MC simulation.Werequired bothlepton tracks tohavea first DChit within a radius of 50 cm from the beam axis and a point-of- closest-approach(PCA)tothebeamaxiswithinthefiducialcylin- der,

ρ

PCA<1 cm and−6<zPCA<6 cm,entirelycontainedwithin the vacuum pipe eliminating background events from photons converting on the vacuum wall. We eliminated tightly spiralling tracks by requiring either a large transverse or a large longitu- dinalmomentum foreach of the lepton tracks, pT >160 MeV/c or pz>90 MeV/c. We require that the total momentum of the chargedtracks is (|pe+| + |pe|) >150 MeV/c to avoid the pres- enceofpoorly reconstructed tracks.Apseudo-likelihood discrim- inantwasusedto separateelectrons frommuonsandpions[37].

A furtherdiscriminationfrommuonsandpionswasachievedusing theMtrackvariable.Mtrack isthe X massforan X+Xγ finalstate, computed using energy and momentum conservation, assuming mX+=mX [37]. In Fig. 2the Mtrack distributionis reported for measureddataandforall therelevantMC simulatedbackground components. Including the cut Mtrack<70 MeV/c2 we were left with681,196eventsattheendofthefullanalysischain.

Fig. 3. (Coloronline.) Dielectroninvariant-massdistributionfrommeasurementdata withnon-irreduciblebackgroundssubtractedcomparedtothe Babayaga-NLOMC simulation.

4. Simulationandefficiencies

WeusedMCeventgeneratorsinterfacedwiththefullKLOEde- tector simulation,GEANFI[38],includingdetectorresolutionsand beam conditions on a run-by-run basis, to estimate the level of backgroundcontaminationduetoalloftheprocesseslistedinthe previoussection.Excludingtheirreduciblebackgroundfromradia- tiveBhabhascatteringevents,thecontamination fromthesumof residualbackgroundsafterallanalysiscutsislessthan1.5%inthe wholemee range,andnoneofthebackgroundshapesarepeaked, eliminatingthepossibilityofabackgroundmimickingtheresonant U bosonsignal.TheirreducibleBhabhascatteringbackgroundwas simulatedusingthe Babayaga-NLO[39–42]eventgeneratorimple- mented within GEANFI (includingthe s-, t-,and s–t interference channels) and is shown in Fig. 3 along with the measured data aftersubtracting the non-irreducible backgroundcomponents.No signalpeakisobserved.

In orderto evaluate theU boson selection efficiency we used a modified version of the Babayaga-NLO event generator imple- mented within GEANFI, such thatthe radiative Bhabhascattering processwas onlyallowed toproceedviatheannihilationchannel, in whichthe U boson resonancewould occur. In orderto create alarge-statisticssampleinourregionofinterestwerestrictedthe Babayaga-NLOgeneratedeventstowithin50< θeMC+,e<130and EMCγ >300 MeV.Thegenerator-level efficiencyduetothisrestric- tionwasevaluatedusinga Phokhara MCsimulation[43].Thetotal efficiency is evaluated as the product of the generator-level ef- ficiencyand theevent-selection efficiency,containing thecuts in Section 3conditionedto thegenerator-levelrestriction aswell as the triggerefficiency, andisshownin Fig. 4. Thedecrease inef- ficiencyas mee2me comes from the requirementon the total momentumofthechargedtracks.

5. Upperlimitevaluation

Weusedthe CLS technique[44] todeterminethelimit onthe numberofsignal U bosonevents, NU,at90% confidencelevelus- ingthemee distribution.Theinvariant-massresolution,

σ

mee,isin therange1.4<

σ

mee<1.7 MeV/c2.Chebyshev polynomialswere fit to the measured data (±15

σ

mee), excluding the signal region of interest(±3

σ

mee). The polynomial with

χ

2/Ndof closest to 1.0 was used as the background.A Breit–Wigner peak with a width of 1 keV smeared with the invariant-mass resolution was used asthe signal. An example of one specific CLS resultis shown in Fig. 5, yielding an upper limit of NU=215 U boson events at

(4)

Fig. 4. Smootheddistributionofthetotalefficiencydefinedastheproductofthe selectionefficiencyfor the e+eUγ →e+eγ finalstateevaluatedusingthe Babayaga-NLOeventgeneratormodifiedtoallowonlythes-channelprocess,and thegenerator-levelefficiencyevaluatedfroma Phokhara MCsimulation.

Fig. 5. (Coloronline.) TheCLSresultat90%CLformU=155.25 MeV/c2showingthe measureddata,theChebyshev-polynomialsidebandfit,andthesignalshapescaled totheCLSresult.

Fig. 6. Upper limit on the cross sectionσe+eUγ,Ue+e .

mU=155.25 MeV/c2atthe90%confidencelevel.The

χ

2/Ndofwas 1.09forthisChebyshev-polynomialsidebandfit.

Theupperlimitat90%confidencelevelonthenumberofU bo- son events, UL(NU), can be translated into a limit on the cross section,

UL



σ 

e+e

U

γ,

U

e+e



=

UL

(

NU

)

L

eff

,

(1)

whereL istheluminosityand

eff isthetotalselection efficiency.

ThelimitisshowninFig. 6.

Fig. 7. (Coloronline.) Exclusionlimitsonthekineticmixingparametersquared,ε2, as afunctionofthe U bosonmass. Theredcurvelabeled KLOE(3) isthe result ofthisarticlewhilethecurveslabeledKLOE(1) andKLOE(2)indicatetheprevious KLOEresults.AlsoshownaretheexclusionlimitsprovidedbyE141,E774,Apex, WASA,HADES,A1,BaBar,andNA48/2.Thegraybanddelimitedbythedashedwhite linesindicates themixinglevelandmU parameterspace thatcouldexplain the discrepancyobservedbetweenthemeasurementandSMcalculationofthemuon (g2)μ.

We then translated thelimit on NU toa 90% confidencelevel limit on the kinetic mixing parameter as a function of mee as in[36],

ε

2

(

mee

) =

NU

(

mee

)

eff

(

mee

)

1

H

(

mee

)

I

(

mee

)

L

,

(2) wheretheradiatorfunction H(mee)wasextractedfrom

d

σ

eeγ

/

dmee

=

H



mee

,

s

,

cos

γ

) 

· σ

eeQED

(

mee

)

usingthe Phokhara MCsimulation[43]todeterminetheradiative differentialcrosssection, I(mee)istheintegralofthecrosssection

σ

(e+eUe+e), L=1.54 fb1 is the integrated luminos- ity, and

eff(mee) is the total efficiency described in Section 4.

Our limit is shown in Fig. 7 along with the indirect limitsfrom the measurements of (g2)e and (g2)μ at 5

σ

shown with dashedcurves.Limitsfromthefollowingdirectsearchesareshown withshadedregions andsolidcurves:E141 [45],E774 [45],KLOE (φ→ ηU,Ue+e) [34,35], Apex[46],WASA[47],HADES [48], A1 [49], KLOE (e+eUγ, U→ μ+μ) [36], BaBar [50], and NA48/2[51].

6. Systematicuncertainties

The background was determined by Chebyshev-polynomial sidebandfits.Theparametersofthepolynomialswerethenvaried within 1

σ

to determine the maximum variation of the polyno- mial shape. The uncertaintyofeach bin was setto theextent of that variation evaluated atthe bin center.An exampleof theer- ror bars on the Chebyshev-polynomial sideband fits can be seen in Fig. 5. These binuncertainties were taken intoaccount in the CLSprocedure whendetermining NCLS(mee).Since theirreducible backgroundissmoothforeachfitrange,weassumetheChebyshev polynomials sufficiently represent the background with negligi- ble systematic uncertainty. Any uncertainty in the shape of the smearedresonantpeakwasalsotakentobenegligible.

The efficiencyof the e+ee+eγ event selection was de- termined by taking the ratio ofthe set of simulated eventsthat passed the selection criteria to the total simulated sample. We apply a 0.1% systematic uncertainty due to the Babayaga-NLO event generator [39–42], a 0.1% systematic uncertainty for the

(5)

Table 1

Summaryofsystematicuncertainties.Theuncertaintiesontheefficiency,radiator function,andcross-sectionintegralvaryasafunctionofmee.Thenumbersquoted herecorrespondtothelargestestimatewithinourmeerange.

Systematic source Relative uncertainty

Background (sideband fit) negl.

eff(mee) 2%

MC generator, 0.1%

Trigger, 0.1%

Software background filter, 0.1%

Event selection, 2%

H(mee) 0.5%

I(mee) negl.

L 0.3%

trigger, anda 0.1% systematicuncertainty for the softwareback- ground filter. All together the uncertainty on the selection effi- ciencyisdominatedby thestatisticaluncertaintyon theselected sample. A Phokhara MCsimulation [43] was performedto eval- uate the generator-level efficiency due to the restriction EMCγ >

300 MeV and50< θeMC+,e<130.Theselectionefficiencyandthe generator-levelefficiencyarecombinedtogivethetotalefficiency,

eff(mee).TheuncertaintyisgivenastheerrorbandinFig. 4,again dominatedbythestatisticaluncertaintiesinthesimulateddataset.

There are two effects that contribute to the uncertainty in theradiator function, H(mee). First,since thevalue of H(mee) is taken from simulated data, we must take into account the sta- tistical uncertainty on those values. Second, we assume a uni- form0.5%systematicuncertaintyinthe calculationof H(mee),as quotedin[43,52–54].Theuncertaintyintheintegratedluminosity is0.3%[37].Theuncertaintieson H(mee),

eff(mee),andL,propa- gatetothesystematicuncertaintyon

ε

2(mee)via(2).Asummary ofsystematicuncertaintiesispresentedinTable 1.

7.Conclusions

WeperformedasearchforadarkgaugeU bosonintheprocess e+eUγ withUe+eusingtheradiativereturnmethodand 1.54 fb1 ofKLOEdatacollected in2004–2005.Wefoundno ev- idenceforaU bosonresonantpeak andseta90% CLupperlimit onthekineticmixingparameter,

ε

2,at106–104 intheU-boson massrange5–520 MeV/c2.Thislimitpartlyexcludessomeofthe remaining parameterspacein thelow dielectronmass region al- lowed by the discrepancy between the observed and predicted (g2)μ.

Acknowledgments

We warmly thank our former KLOE colleagues for the ac- cess to the data collected during the KLOE data taking cam- paign. We thank the DANE team for their efforts in main- taining low background running conditions and their collabo- ration during all data taking. We want to thank our techni- cal staff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring efficient operation of the KLOE computing facili- ties; M. Anelli for his continuous attention to the gas system and detector safety; A. Balla, M. Gatta, G. Corradi and G. Pa- palino for electronics maintenance; M. Santoni, G. Paoluzzi and R. Rosellinifor generaldetector support; C. Piscitellifor his help during major maintenance periods. This work was supported in part by the EU Integrated Infrastructure Initiative Hadron

Physics Project under contract number RII3-CT-2004-506078; by the European Commission under the 7th Framework Programme through the ‘Research Infrastructures’ action of the ‘Capacities’

Programme,Call:FP7-INFRASTRUCTURES-2008-1,GrantAgreement No. 227431; by the Polish National Science Centre through the GrantNos. DEC-2011/03/N/ST2/02641,2011/03/N/ST2/02652,2013/

08/M/ST2/00323,2013/11/B/ST2/04245,2014/14/E/ST2/00262, and bytheFoundationforPolishSciencethroughtheMPDprogramme.

In addition, we would like to thank the Babayaga authors, C.M. Carloni Calame,G. Montagna,O. Nicrosini,andF. Piccinini,for numeroususefuldiscussions andhelp whilemodifyingtheir code forourpurpose.

References

[1]ATLASCollaboration,Phys.Lett.B716(2012)1.

[2]CMSCollaboration,Phys.Lett.B716(2012)30.

[3]CMSCollaboration,J.HighEnergyPhys.06(2013)081.

[4]K.Olive,etal.,Reviewofparticlephysics,Chapter14:neutrinomass,mixing, andoscillations,Chin.Phys.C38(2014)090001.

[5]J.Miller,etal.,Annu.Rev.Nucl.Part.Sci.62(2012)237.

[6]M.Pospelov,A.Ritz,M.Voloshin,Phys.Lett.B662(2008)53.

[7]N.Arkani-Hamed,etal.,Phys.Rev.D79(2009)015014.

[8]D.S.M.Alves,etal.,Phys.Lett.B692(2010)323.

[9]M.Pospelov,A.Ritz,Phys.Lett.B671(2009)391.

[10]N.Arkani-Hamed,N.Weiner,J.HighEnergyPhys.0812(2008)104.

[11]P.Jean,etal.,Astron.Astrophys.407(2003)L55.

[12]O.Adriani,etal.,Nature458(2009)607.

[13]M.Aguilar,etal.,AMSCollaboration,Phys.Rev.Lett.110(2013)141102.

[14]J.Chang,etal.,Nature456(2008)362.

[15]A.A.Abdo,etal.,Phys.Rev.Lett.102(2009)181101.

[16]F.Aharonian,etal.,HESSCollaboration,Phys.Rev.Lett.101(2008)261104.

[17]F.Aharonian,etal.,HESSCollaboration,Astron.Astrophys.508(2009)561.

[18]R.Bernabei,etal.,Int.J.Mod.Phys.D13(2004)2127.

[19]R.Bernabei,etal.,Eur.Phys.J.C56(2008)333.

[20]C.E.Aalseth,etal.,CoGeNTCollaboration,Phys.Rev.Lett.106(2011)131301.

[21]C.E.Aalseth,etal.,CoGeNTCollaboration,Phys.Rev.Lett.107(2011)141301.

[22]B.Holdom,Phys.Lett.B166(1985)196.

[23]C.Boehm,P.Fayet,Nucl.Phys.B683(2004)219.

[24]N.Borodatchenkova,D.Choudhury,M.Drees,Phys.Rev.Lett.96(2006)141802.

[25]P.Fayet,Phys.Rev.D75(2007)115017.

[26]Y.Mambrini,J.Cosmol.Astropart.Phys.1009(2010)022.

[27]R.Essig,P.Schuster,N.Toro,Phys.Rev.D80(2009)015003.

[28]B.Batell,M.Pospelov,A.Ritz,Phys.Rev.D79(2009)115008.

[29]M.Reece,L.Wang,J.HighEnergyPhys.0907(2009)051.

[30]L.Barzè,etal.,Eur.Phys.J.C71(2011)1680.

[31]M.Adinolfi,etal.,Nucl.Instrum.MethodsA488(2002)51.

[32]M.Adinolfi,etal.,Nucl.Instrum.MethodsA482(2002)364.

[33]M.Adolfini,etal.,Nucl.Instrum.Methods492(2002)134.

[34]F.Archilli,etal.,KLOE-2Collaboration,Phys.Lett.B706(2012)251.

[35]D.Babusci,etal.,KLOE-2Collaboration,Phys.Lett.B720(2013)111.

[36]D.Babusci,etal.,KLOE-2Collaboration,Phys.Lett.B736(2014)459.

[37] A.Denig,etal.,KLOEnote192,www.lnf.infn.it/kloe/pub/knote/kn192.ps.

[38]F.Ambrosino,etal.,KLOE-2Collaboration,Nucl.Instrum.Methods534(2004) 403.

[39]L.Barzè,etal.,Eur.Phys.J.C71(2011)1680.

[40]G.Balossini,etal.,Nucl.Phys.B758(2006)227.

[41]C.M.C.Calame,Phys.Lett.B520(2001)16.

[42]C.M.C.Calame,etal.,Nucl.Phys.B584(2000)459.

[43]H.Czy ˙z,etal.,Eur.Phys.J.C39(2005)411.

[44]G.C.Feldman,R.D.Cousins,Phys.Rev.D57(1998)3873.

[45]J.D.Bjorken,etal.,Phys.Rev.D80(2009)075018.

[46]S.Abrahamyan,etal.,APEXCollaboration,Phys.Rev.Lett.107(2011)191804.

[47]P.Adlarson,etal.,WASA-at-COSYCollaboration,Phys.Lett.B726(2013)187.

[48]G.Agakishiev,etal.,HADESCollaboration,Phys.Lett.B731(2014)265.

[49]H.Merkel,etal.,A1Collaboration,Phys.Rev.Lett.112(2014)221802.

[50]J.P.Lees,etal.,BaBarCollaboration,Phys.Rev.Lett.113(2014)201801.

[51]J.R.Batley,etal.,NA48/2Collaboration,Phys.Lett.B746(2015)178.

[52]G.Rodrigo,H.Czy ˙z,J.H.Kühn,M.Szopa,Eur.Phys.J.C24(2002)71.

[53]H.Czy ˙z,A.Grzelinska,J.H.Kühn,G.Rodrigo,Eur.Phys.J.C27(2003)563.

[54]H.Czy ˙z,A.Grzelinska,J.H.Kühn,G.Rodrigo,Eur.Phys.J.C33(2004)333.

Cytaty

Powiązane dokumenty

The dominant background sources are normalised either using only data, as in the case of the W +jets background, or using data yields in an appropriate control region (CR) to

Λðm H Þ ¼ L ðm H ; ˆ ˆμ γγ ðm H Þ; ˆˆμ 4l ðm H Þ; ˆˆθðm H ÞÞ Lð ˆm H ; ˆμ γγ ; ˆμ 4l ; ˆ θÞ : ð6Þ The leading source of systematic uncertainty on the mass

π , the momentum of the charged secondary track in the kaon rest frame evaluated using the pion mass3. 2 The selection efficiency of the two tagging nor- malization samples are

34 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei,

Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 91 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk,

63 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America. 64 Joint Institute for Nuclear Research, JINR Dubna,

In the ρ – ω region the systematic error is computed by adding in quadrature the contributions due to the theoretical uncertainty of the Monte Carlo generator (0. 5% [26]),

Note that the generated Monte Carlo events were scaled according to the fit to data after preselection and that the sum of all Monte Carlo events remaining after all cuts is equal to