• Nie Znaleziono Wyników

Limit on the production of a new vector boson in $e^{+}e^{-} \rightarrow U\gamma$, $U\rightarrow \pi^{+}\pi^{-}$ with the KLOE experiment

N/A
N/A
Protected

Academic year: 2022

Share "Limit on the production of a new vector boson in $e^{+}e^{-} \rightarrow U\gamma$, $U\rightarrow \pi^{+}\pi^{-}$ with the KLOE experiment"

Copied!
6
0
0

Pełen tekst

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Limit on the production of a new vector boson in e + e U γ , U → π + π with the KLOE experiment

The KLOE-2 Collaboration

A. Anastasi

e,d

, D. Babusci

d

, G. Bencivenni

d

, M. Berlowski

v

, C. Bloise

d

, F. Bossi

d

,

P. Branchini

r

, A. Budano

q,r

, L. Caldeira Balkeståhl

u

, B. Cao

u

, F. Ceradini

q,r

, P. Ciambrone

d

, F. Curciarello

e,b,l,

, E. Czerwi ´nski

c

, G. D’Agostini

m,n

, E. Danè

d

, V. De Leo

r

, E. De Lucia

d

, A. De Santis

d

, P. De Simone

d

, A. Di Cicco

q,r

, A. Di Domenico

m,n

, R. Di Salvo

p

,

D. Domenici

d

, A. D’Uffizi

d

, A. Fantini

o,p

, G. Felici

d

, S. Fiore

s,n

, A. Gajos

c

, P. Gauzzi

m,n

, G. Giardina

e,b

, S. Giovannella

d

, E. Graziani

r

, F. Happacher

d

, L. Heijkenskjöld

u

,

W. Ikegami Andersson

u

, T. Johansson

u

, D. Kami ´nska

c

, W. Krzemien

v

, A. Kupsc

u

, S. Loffredo

q,r

, G. Mandaglio

f,g,

, M. Martini

d,k

, M. Mascolo

d

, R. Messi

o,p

, S. Miscetti

d

, G. Morello

d

, D. Moricciani

p

, P. Moskal

c

, A. Palladino

t

, M. Papenbrock

u

, A. Passeri

r

, V. Patera

j,n

, E. Perez del Rio

d

, A. Ranieri

a

, P. Santangelo

d

, I. Sarra

d

, M. Schioppa

h,i

, M. Silarski

d

, F. Sirghi

d

, L. Tortora

r

, G. Venanzoni

d

, W. Wi´slicki

v

, M. Wolke

u

aINFNSezionediBari,Bari,Italy bINFNSezionediCatania,Catania,Italy

cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

eDipartimentodiScienzeMatematicheeInformatiche,ScienzeFisicheeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy fDipartimentodiScienzeChimiche,Biologiche,FarmaceuticheedAmbientalidell’UniversitàdiMessina,Messina,Italy

gINFNGruppoCollegato diMessina,Messina,Italy

hDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy iINFNGruppoCollegato diCosenza,Rende,Italy

jDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy kDipartimentodiScienzeeTecnologieApplicate,Università“GuglielmoMarconi”,Roma,Italy lNovosibirskStateUniversity,630090Novosibirsk,Russia

mDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy nINFNSezionediRoma,Roma,Italy

oDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy pINFNSezionediRomaTorVergata,Roma,Italy

qDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy rINFNSezionediRomaTre,Roma,Italy

sENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy tDepartmentofPhysics,BostonUniversity,Boston,USA

uDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden vNationalCentreforNuclearResearch,Warsaw,Poland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received18March2016

Receivedinrevisedform6April2016 Accepted7April2016

Availableonline11April2016 Editor:L.Rolandi

TherecentinterestinalightgaugebosonintheframeworkofanextraU(1)symmetrymotivatessearches inthemassrangebelow1GeV.Wepresentasearchforsuchaparticle,thedarkphoton,ine+eUγ, U→ π+π basedon28million e+e→ π+πγ events collectedatDANEbythe KLOEexperiment.

The π+ π productionbyinitial-state radiationcompensates foralossofsensitivity ofpreviousKLOE U→e+e,μ+μ searchesduetothesmallbranchingratiosintheρωresonanceregion.Wefound noevidenceforasignalandsetalimitat90%CLonthemixingstrengthbetweenthephotonandthe

*

Correspondingauthors.

E-mailaddresses:fcurciarello@unime.it(F. Curciarello),gmandaglio@unime.it(G. Mandaglio).

http://dx.doi.org/10.1016/j.physletb.2016.04.019

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

isathermalrelicfromtheBigBang, accountingforabout24%of thetotalenergydensityoftheUniverse[2]andproducingeffects onlythroughits gravitationalinteractionswithlarge-scale cosmic structures.ToincludetheDMina particletheoreticalframework, theStandardModel(SM)isusuallycomplementedwithmanyex- tensions [3–7] that attribute to the DM candidates also strong self interactions and weak-scale interactions with SM particles.

Amongthepossiblecandidates,a WeaklyInteractingMassivePar- ticle (WIMP) aroused much interest since a particle with weak- scaleannihilationcrosssectioncanaccountfortheDMrelicabun- danceestimatedthroughthestudyofthecosmicmicrowaveback- ground[2].TheforcecarrierinWIMPannihilationscouldbeanew gaugevectorboson,knownasU boson,darkphoton,γor A,with alloweddecaysintoleptons andhadrons.Its assiduousworldwide searchhasbeen stronglymotivatedbythe astrophysicalevidence recentlyobservedinmanyexperiments[8–14]andbyitspossible positiveone-loopcontributiontothetheoreticalvalueofthemuon magneticmomentanomaly [15],which couldsolve, partlyoren- tirely, the well known 3.6

σ

discrepancy withthe experimental measurement[16].

Inthispaperweassumethesimplesttheoreticalhypothesisac- cordingtowhichthedarksectorconsistsofjustoneextraabelian gaugesymmetry,U(1),withonegaugeboson,theUboson,whose decaysinto invisible light darkmatter are kinematically inacces- sible. Inthisframework thedark photonwould actlike a virtual photon, with virtuality q2=m2U. It would couple to leptons and quarkswiththesamestrengthandwouldappear(itswidthbeing much smaller than the experimental mass resolution) as a nar- rowresonanceinanyprocessinvolvingrealorvirtualphotons.The couplingtotheSMphotonwouldoccurbymeansofavectorpor- talmechanism[3],i.e.loopsofheavydarkparticleschargedunder boththeSM andthedarkforce. Thestrengthofthe mixingwith thephotonisparametrized byasingle factor

ε

2=

α

/

α

whichis theratio ofthe effective darkand SM photon couplings [3]. The sizeofthe

ε

2parameterisexpectedtobeverysmall(102–108) causingasuppressionoftheUbosonproductionrate.TheUboson decaysintoSM particleswouldhappen throughthesame mixing operator, withthe corresponding decay amplitude suppressed by an

ε

2 factor,butarestill expectedtobe detectableathighlumi- nositye+e colliders[17–19].

KLOEhasalreadysearchedforradiativeUbosonproductionin thee+eUγ,Ue+e,μ+μprocesses[20,21].The leptonic channelsareaffectedbyadecreaseinsensitivityintheρωregion dueto the dominant branching fractioninto hadrons. For a vir- tualphotonwithq2<1GeV2,thecouplingtothechargedpionis givenbytheproductoftheelectricchargeandthepionformfac- tor,eFπ(q2).TheeffectivecouplingoftheUbosontopionsisthus predictedtobegivenbytheproductofthevirtualphotoncoupling andthekinetic mixingparameter

ε

2eFπ(q2)[19].Beingfarfrom the π+π massthreshold (see Section 3) finite mass effects can be safelyneglected. We thus searched fora short livedU boson

The KLOE detector operates at DANE, the Frascati φ-factory.

DANEis an e+e colliderusually operated ata centerof mass energymφ1.019GeV.Positronandelectronbeamscollideatan angleof

π

25mrad,producingφmesonsnearlyatrest.TheKLOE detectorconsistsofalargecylindricaldriftchamber(DC)[22],sur- rounded by a lead scintillating-fiber electromagnetic calorimeter (EMC) [23]. A superconducting coil around the EMC provides a 0.52 T magnetic field along the bisector of the colliding beams.

Thebisectoristakenasthez axisofourcoordinatesystem.Thex axisishorizontal, pointingtothecenterofthecolliderringsand the y axisisvertical,directedupwards.

The EMC barrel and end-caps cover 98% of the solid angle.

Calorimetermodulesarereadoutatbothendsby4880photomul- tipliers. Energy andtime resolutions are

σ

E/E=0.057/

E(GeV) and

σ

t=57 ps/

E(GeV)100ps, respectively. The drift cham- berhasonlystereowiresandis4 mindiameter,3.3 mlong.Itis builtout ofcarbon-fibersandoperates witha low- Z gasmixture (heliumwith10%isobutane).Spatialresolutionsare

σ

xy150μm and

σ

z2mm.Themomentumresolutionforlargeangletracksis

σ

(p)/p0.4%.ThetriggerusesbothEMCandDCinformation.

Events used inthis analysisare triggered by atleast two energy depositslargerthan50 MeVintwosectorsofthebarrelcalorime- ter[24].

3. Eventselection

We selectedπ+πγ candidates byrequesting eventswithtwo oppositely-chargedtracksemitted atlargepolarangles,50< θ <

130,withtheundetectedISR photon missingmomentumpoint- ing –accordingto theπ+πγ kinematics atsmall polar angles (θ <15,θ >165).Thetrackswererequiredtohavethepointof closestapproachtothez axiswithinacylinderofradius8cmand length15cmcentered attheinteractionpoint.Inordertoensure goodreconstruction andefficiency,we selectedtrackswithtrans- verseandlongitudinalmomentumintherangep>160MeV or p >90MeV,respectively.

Sincetheπ+πγ crosssectionbehavior asafunctionoftheISR photonpolarangleisdivergent(∝1γ4), thetrackandthephoton acceptanceselectionsmake thefinal-stateradiation(FSR)andthe φresonantprocessesrelativelyunimportant,leavinguswithahigh purityISRsampleandincreasingoursensitivitytotheU→ π+π decay[25].

The Monte Carlo simulation of the Mππ spectrum was pro- ducedwiththe PHOKHARAeventgenerator [26] withtheKühn–

Santamaria (KS) [27] pion form factor parametrization and in- cluded a full description of the KLOE detector (GEANFI pack- age [28]). The collected data were simulated including φ decays andleptonicprocessese+e→ +γ(γ),=e,μ.Themainback- groundcontributionsaffectingtheISRπ+πγ samplearetheres- onante+e→ φ→ π+ππ0 processandtheISRandFSRe+e

+γ(γ), =e,μ processes (they will be defined as “residual

(3)

Fig. 1. ExampleofMtrk distributionsforthe Mππ=820–840MeV bin.Measured data arerepresented inblack, simulatedπ+πγ and μ+μγ inred. Simulated μ+μγ + π+πγ inblue.Eventsat theleftoftheverticallinearerejected.(For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

background” inthe following). We reduced their contribution by applying kinematic cuts in the Mtrk–Mππ2 plane, as explained in Refs. [29,30]. M2ππ is the squared invariant mass of the two se- lected tracksinthe pionmasshypothesis whileMtrk isthemass ofthechargedparticles associatedtothetracks,computedinthe equalmasshypothesisandassumingthatthemissingmomentum oftheeventpertainstoasinglephoton.1 DistributionsoftheMtrk variable for data andsimulation are shown in Fig. 1, wherethe Mtrk>130MeV cuttodiscriminatemuonsfrompions isalsoin- dicated.

AparticleIDestimator(PID),L±,definedforeachtrackwithas- sociatedenergyreleasedinEMCandbasedonapseudo-likelihood function,uses calorimeterinformation(sizeandshapeofthe en- ergy depositionsandtime offlight)to suppressradiativeBhabha scatteringevents[29–31].

Electrons deposit their energy mainly at the entrance of the calorimeter while muons andpions tend to have a deeper pen- etration in the EMC. Events with both tracks having L±<0 are identifiedase+eγ eventsandrejected.The efficiencyofthisse- lectionislargerthan99.95%asevaluatedusingmeasureddataand simulatedπ+πγ samples.

After these selections, about 2.107 events are left in the measured datasample. We then applied the sameanalysischain to the Monte Carlo simulated data: most of the selected sam- ple consists of π+πγ events, with residual ISR +γ, =e,μ andφ→ π+ππ0. Fig. 2showsthe fractional components ofthe residualbackground, FBG,individually foreach contributingchan- nelandtheir sum. The residualbackground rises upto about6%

at low invariant masses andto 5% above 0.9 GeV, decreasing to lessthan1%intheresonanceregion,anditisdominatedby

μμγ

eventsinthewholeinvariantmassrange.

A very good description of the

ρ

ω

interference region (see theinsertofFig. 3)wasachievedbyproducingadedicatedsample usingPHOKHARA aseventgenerator withthe Gounaris–Sakhurai (GS) pion form factor parametrization [32]. The generation pro- cessused properly smeared distributions in order to account for the dipion invariant mass resolution(1.4–1.8 MeV). In Fig. 3the measureddataspectrumiscomparedwiththeresultsofthissim- ulationprocess,whichincludestheresidualbackground.

1 Mtrkis computedfrom themeasured momentaofthetwo particles p± as- suming they have the same mass:

√ s−

| p+|2+M2trk−

| p|2+M2trk

2

 − p++ p2

=M2γ=0.

Fig. 2. Fractional backgrounds, normalizedto the π+πγ contribution, from the π+ππ0,e+eγ,andμ+μγchannelsafterallselectioncriteria.

Fig. 3. Comparisonofmeasureddata(bluesquares)andsimulationperformedwith theGounaris–Sakurai|Fπ|2parametrization(redopensquares)fortheMπ πinvari- antmassspectrum.Thefigureinsertshowsindetailtheagreementachievedinthe ρωmixingregion(779–791 MeV).

4. Irreduciblebackgroundparametrizationandestimate

Exceptforthe

ρ

ω

region,weestimatedtheirreducibleback- grounddirectlyfromdata.ForeachUmasshypothesisthedataare fitted ina Mππ intervalcentered at MU and18–20times wider than the Mππ resolution

σ

Mπ π.The backgroundismodeled by a monotonic function using Chebyshev polinomials up to the sixth orderandisestimatedusingthesidebandtechnique,byexcluding fromthefitthedataintheregion±3

σ

Mπ π around MU[20].The procedureisrepeatedinstepsof2MeVinMU.

Fits withthebest reduced

χ

2 areselected ashistograms rep- resenting the background.Forall usedmass intervals, the distri- butions werefound tobe smooth,withno“wiggles”inanymass sub-range. An example ofthe fit procedure isreported inFig. 4.

Fig. 5 shows the distribution of the differences (pulls) between data andthe fittedbackground normalizedto the datastatistical error. Alsoshownisa Gaussianfit ofthisdistribution.The mean andwidthparametersoftheGaussianfitarearoundzeroandone, respectively.

The regionof

ρ

ω

interferenceis notsmooth (see Fig. 3)and then not easy to be fittedwiththe sidebandtechnique. Wethus estimatedthe backgroundinthisregionby usingthePHOKHARA generator with smeared distributions, as explained in Section 3 andshowninFig. 3forthe779–791MeVmassrange.

(4)

Fig. 4. ExampleofaChebyshevpolinomialsidebandfitfortheMU=936MeV hy- pothesis.

Fig. 5. Distributionofthedifferences(pulls)data-backgroundnormalizedtothedata statisticalerror(bluepoints)andrelativeGaussianfit(redcurve).

5. Systematicerrorsandefficiencies

The main systematic uncertainties affecting this analysis are relatedtotheevaluationoftheirreduciblebackground.Astwodif- ferentprocedureswereusedindifferentmassranges,theestimate ofthesystematicerrorisaccountedfortwoindependentsources:

systematicuncertaintiesduetothesidebandfittingprocedure;

systematic uncertainties due to the evaluation of the back- ground with the PHOKHARA generator and to the smearing procedureinthe779–791MeVmassrange.

The evaluation of the systematic uncertainties on the fitted backgroundwas performed by adding in quadrature,bin by bin, thecontributionsduetotheerrors ofthefitandasystematicer- rorduetothefit procedure.Thefirstis obtainedby propagating, foreachfitinterval,thecorrespondingerrorsofthefitparameters.

Thesecondisevaluatedbyvaryingthefitparametersby±1

σ

and computingthemaximumdifference betweenthestandardfitand thefit derived by usingthe modified parameters. Thesystematic errorislessthan1%inmostofthemassrange.

Inthe

ρ

ω

regionthesystematicerroriscomputedbyadding inquadraturethecontributionsduetothetheoreticaluncertainty oftheMonteCarlogenerator(0.5%[26]),thesystematicerrordue totheresidualbackgroundevaluation(0.3%,computedbychanging the analysis cuts within the corresponding experimental resolu- tions),thecontributionofthesmearingprocedure(0.8%, obtained

Fig. 6. Fractionalsystematicerrorontheestimatedbackground.Bluepoints:errors fromthesidebandfitprocedure;blackpoints:errorsestimatedfromthePHOKHARA MonteCarlosimulationfortheρωinterferenceregion.(Forinterpretationofthe referencestocolorinthisfigure,thereaderisreferredtothewebversionofthis article.)

Table 1

Summaryof the systematic uncertaintiesaffecting the π+πγ analysis.

Systematic source Relative uncertainty (%)

Mtrkcut 0.2

Acceptance 0.6–0.1 as Mπ πincreases

Trigger 0.1

Tracking 0.3

Generator 0.5

Luminosity 0.3

PID negligible

Total 0.9–0.7 as Mπ πincreases

Fig. 7. Global analysis efficiency as a function of Mπ π.

byvaryingtheappliedsmearingof±1

σ

),andthesystematicun- certaintyontheluminosity(0.3%[26]).Theresultingtotalsystem- aticerrorisabout1%.

The total systematicuncertainty due to the background eval- uation is shown in Fig. 6. The full list of the systematic effects takenintoaccountissummarizedinTable 1.Theydonotaffectthe irreduciblebackgroundestimate performedwiththesidebandfit- tingtechnique,butpartiallycontributetothebackgroundestimate inthe

ρ

ω

region (seeabove)andenter inthe determinationof the selection efficiency andthe luminosity measurement. Finally, inFig. 7weshowtheglobalanalysisefficiencyasestimatedwith thefull

π

+

π

γ

simulation(PHOKHARAgenerator+GEANFI[28]).

(5)

Fig. 8. Maximum number of U boson events excluded at 90% CL.

Thisincludes contributions fromkinematic cuts, trigger, tracking, acceptance and PID-likelihood effects. The total systematic error ontheglobalanalysisefficiencyrangesbetween0.7%and0.4% as Mππ increases.

6. Upperlimits

We did not observe anyexcess of events withrespect to the estimatedbackgroundwithsignificancelargerthanthreestandard deviations over the whole MU explored spectrum. We thus ex- tractedthe massdependent limitson

ε

2 at90% confidencelevel (CL)bymeansoftheCLStechnique[33].Theprocedurerequiresas inputsthemeasured invariantmassspectrum,theestimatedirre- ducibletotalbackgroundandtheUbosonsignalforeachMππ bin.

Themeasuredspectrumisusedasinputwithoutanyefficiencyor backgroundcorrection.ThesignalisgeneratedvaryingtheUboson masshypothesisinstepsof2 MeV.Ateachstep,aGaussianpeak isbuiltwithawidthcorresponding tothe invariantmassresolu- tionofthedipionsystem.Thesystematicuncertaintiesweretaken intoaccountby performing aGaussiansmearing oftheevaluated backgroundaccordingtotheestimatesinSection5andFig. 6.The resultsofthestatisticalprocedureareshowninFig. 8intermsof thenumberNCLS ofUbosonsignaleventsexcludedat90%CL.

Wecomputedthelimitonthemixingstrength

ε

2 bymeansof thefollowingformula[20,21]:

ε

2

= α



α =

NCLS

eff

·

L

·

H

·

I

,

(1)

where

effistheglobalanalysisefficiency(seeFig. 7), L isthein- tegratedluminosity, H is theradiator function computedatQED NLO corrections with a 0.5% uncertainty [34–37], I is the effec- tive e+eU

π

+

π

cross sectionintegrated overthe single mass bin centered at Mππ=MU with

ε

=1. The uncertainties on H ,

eff, L, and I, propagate to the systematicerror on

ε

2 via eq.(1).Theresultinguncertaintyon

ε

2 islower than1% andhas beentaken intoaccount in the estimatedlimit. Fig. 9showsthe results fromeq. (1) after a smoothing procedure (tomake them morereadable), comparedwithlimits fromother experiments in themassrange0–1 GeV. Our90%CL upperlimiton

ε

2 reachesa maximumvalueof1.82×105at529 MeVandaminimumvalue of1.93×107 at 985 MeV.The sensitivityreduction due tothe

ω

→ π+ππ0 decayisofthesameorderofthestatisticalfluctua- tionsandthusnotvisibleafterthesmoothingprocedure.

Fig. 9. 90%CLexclusionplotforε2asafunctionoftheU-bosonmass(KLOE(4)).The limitsfromtheA1[38]andAPEX[39]fixed-targetexperiments;thelimitsfromthe φDalitzdecay (KLOE(1))[40,41]ande+eUγ processwheretheUbosonde- caysine+eorμ+μ(KLOE(3)andKLOE(2)respectively)[20,21];theWASA[42], HADES[43],BaBar[44]andNA48/2[45]limitsarealsoshown.Thesolidlinesare the limitsfromthemuonandelectronanomaly[15],respectively.The grayline showstheUbosonparametersthatcouldexplaintheobservedaμdiscrepancywith a2σ errorband(graydashedlines)[15].(Forinterpretationofthereferencesto colorinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

7. Conclusions

Weusedanintegratedluminosityof1.93fb1 ofKLOEdatato search for darkphoton hadronicdecays inthe e+eUγ,U→ π+πcontinuumprocess.Nosignalhasbeenobservedandalimit at 90% CL hasbeen set on the coupling factor

ε

2 in the energy rangebetween527and987 MeV.Thelimitismorestringentthan otherlimitsintheρωregionandabove.

Acknowledgements

We warmly thank our former KLOE colleagues for the ac- cess to the data collected during the KLOE data taking cam- paign. We thank the DANE team for their efforts in main- taining low background running conditions and their collabo- ration during all data taking. We want to thank our techni- cal staff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring efficient operation of the KLOE computing facili- ties; M. Anelli for his continuous attention to the gas system and detector safety; A. Balla, M. Gatta, G. Corradi and G. Pa- palino for electronics maintenance; M. Santoni, G. Paoluzzi and R. Rosellini for generaldetectorsupport; C. Piscitelli for his help during major maintenance periods. This work was supported in part bythe EU IntegratedInfrastructure InitiativeHadron Physics Project under contract number RII3-CT-2004-506078; by the Eu- ropean Commission under the Seventh Framework Programme through the ‘Research Infrastructures’ action of the ‘Capacities’

Programme,Call:FP7-INFRASTRUCTURES-2008-1,GrantAgreement No. 227431; by the Polish National Science Centre through the GrantsNos. 2011/03/N/ST2/02652,2013/08/M/ST2/00323,2013/11/

B/ST2/04245,2014/14/E/ST2/00262,2014/12/S/ST2/00459.

References

[1]F.Zwicky,Helv.Phys.Acta6(1933)110–127;

F.Zwicky,Astrophys.J.86(1937)217.

[2]K.Olive,etal.,Reviewofparticlephysics,Chin.Phys.C38(2014)090001.

[3]B.Holdom,Phys.Lett.B166(1985)196.

[4]C.Boehm,P.Fayet,Nucl.Phys.B683(2004)219.

[5]P.Fayet,Phys.Rev.D75(2007)115017.

[6]Y.Mambrini,J.Cosmol.Astropart.Phys.1009(2010)022.

[7]M.Pospelov,A.Ritz,M.B.Voloshin,Phys.Lett.B662(2008)53.

(6)

[25]L.Barzè,etal.,Eur.Phys.J.C71(2011)1680.

[26]H.Czy ˙z,A.Grzelinska,J.H.Kühn,G.Rodrigo,Eur.Phys.J.C39(2005)411.

[27]J.H.Kühn,A.Santamaria,Z.Phys.C48(1990)445.

[43]G.Agakishiev,etal.,HADESCollaboration,Phys.Lett.B731(2014)265.

[44]J.P.Lees,etal.,BaBarCollaboration,Phys.Rev.Lett.113(2014)201801.

[45]J.R.Batley,etal.,NA48/2Collaboration,Phys.Lett.B746(2015)178.

Cytaty

Powiązane dokumenty

Results of the fits to the analyzing power data in dependence of the deuteron scattering angle by use of eq.. Results of the fits to the analyzing power data in dependence of the π

Note that the generated Monte Carlo events were scaled according to the fit to data after preselection and that the sum of all Monte Carlo events remaining after all cuts is equal to

Additionally, the upper limit of the preliminary total cross section was determined for the first time for the ( 4 He–η) bound production in dd → 3 Henπ 0 reaction [15]2. This

In the analysis pre- sented here we have produced an acceptance-corrected Dalitz plot and extracted experimental values for parameters describing the density distribution..

The dominant background sources are normalised either using only data, as in the case of the W +jets background, or using data yields in an appropriate control region (CR) to

This letter reports a first quantitative analysis of the contribution of higher partial waves in the charge symmetry breaking reaction dd → 4 He π 0 using the WASA-at-COSY detector

Distributions of  and R min discriminating variables for six-photon events: data (black points), background simulations (red curves).. (For interpretation of the references to color

A total systematic error on the irreducible background estimate, given by the combination of the corresponding estimated uncertainties for both U -boson decay modes, is also given