• Nie Znaleziono Wyników

A Numerical Procedure for Analysis of W/R Contact Using Explicit Finite Element Methods

N/A
N/A
Protected

Academic year: 2021

Share "A Numerical Procedure for Analysis of W/R Contact Using Explicit Finite Element Methods"

Copied!
31
0
0

Pełen tekst

(1)

Yuewei Ma, Valeri Markine

(Yuewei.Ma@tudelft.nl, V.L.Markine@tudelft.nl)

A Numerical Procedure for

Analysis of W/R Contact Using

Explicit Finite Element Methods

Delft

University of Technology

(2)

Outline

Parametric studies

Research Motivation

W/R Contact FE Model & Results

(3)

Research Motivation

 Background

V

Head Check

b)

Fig 1. Typical defects on a shallow curve

 Two commonly used approaches

 Wheel and Rail (W/R) contact analysis.

a)

Short wave corrugation

Thermal weld

c)

Wear

d)

(4)

Research Motivation

 Challenges in FE Modelling

 Reality

 Rolling frictional

 Efficiency & Accuracy

 Flexibility

 Number of element

 Element quality

 Track conditions (straight, curve)

 Loading conditions (braking ,accelerating)

 Realistic geometries

(5)

An

efficient & flexible

numerical procedure for W/R

rolling

(6)

Outline

Refining Method

Research Motivation

W/R Contact FE Model & Results

Contact set-up

Indicative results

(7)

Fig.2 wheel-rail contact model. a) Schematic diagram; b) FE model – side view;

1640

Z

Y

90

60

O

M

90

solution area

dynamic relaxation area

coarse meshed area

further rolling area

a)

b)

W/R contact FE model:

Axle load: 10 t

Train speed: 140km/h

More details can be found from paper.

Primary

suspension

Lumped

Mass

(8)

W/R contact FE model:

Refining efficiency

Conventional

New developed –

Nested transition mapped hexahedral refining method

Free refining method

Easy-implemented

Poor quality, large quantity

Complicated-control

High quality, small quantity

a)

b)

c)

Number of

elements

200,000

Warning element

25%

Number of

elements

110,000

Warning element

<5%

(9)

b)

a)

c)

d)

W/R contact FE model:

Refining flexibility

Parametric studies >> Contact point location variation.

Fig.3 Contact points variation. a) 5.5mm; b) 2.0mm; c) -3.5mm; d) -5.5mm.

Flexible enough

1) Gauge corner

2) Tread center etc.

(10)

Outline

Refining Method

Research Motivation

W/R Contact FE Model & Results

Contact set-up

Indicative results

(11)

W/R contact FE model:

Contact compatibility

Contact body Target body Springs Target body Contact body

0

s

   

l k

i i i

if l

i

f

n

i

l

i

n

Fig.4 schematic graph of contact interaction

Low stiffness >>

large penetration

High stiffness >>

Numerical instability

Relationship between contact force and penetration

is contact force.

s

f

Where:.

is contact stiffness.

i

(12)

2 i i i i

K

A

k

V

where

: interface stiffness scale factor;

K

i

: bulk modulus;

i

A

:element face area;

i

V

:element volume;

W/R contact FE model:

Contact stiffness

Question:

How deeply are the W/R interaction influenced by

and

element size ?

W/R interaction

Element size

Material properties

(13)

W/R contact FE model:

Varying stiffness scale factor

more stable response.

1.0

Fig.6 Resulting force variation under different interface scale factor

Element size = 1.0mm.

By default:

Notation:

10 scale factors range from 0.3 to 10

0.1

(14)

W/R contact FE model:

Varying element size

a) Element size =

d

b) Element size =

x dd d d d d d s

f

s

f

1

x

x d

Notation:

Fig.7 Schematic graph of element size variation.

a)

b)

2 i i i i

K

A

k

V

f

s

   

l k

i i

n

i 2 2 3

((

) )

(

)

i i

K

k

x d

x d

Contact compatbility function:

x x

f

s

  

l

xd

x

k

i

n

xd

d

l

x

l

Penetration depth:

(15)

a)

W/R contact FE model

Varying elemen size

2.0

Notation:

Fig.8 Reaction force variation under different element size.

a) 1.5*1.5*1.5mm; b) 1.0*1.0*1.0mm; c) 0.5*0.5*0.5mm.

b)

c)

Smaller element size >> high contact stiffness >> Stable W/R interaction.

6 mesh sizes range from 1.7 to 0.5mm

(16)

Outline

Refining Method

Research Motivation

W/R Contact FE Model & Results

Contact stiffness

Indicative results

(17)

Element size = 1mm

2.0

Interface Scale factor

Friction coefficient = 0.5

Traction coefficient = 0.5

Fig.2 wheel-rail contact model – side view;

Indicative Results:

Normal pressure

(a)

(b)

Fig. 9 Rail surface normal contact pressure distribution at origin Z = 0.

a) 3D shaded surface plot; b) 2D Contour plot.

“Realistic” W/R contact pressure

Comparable with literature [1]

(18)

Indicative Results:

Shear pressure

Fig. 10 Rail surface shear pressure distribution and slip-stick area distribution at

origin Z = 0mm. a) 3D shaded surface plot ; b) 2D Contour plot;

a)

b)

The surface shear pressure is mainly distributed at the trailing edge of the contact patch.

Logical !

(19)

Indicative Results:

Slip-Stick area

Fig.11 Rail surface shear pressure distribution and slip-stick area

distribution at origin Z = 0mm. a) Quiver plot; b) Slip-stick area plot.

a)

b)

The observed

slip-adhesion phenomenon

is consistent with the analytical results presented in

[Ref].

(20)

Indicative Results:

Sub-surface stress

Fig.12 Stress distribution in longitudinal-vertical plane at origin Z = 0mm. a) Cutting surface on X-Y Plane; b)

Von-Mises stress on A-A Cutting plane; c) Shear stress on A-A cutting plane; d) Cutting surface on Y-Z Plane;

e) Von-Mises stress on B-B Cutting plane; f) Shear stress on B-B cutting plane

A

B

B

A

a)

d)

b)

e)

c)

f)

(21)

W/R contact FE model

Summary

The developed refining method can significantly reduce the number of both total elements and

warning elements. Meanwhile, flexible enough to account contact point variation(Conformal

contact at gauge corner).

Default contact setting in FE model should be tuned to fit the case of W/R interaction. (

Interface scale factor >1.0; Elemen size <1.0mm )

Realistic W/R contact geometries, rolling frictional interactions .has been considered in

the Dynamic FE model.

Surface pressure distribution, slip-adhesion phenomenon and sub-surface stress/strain

reponse can all be captured.

(22)

Outline

Parametric studies

Research Motivation

W/R Contact FE Model & Results

• Contact point variation

(23)

-5.5mm

-3.5mm

0.0m

m

2.0m

m

5.5m

m

Fig. 14. Resultant interface force variation w.r.t rolling

distance. (Solid line: FY; Dash-dot line: FX; Dashed line FZ).

Parametric study:

Contact point variation

a) -5.5mm

b) -3.5mm

c) 2.0mm

d) 5.5mm

(24)

1393.5 1063.5 962.8 975.6 1066.3 915.9 898.0 867.7 890.6 Maximum normal pressure [MPa]

La te ra l co or dina te [mm ] -5.5 -3.5 -2.0 -1.0 0.0 1.0 2.0 3.5 5.5 Lateral displacement [mm] 709.0 525.4 423.3 432.4 491.9 421.7 385.6 372.4 363.8 Maximum shear pressure [MPa]

La te ra l co or dina te [mm ]

Fig.15 Comparison of the position of contact patches and pressure

distribution of left wheel-rail pair on the variation of wheelset lateral shift.

Parametric study:

(25)

B-B – Plane

VMS stress

B-B – Plane

Shear stress

A-A – Plane

VMS stress

A-A -Plane

Shear stress

-5.5

0.0

5.5

Lateral shift [mm]

Fig. 16. Sub-surface stress variation w.r.t wheelset lateral shifts.

Parametric study:

Contact point variation

(26)

Outline

Parametric studies

Research Motivation

W/R Contact FE Model & Results

• Contact point variation

(27)

0.2

0.4

0.5

0.7

Parametric study:

Friction coefficient variation

Fig. 17 Resultant interface force variation w.r.t rolling distance.

(Solid line: FY; Dash-dot line: FX; Dashed line FZ).

4 friction coefficients range from 0.2 to 0.7

Longitudinal force Fz continuously increasing corresponding to friction coefficient

Vertical force Fy & Lateral force Fx remain the same.

(28)

Shear pressure

Slip-stick area

Friction coefficient YZ – Plane Shear stress YZ – Plane VMS stress

Parametric study:

Friction coefficient variation

Fig. 18. Surface and subsurface stress response under different friction coefficient.

Full slip >>

partial slip

VMS &

Shear stress

>> Surface.

Surface

damage!

(29)

Parametric Studies

Summary

With the increase of friction coefficient, surface damage will take the place of sub-surface

damage.

Contact occurs at gauge corner, large surface pressure and subsurface stress/strain

response are observed. Lateral force will increase because of the contact angle.

(30)

Take into account the wheel/rail profile variations.

Probabilistic studies on different W/R parameters, such as friction

coefficients, material properties etc.

Outlook:

(31)

Cytaty

Powiązane dokumenty

Oprócz symboliki małych liter alfabetu łacińskiego Boecjusz używa liczebników porządkowych „prim um ” i „secundum” jako zmiennych logicznych. Symbolika

Hersyli 30 sierp, miała córkę szczęśliwie; przedwczora krzczono ją i podobno M elanią zwać ją będą; ładna dziecina.. Teraz z Jul­ kiem zajęci jesteśm y

Artykuł umieszczony jest w kolekcji cyfrowej bazhum.muzhp.pl, gromadzącej zawartość polskich czasopism humanistycznych i społecznych, tworzonej przez Muzeum Historii Polski

Или как выразился польский социолог и историк идеи Ежи Шацкий: «В Польше ценятся прежде всего желания и чувства, в меньшей степени - результаты»

Trisoglio (San Girolamo e la vecchiaia, w: Senectus. La vecchiaia nell’antichità ebraica e cristiana, ed. 3: Ebraismo e cristianesimo, Bologna 2007, 479-513), au- tor

This paper distinguished between companies using storytelling in other media to tell about their sustainable packaging, and companies using their packaging to

Tym, którzy doma- gają się nowej scholastycznej teologii opiera- jąc ją na nowoczesnej filozofii, można prze- ciwstawić innych, odpowiadających, że jest tylko jedna