• Nie Znaleziono Wyników

An analysis of ship motions and heeling in the following sea

N/A
N/A
Protected

Academic year: 2021

Share "An analysis of ship motions and heeling in the following sea"

Copied!
16
0
0

Pełen tekst

(1)

Sub-committee on S a f e t y o f P i s h i n g V e s s e l o , t h e 1 0 t h S e s s i o n

AN ANALÏSIS OP SHIP MOTIOHS AND HEELING I H THE POLLOWIHG SEA

V — / . •

-S u b m i t t e d by t h e d e l e g a t i o n o f t h e U-S-SR

O

(2)

The p r o h l e m o f s h i p ' s s a f e t y i n f o l l o w i n g sea c o n d i t i o n s i s o f a complex n a t u r e . There have been two t r e n d s w i t h i n t h e framework o f t h i s p a r t i c u l a r s u b j e c t t h e f o r m e r o f w h i c h i s concerned w i t h t h e s t u d y o f t h e r e s t o r i n g moment.

The r e s t o r i n g moment v a r i e s a c c o r d i n g t o t h e s h i p ' s p o s i t i o n on t h e wave and i s a t i t s minimum w i t h t h e m a i n frame r i g h t a t t h e c r e s t o f t h e wave. T h i s , however, does n o t e x h a u s t t h e p r o b l e m o f s a f e s a i l i n g i n a f o l l o w i n g sea.

P r a c t i c a l s a i l i n g as w e l l as r e s e a r c h show t h a t t h e r e a r e two d i s t i n c t modes o f s h i p ' s d i r e c t i o n a l m o t i o n i n t h e f o l l o w i n g sea:

s h i p m o t i o n a t a mean speed a p p r o a c h i n g t h a t I n calm w a t e r ; s h i p m o t i o n w i t h t h e wave, when t h e f o l l o w i n g wave i m p a r t s t h e s h i p i t s own speed c a u s i n g i t , f o r a c e r t a i n p e r i o d o f t i m e , t o p r e s e r v e i t s p o s i t i o n unchanged w i t h r e g a r d t o t h e wave p r o f i l e . A s h i p d r i v e n by t h e f o l l o w i n g wave e x p e r i e n c e s , as a g e n e r a l r u l e , d i r e c t i o n a l i n s t a b i l i t y p o s s i b l y r e s u l t i n g i n b r o a c h i n g accompanied by s u b s t a n t i a l h e e l i n g . C o n s i d e r a b l e h e e l i n g may a l s o be e x p e r i e n c e d w h i l e man-e u v man-e r i n g i n t h man-e c o n d i t i o n s o f a f o l l o w i n g sman-ea. S t u d i e s concerned w i t h yawing o r s h i p ' s m a n e u v e r i n g i n a f o l l o w i n g sea and t h e h e e l i n g produced t h e r e b y make up t h e second t r e n d o f e f f o r t i n s e c u r i n g s a f e t y s a i l i n g i n f o l l o w i n g sea c o n d i t i o n s .

T h i s l a t t e r group o f problems was I n i t i a l l y s t u d i e d by K.Davidson (Ref. 1 ) and O.Grim ( R e f . 2 ) who c o n s i d e r e d d i r e c t i o n a l

(3)

: a b H i t y and d i r e c t i o n a l m o t i o n o f a s h i p . The c o m p l i c a t e d Lture o f t h e s e phenomena o b v i o u s l y a c c o u n t s f o r t h e f a c t l a t s i n c e t h e t i m e o f t h e s e e a r l y p u b l i c a t i o n s t h e p r o b l e m

ken as a whole has n o t been c o n c l u s i v e l y s o l v e d , w h i l e r t a i n d e d u c t i o n s f r o m t h e s t u d y o f i t a s e p a r a t e a s p e c t s t e n appear q u e s t i o n a b l e b e i n g b u i l t on u n j u s t i f i e d assumpt-n s .

The p r e s e n t paper p r o v i d e s a b r i e f s t a t e m e n t o f c e r t a i n s u i t s f r o m t h e s t u d y o f s h i p m o t i o n s i n a r e g u l a r f o l l o w i n g away, o b t a i n e d by D.M.Ananyev and Yu.L.Makov o f t h e K a l i n i n -ad T e c h n i c a l I n s t i t u t e f o r F i s h e r i e s .

ïor a t h e o r e t i c a l s t u d y o f t h e p r o b l e m o f d i r e c t i o n a l t i o n and y a w i n g a system o f d i f f e r e n t i a l e q u a t i o n s has been ed:

^

"

- "

VH"'. ^ ^ S i n ( ^ r

-Mi-K^S^

^'n^^'K^^^-.-X-^

K S i n C g r - 5,) ( 1 )

i r e m - mass o f s h i p ,

}(^,}Cy - c o e f f i c i e n t s o f added masses, - a n g u l a r y a w i n g v e l o c i t y ,

X.y.Z - o r t h a g o u a l c o o r d i n a t e s o f a r i g h t - h a n d e d

stem o f body axes, moving w i t h t h e s h i p ,

^ 1 ' "^2 - speed o f s h i p a l o n g t h e axes x and y ( P i g . l ) s p e c t i v e l y ,

~ V C o s

Ji

V ,

(2)

- -V Sin p ^ -vp ,

- mass moment o f i n e r t i a about t h e v e r t i c a l c e n t r e a x i s ,

- added mass moment about t h e same a x i s .

The r i g h t - h a n d p a r t o f t h e e q u a t i o n g i v e s f o r c e s ' a c t i n g on t h e s h i p and moments about t h e v e r t i c a l a x i s p a s s i n g t h r o u g h the s h i p ' s c e n t r e o f g r a v i t y . TheYo and M „ s t a n d f o r com-ponents due t o a n g u l a r speed VJ^ and d r i f t a n g l e p . I n d e f a u l t of r e l i a b l e d a t a p e r t a i n i n g t o t h e e f f e c t o f a seaway on t h a t f o r c e and moment t h e y a r e assumed t o be t h e same as f o r c a l m w a t e r and a r e d e t e r m i n e d by t h e c o n v e n t i o n a l p r o c e d u r e adopted

f o r t h e t h e o r y o f s t e e r i n g .

I n c o n s i d e r i n g s h i p ' s maneuvering t h e Yo "^^^ a l s o i n c l u d e components caused by changes I n r u d d e r a n g l e . The f i r s t e q u a t i o n i n c l u d e s p r o p u l s i o n t h r u s t T and mean r e s i s t a n c e R b o t h dependant on t h e s h i p ' s speed and t h e e n g i n e o p e r a t i o n r e g i m e , t h e s e f o r c e s b e i n g l i k e w i s e assumed t h e same as f o r calm w a t e r . I n t h i s case t h e R r e p r e s e n t s t o w i n g r e s i s t a n c e .

The e q u a t i o n f i n a l l y i n c l u d e s d i s t u r b i n g f o r c e s made up of a component d e t e r m i n e d by t h e P r o u d e - K r y l o v h y p o t h e s i s and the second d i f f r a c t i o n component caused by t h e f a c t t h a t t h e wave i s r e f l e c t e d by t h o s h i p . The f o r c e d e t e r m i n e d by t h e P r o u d e - K r y l o v h y p o t h e s i s depends, a t a g i v e n wave, o n l y on t h e i n s t a n t a n e o u s p o s i t i o n o f t h e s h i p w i t h r e s p e c t t o t h e wave. For a f i r s t a p p r o x i m a t i o n the d i f f r a c t i o n component i s d e t e r -mined by t h e same f a c t o r s . I n t h i s case a m p l i t u d e s Jf^.T^.M^j^,

(4)

depend on s h i p ' s d i m e n s i o n s and t h e l e n g t h t o h e i g h t p r o p o r t -i o n s o f t h e wave, as w e l l as on t h e course a n g l e (p w -i t h r e s p e c t t o t h e d i r e c t i o n o f t h e waves (see P i g . l ) . The s h i p ' s p o s i t i o n w i t h r e s p e c t t o t h e wave p r o f i l e can be expressed by means o f phase q w h i c h I s : ? - ^ ( 3 ) where X, - w a v e l e n g t h , OC^ .- d i s t a n c a f r o m a c e r t a i n f i x e d wave t r o u g h {MM^) t o t h e s h i p ' s c e n t r e o f g r a v i t y ( P i g . l ) . S i n c e we a r e m o s t l y i n t e r e s t e d i n an a n a l y s i s o f s h i p m o t i o n s on a l o n g wave, when t h e l a t t e r u s u a l l y surpasses t h e s h i p , p o s i t i v e d i r e c t i o n o f t h e CC^ a x i s i s o p p o s i t e t o t h e d i r e c t -I o n o f t h e wave. An asymmetry o f t h e s h i p w i t h r e s p e c t t o t h e m a i n frame g i v e s t h e i n i t i a l phases 5^,6^ • C a l c u l a t i o n s have shown t h a t i n t h e case o f s t a n d a r d h u l l forms t h e 5^ and öj phases may be n e g l e c t e d , w h i l e 0^ s h o u l d be talcen i n t o a c c o u n t o n l y w i t h c o n s i d e r a b l e t r i m .

An a n a l y s i s o f e x p e r i m e n t a l d a t a has shown t h a t i n a

l o n g i t u d i n a l d i s t u r b i n g f o r c e t h e e f f e c t o f waves r e f l e c t e d f r o m t h e s h i p may be n e g l e c t e d and t h i s f o r c e can be f o u n d by t h e P r o u d e K r y l o v h y p o t h e s i s . I n t h e case o f a t r a n s v e r s e d i s t u r b -i n g f o r c e and a yaw moment ("^ and ) n e g l e c t o f t h e d i f f r a c t i o n component w i l l u n d e r e s t i m a t e t h e f o r c e and moment c o n s i d e r a b l y . T h e r e f o r e , w i t h a t r a n s v e r s e d i s t u r b i n g f o r c e and a yaw moment d i f f r a c t i o n components a r e t a k e n i n t o a c c o u n t .

I t s h o u l d be mentioned t h a t i n t h e p r a c t i c a l a p p l i c a t i o n 0 of m o t i o n e q u a t i o n s ( l ) t h e e f f e c t s o f p i t c h and h e a l were n e g l e c t e d . The system o f e q u a t i o n s ( l ) i s l a r g e l y n o n l i n e a r , w h i c h c o m p l i c a t e s i t e s o l u t i o n . The e a s i e s t f o r s o l u t i o n i s t h e p r o b l e m o f d i r e c t i o n a l m o t i o n w i t h t h e wave, i . e . w i t h <p = 0 and w i t h no yaw. I n t h i s case we o n l y have t o d e a l w i t h t h e f i r s t o f t h o • two e q u a t i o n s w h i c h becomes: ma-^kj^ - T-R^X^Sin^ . ( 5 ) The n o n l i n e a r e q u a t i o n ( 3 ) may be s o l v e d g r a p h i c a l l y or n u m e r i c a l l y ( R e f . 3 i 7 ) . F i g . 2 shows c o m p u t o r p r o c e s s e d r e s u l t s ( R e f . 7 ) o f d i r e c t -i o n a l m o t -i o n o f a s m a l l model w -i t h t h e f o l l o w -i n g e l e m e n t s : A = 5.25 k g . ; L = 0.80m; -g" =5-0; " ^ - 2 , 5 ; = 0.64; C„, = 0.80; = 0.84. The model m o t i o n s i n P i g . 2 a r e r e p r e s e n t e d by s o - c a l l e d phase t r a j e c t o r i e s , i . e . a dependence o f speed upon s h i f t .

To r e p r e s e n t s h i f t use has been made o f t h e model phase w i t h r e s p e c t t o t h e wave q ( i n r a d i a n s ) . On t h e v e r t i c a l ' a x i s i s g i v e n , i n a n o n - d i m e n s i o n a l f o r m , t h e r a t e o f s h i p ' s

l a g b e h i n d t h e wave:

where C - speed o f wave.

(5)

ïor a B M p w i t h a z e r o speed U = 1 ; f o r m o t i o n a t a speed e q u a l t o t h e speed o f t h e wave C/ = 0. T i n e a l o n g phase t r a j e o t o r l o s aoorues i n t h e d i r e c t i o n i n d i c a t e d by a r r o w s . F i g . 2 r e f e r s t o t h e oase o f model m o t i o n s on r e g u l a r f o l l o w ^ i n g wares w i t h a l e n g t h e q u a l t o t h e s h i p ' s l e n g t h ( A = i ) , w h i l e t h e h e i g h t i s 1/20 o f t h e wave l e n g t h ( = 2 0 ) .

P i g s . 2a, 2b, 2c show model m o t i o n s a t a p r o p u l s i o n t h r u s t s e c u r i n g , i n calm w a t e r , a l o w e r speed t h a n t h e speed o f t h e wave, t h e Proude number, i n calm w a t e r , b e i n g 0.25, 0.30, O.35 r e s p e c t l T e l y .

The diagrams l u P i g . 2 d ( P r . = O.4O) show m o t i o n s w i t h a p r o p u l s i o n t h r u s t e q u i v a l e n t , i n calm w a t e r , t o a speed e q u a l t o t h e speed o f t h e ware.

F i n a l l y , P i g s . 2e and 2 f a p p l y t o t h e case when t h e model speed I n calm w a t e r exceeds t h a t o f t h e ware ( P r . = 0.45, O.5O). The m o t i o n r e g i m e I n calm w a t e r i s shown by a d o t t e d l i n e i n P i g . 2 . The phase o f t h e c a p t u r e d ( e n t r a p p e d ) s h i p i s d e t e r m i n e d by t h e e q u a t i o n : S i n y " - - 2 1 ^ , ( 5 ) § w h i c h can be e a s i l y d e r i v e d f r o m . e q u a t i o n ( 3 ) . The l a t t e r e q u a t i o n c o r r e s p o n d s t o two e q u i l i b r i u m p o s i t -i o n s one o f w h -i c h ( cf -i n P -i g . 2 ) -i s s t a b l e , w h -i l e t h e o t h e r ( ^ * ) I s u n s t a b l e . I n t h i s case, when t h e model's main frame i s on t h e f o r w a r d s l o p e o f t h e wave and w i t h a Froude number

< 0.40 i n calm w a t e r we o b t a i n a p o s i t i o n o f e t a b l e e q u i l i b r l i v a and, c o n v e r s e l y , an u n s t a b l e p o s i t i o n i s o b t a i n e d w i t h t h e m a i n frame on t h e backward s l o p e . W i t h F r . > 0 , 4 0 we g e t an o p p o s i t e p i c t u r e . Two s t a b l e regimes o f s h i p m o t i o n s a r e p o s s i b l e i n f o l l o w -i n g sea c o n d -i t -i o n s :

1. M o t i o n a t a speed a p p r o a c h i n g t h a t f o r calm w a t e r cond i t i o n s ancond w i t h p e r i o cond i c a l speecond changes. T h i s r e g i m e o f s u r g -i n g m o t -i o n s -i s -i n d -i c a t e d -i n P -i g . 2 by a dot-and-dash l -i n e .

2. Ship m o t i o n a t a speed synchronous w i t h t h e wave ( e n -t r a p p e d c o n d i -t i o n ) i s r e p r e s e n -t e d by ( J * p o i n -t s i n -t h e d i a g r a m .

An a n a l y s i s o f t h e diagrams l e a d s t o t h e c o n c l u s i o n t h a t the c o n d i t i o n s f o r any o f t h o s e s t a b l e regimes a r e d e t e r m i n e d not m e r e l y by t h e f o r c e s b u t a l s o by t h e i n i t i a l m o t i o n c o n d i t -i o n s . W -i t h F r . = 0.25 ( P -i g . 2 a ) t h e c o r r e l a t -i o n o f f o r c e s -i a s u c h t h a t t h e model can n e v e r V c a p t u r e d by t h e wave. W i t h P r . = O.3O the model i s swung i n t o one o f t h e two s t a b l e m o t i o n r e g i m e s a c c o r d i n g t o t h e i n i t i a l c o n d i t i o n s ( i . e . t h e i n i t i a l <J and

U c o m b i n a t i o n ) . The g" and U c o m b i n a t i o n zone where t h e s h i p

i s i n v a r i a b l y e n t r a p p e d by t h e wave i s shaded i n P i g . 2 b . W i t h Fr.= 0.35 t h e p r o p u l s i o n t h r u s t i s s t r o n g enough t o r e n d e r t h e o h i p c a p t u r e d by t h e f o l l o w i n g wave no m a t t e r what t h e i n i t i a l c o n d i t i o n s may be ( P i g . 2 c ) . When t h e model has a t e n d e n c y t o move f a s t e r t h a n t h e wave t h e p i c t u r e i s q u a l i t a t i v e l y t h e same. The case o f F r . = 0.45 ( F i g . 2 e ) i s s i m i l a r t o t h a t o f

of F r . = 0.50

F r . = 0.35, w h i l e t h e m o t i o n regimes'^remind t h o s e o b t a i n i n g w i t h F r . =

(6)

The same model hao been used t o s t a g e an e x p e r i m e n t w i t h d i f f e r e n t w a v e l e n g t h s and w i t h = 1/25 ( E e f. 8 ) . P i g .3 shows an i n s t a n c e o f e x p e r i m e n t a l d a t a f o r 3^= 1-75 and a p r o p u l s i o n t h r u s t e q u i v a l e n t t o Pr.= 0.43 i n calm w a t e r . As i s seen i n Pig.3b t h e model under t e s t ( c o n t i n u o u s l i n e ) i s c a p t u r e d by

the wave; t h e d o t t e d l i n e here shows c a l c u l a t e d d a t a . The d i a -gram p r o v i d e s a c l e a r i n s t a n c e o f f a i r l y s a t i s f a c t o r y c o i n c i d e n c e ' o f b o t h e x p e r i m e n t a l and c a l c u l a t e d r e s u l t s .

Of m a j o r i m p o r t a n c e , w i t h i n t h e scope o f t h e p r o b l e m under s t u d y , I s t h e d e t e r m i n a t i o n o f b o u n d a r y v a l u e s o f wave elements and t h e engine o p e r a t i o n r e g i m e , w h i c h p r o v i d e a p o i n t of d i v i s i o n between t h e m o t i o n r e g i m e s o f a c a p t u r e d s h i p and t h o s e a t a mean speed b e i n g o t h e r t h a n t h e speed o f t h e wave. The engine o p e r a t i o n i s c h a r a c t e r i z e d by speed o r t h e Froude number i n calm w a t e r , and 3 0 t h e s e b o u n d a r i e s a r e e a s i e s t t o be shown g r a p h i c a l l y I n - c o o r d i n a t e s .

The l i g h t e r and d a r k e r s h a d i n g i n P i g s . 4 and 5 denote two entrapment zones b e i n g d i f f e r e n t i n n a t u r e and o b t a i n e d by c a l c u l a t i n g phase t r a j e c t o r i e s ( H e f . 7 ) :

1 . Zone One i n w h i c h entrapment o c c u r s o n l y under c e r t a i n i n i t i a l c o n d i t i o n s ( l i g h t e r s h a d i n g ) . The b o u n d a r i e s o f t h i s ^ zone a r e d e t e r m i n e d by t h e s t a t i c c o n d i t i o n (5) ofSin5r*= 1 .

2. Zone Two where e n t r a p m e n t o c c u r s i n v a r i a b l y , I . e . under any i n i t i a l c o n d i t i o n s ( d a r k e r s h a d i n g ) .

C i r c l e s i n F i g . 4 show e x p e r i m e n t a l d a t a , t h e b l a c k ones s i g n i f y i n g entrapment and t h e b l a n k ones an absence o f same. W i t h i n t h e zone where entrapment t a k e s p l a c e o n l y under c e r t a i n I n i t i a l c o n d i t i o n s b o t h k i n d s o f m o t i o n r e g i m e s a r e

1 0

p o s s i b l e , v i z . e n t r a p m e n t and s u r g i n g a t a speed a p p r o a c h i n g t h a t f o r calm w a t e r c o n d i t i o n s .

I n t h i e case, however, w i t h = 1.0 and F r . = O.JO, f o r i n s t a n c e , ( P i g . 2 b ) a s e l f - p r o p e l l e d s h i p c a n n o t be c a p t u r e d by t h e wave ( s i n c e i n p i c k i n g up speed t h e phase t r a j e c t o r i e s r e p r e s e n t i n g t h i s p r o c e s s a r e always above t h e d o t - a n d - d a s h l i n o d e n o t i n g s u r g i n g - P i g . 2 b ) and so cannot e n t e r t h e shaded zone b u t w i l l m a i n t a i n s e t s u r g i n g m o t i o n s .

As t h e s h i p swings o u t o f e n t r a p m e n t t h e p r o c e s s changes. I f a c a p t u r e d s h i p t h a t had been moving, b e f o r e e n t r a p m e n t , a t a Froude number F r . = 0.40, f o r i n s t a n c e , ( P i g . 2 d ) d r o p s i t s engine speed t o o b t a i n F r . = O.3O i n calm w a t e r , t h e n i t s m o t i o n s w i l l be d e s c r i b e d by t h e phase t r a j e c t o r i e s i n P i g . 2 b . A t t h e f i r s t moment t h e i n i t i a l m o t i o n c o n d i t i o n s w i l l r e m a i n t h o

same, i . e . { 7 = 0 and = q* = 0 ( P i g . 2 d ) . Tho phase ttrajeotory p r o c e e d i n g f r o m t h i s p o i n t i n P i g . 2 b i s shown by a d o t t e d l l i i e . I t always r e m a i n s w i t h i n t h e shaded zone and, hence, t h e s h i p w i l l c o n t i n u e b e i n g e n t r a p p e d , t h o u g h s h i f t e d t o a n o t h e r p o i n t on t h e same wave ( q*= 1.5, P i g . 2 b ) . A f t e r d r o p p i n g speed t h e s h i p w i l l r e m a i n e n t r a p p e d as l o n g as t h e P r . v a l u e i s i n t h e f i r s t zone ( F i g s . 4 , 5 ) .

Thus, i n e s t i m a t i n g t h e p o s s i b i l i t y o f a s h i p becoming c a p t u r e d by t h e wave we a r e c h i e f l y i n t e r e s t e d i n t h o b o u n d a r i e s o f t h e second zone, whoreas i n t h e case o f t h e s h i p b r e a k i n g l o o s e f r o m e n t r a p m e n t t h e b o u n d a r i e s o f t h e f i r s t zone appear the more i m p o r t a n t , s i n c e t h o s e a r e t h e b o u n d a r i e s t h a t g i v e an i d e a o f how f a r t h e s h i p ' s speed i s t o be r e d u c e d t o o b t a i n

(7)

f r e e d o m f r o m e n t r a p m e n t . F i g . 5 showa, f o r i n s t a n c e , t h a t w i t h

= 1.25 t h e s h i p cannot g e t f r e e f r o m e n t r a p m e n t even i f

the engine i s a l t o g e t h e r s t o p p e d .

The h o u n d a r i e s o f Zone Two where entrapment i s u n a v o i d a b l e

can a l s o be f o u n d w i t h o u t p l o t t i n g phase t r a j e c t o r i e s b u t f r o m

an a n a l y s i s o f s u r g i n g s t a b i l i t y . W i t h i n t h e zone o f i n e v i t a b l e

entrapment under any i n i t i a l m o t i o n c o n d i t i o n s t h e s u r g i n g i s

u n s t a b l e and s e t s u r g i n g m o t i o n s cannot t a k e p l a c e . T h e r e f o r e , t h e s t a b i l i t y boundary f o r s u r g i n g m o t i o n s i s t h e boundary o f t h e zone i n w h i c h e n t r a p m e n t c o n s t a n t l y o c c u r s . Set s u r g i n g m o t i o n s (shown by a d o t - a n d - d a s h l i n e i n P i g . 2 ) a r e expressed m a t h e m a t i c a l l y t h u s : ^ - 6 t + A g - , ( 6 ) where 0 - f r e q u e n c y o f e n c o u n t e r w i t h t h e wave w h i c h i s : ö - 6 „ - . ^ ^ „ . ( T ) 0 g - f r e q u e n c y o f t h e wave A g - a d d i t i o n a l phase e x p r e s s i n g s e t o s c i l l a t i o n s w i t h a p e r i o d ^ w i t h r e s p e c t t o movement a t a mean speed .

F o r a Judgment o f s e t s u r g i n g m o t i o n s we need t h e s o l u t i o n o f e q u a t i o n ( 5 ) i n t h e f o r m o f ( 6 ) . Ae i s seen f r o m Ref.5 t h e p r o b l e m o f e n t r a p m e n t by t h e f o l l o w i n g wave can be s a t i s f a c t o r i l y s o l v e d by l i n e a r i z i n g t h e d i f f e r e n c e o f r e s i s t a n c e and p r o -p u l s i o n t h r u s t . Here we a -p -p l y t h i s method t o e s t i m a t e s u r g i n g by assuming: 12 F o r s i m p l i f i c a t i o n l e t - u s f u r t h e r assume A^ t o be s m a l l and g e t an a p p r o x i m a t i o n : S i n ( ö t + A g ) - A g • C o s 0 t = 1 - S i n O t . Then t h e o r i g i n a l e q u a t i o n ( 3 ) w i l l become a M a t h i e u e q u a t i o n where A g i s a f u n c t i o n . The s t a b i l i t y o f s o l v i n g a M a t h i e u e q u a t i o n i s e x p l o r e d b y t h e a p p r o p r i a t e m a t h e m a t i c a l methods. Note t h a t t h e above e q u a t i o n ( 9 ) b e i n g o n l y an a p p r o x i m a t

-i o n t h e mean speed -i n a f o l l o w -i n g sea o b t a -i n e d by t h -i s . m e t h o d ^

does n o t d i f f e r f r o m t h e mean speed i n calm w a t e r .

The s t a b i l i t y o f s u r g i n g m o t i o n s i s d e t e r m i n e d b y t w o p a r a m e t e r s : „ X^ ( 1 0 )

^ ' p m ( i

-^kj

Uo'

p m ( l f / c j U,

a(R-T)

av

( 1 1 ) where t h e d e r i v a t i v e o f d i f f e r e n c e b e t w e e n a t o w i n g r e s i s t a n c e and p r o p u l s i o n t h r u s t c a n be f o u n d b y g r a p h i c d i f f e r e n t i a t i o n and by t a k i n g i n t o a c c o u n t t h e s h i p ' s speed i n c a l m w a t e r . C7

= I

1 - ( 1 2 ) 13

(8)

The r e s u l t s o f e x p l o r i n g s t a b i l i t y a r e r e p r e s e n t e d by a d i a g r a m I n P i g . 6 w h i c h , i n t h e f o r m o f H—f(Q), expresses the s t a b i l i t y b o u n d a r i e s , i . e . t h e b o u n d a r i e s o f t h e zone where entrapment always t a k e s p l a c e . Tho zone i n . w h i c h entrapment always accure i s shaded. The c o n c l u s i o n euggests i t s e l f t h a t t h e d i a g r a m I n P i g . 6 i s a p p l i c a b l e t o a l l k i n d o f s h i p s and so may s e r v e as a u n i v e r s a l diagram o f s u r g i n g s t a b i l i t y .

I n P i g . 5 t h e dot-and-dash l i n e shows t h e entrapment zone d e t e r m i n e d by t h i s u n i v e r s a l s t a b i l i t y d i a g r a m . The s t a b i l i t y d i a g r a m I n P i g . 6 i s o b t a i n e d by t h e use o f e x p r e s s i o n ( 9 ) . I f i n s t e a d o f e x p r e s s i o n ( 9 ) a more e x a c t e x p r e s s i o n i s t a k e n we o b t a i n a more e x a c t f o r m o f diagram and t h e b o u n d a r i e s ^ f en-trapment zone 'which a p p r o a c h t h o s e f o u n d f r o m computor-processed d a t a o f s h i p m o t i o n s .

Tho use o f t h e s t a b i l i t y d i a g r a m makes i t p o s s i b l e , a l t h o u g h n o t w i t h o u t a c e r t a i n degree o f e r r o r , t o d e t e r m i n e t h e b o u n d a r -i e s o f t h e entrapment zone t h r o u g h c o n v e n t -i o n a l c a l c u l a t -i o n methods w i t h o u t r e s o r t t o a computer. Entrapment o f t h e s h i p by a f o l l o w i n g wave I s t h e f i r s t s t a g e o f t h e p r o c e s s . Under t h e s e c i r c u m s t a n c e s t h e s h i p has g e n e r a l l y l i t t l e d i r e c t i o n a l s t a b i l i t y , w h i c h i s n a t u r a l l y f o l l o w e d by t h e second s t a g e , a t u r n on t h e wave accompanied by h e e l i n g .

I f t h o e f f e c t o f h e e l on t h e s h i p ' s m o t i o n i n a h o r i z o n t a l p l a n e be n e g l e c t e d , t h e n t o c a l c u l a t e t h e s h i p ' s t u r n use can be made o f a system o f e q u a t i o n s ( l ) , and t o f i n d t h e h e e l i n g a n g l e we can use t h e e q u a t i o n ( H e f . 6 ) :

h e e l i n g a n g l e ,

i n e r t i a moment o f t h e s h i p w i t h r e s p e c t t o t h e l o n g i t u d i n a l c e n t r e a x i s OX,

added i n e r t i a moment,

arm o f added mass w i t h r e s p e c t t o 0 * a x i s , a m p l i t u d e o f d i s t u r b i n g moment w i t h r e s p e c t t o

OX a x i s ,

r i g h t i n g l e v e r ,

arm o f l a t e r a l f o r c e Y „ caused b y d r i f t and s h i p ' s t u r n w i t h r e s p e c t t o OX a x i s ,

damping c o e f f i c i e n t p r o p o r t i o n a l t o t h o speed squaxed.

The f o l l o w i n g i s an i n s t a n c e o f some c o m p u t o r - p r o c e s s e d . e s u l t s ( K e f . 6 ) i n c a l c u l a t i n g t h e yaw and h e e l o f a cargo s h i p w i t h t h e s e e l e m e n t s :

^ = 1 5 1 0 t . ; X = 60.4m; B = X O m , c i = 3 . 3 . ; = 0.690;

C^= 0.815; C^- 0.965.

The O b j e c t o f c a l c u l a t i o n s was t o f i n d t h e yaw caused b y an i n i t i a l t r a n s v e r s e i m p u l s e w i t h t h o r u d d e r a m i d s h i p s . M t h e

. t h e s h i p was assumed c a p t u r e d by t h o f o l l o w i n g i n i t i a l moment t h e s h i p was as

. a v e . The s h i p ' s speed i n calm w a t e r was 15.5 k n o t s ( P r . = 0 . 3 2 7 ) .

where 0

K

M^^

QZ

(9)

-The d i s - t u r b i n g f o r c e s and moments were d e t e r m i n e d by t a k i n g i n t o account t h e d i f f r a c t i o n a l p a r t except t h e l o n g i -t u d i n a l f o r c e f o r w h i c h -t h i e member was n o -t i n -t r o d u c e d . The d i f f r a c t i o n component was c a l c u l a t e d a p p r o x i m a t e l y by t h e s t r i p t h e o r y methods.

The c a l c u l a t i o n f o r m u l a e f o r d i f f r a c t i o n components a r e r a t h e r b u l k y when s t r i p t h e o r y t e c h n i q u e s a r e used, so we suggest s i m p l e r dependences w h i c h y i e l d s i m i l a r , i f somewhat l o w e r v a l u e s i n comparison w i t h t h o s e o b t a i n e d t h r o u g h t h o a t r i p t h e o r y procedure ( R e f . 4 ) :

where Y„. and M^^ a r e a m p l i t u d e s a c c o r d i n g t o t h e F r o u d e -K r y l o v h y p o t h e s i s .

As can be seen f r o m t h e above f o r m u l a e ( 1A) wave d i f f r a c t -i o n a d d -i t -i o n s a r e a p p r o x -i m a t e d t h r o u g h t h e added mass and I n e r t i a moment. Since t h e s e a d d i t i o n s account f o r 50 - 80 p o r c e n t o f t h e a m p l i t u d e o b t a i n e d by t h e F r o u d e - K r y l o v method tho d i f f r a c t i o n components o f a t r a n s v e r s e f o r c e and t h e yaw-i n g moment s h o u l d n o t be n e g l e c t e d .

The o t h e r f o r c e s i n e q u a t i o n s ( l ) and ( I 3 ) were assumed the same as t h o s e f o r calm w a t e r . The r e s t o r i n g moment was i n t r o d u c e d by t h e m e t a c e n t r i c f o r m u l a .

16

The r e s u l t s o f c a l c u l a t i o n s i n t h e csiBe o f a wave w i t h t h e elements = 0.828, = l / 2 0 a r e r e p r e s e n t e d i n P i g s . 7 and 8 where t h e s h i p m o t i o n parameters a r e g i v e n w i t h r e s p e c t to t h e d i m e n s i o n l e s s p a t h .S" w h i c h i s r e l a t e d t o speed by t h e e x p r e s s i o n : - • . (15) P i g .7 shows t h e f o l l o w i n g s h i p m o t i o n p a r a m e t e r s : phase w i t h r e s p e c t t o a f i x e d wave t r o u g h {q), d i r e c t i o n a l a n g l e w i t h r e s p e c t t o t h e wave (Cp ) , d r i f t a n g l e ip),

JL - r e l a t i o n o f s h i p ' s speed t o t h e speed o f t h e wave;

c

Q - d i m e n s i o n l e s s a n g u l a r speed f o u n d by t h e f o r m u l a :

Q - W ^ ^ • ( 1 6 )

The d o t t e d l i n e i n P i g .7 shows t h e s h i p ' s speed i n c a l m w a t e r ( ) •

A l l a n g l e s a r e expressed i n r a d i a n s .

The i n i t i a l i m p u l s e i n t h i s p a r t i c u l a r i n s t a n c e was a p p l i e d t o t h e a f t p a r t and had g i v e n t h e s h i p t h e I n i t i a l d r i f t a n g l e

Jb^ = 1° and t h e i n i t i a l a n g u l a r speed = 0 . 1 3 7 5 .

As can be seen f r o m P i g .7 t h e s h i p swings o u t o f s y n c h r o -nism w i t h t h e wave, a t f i r s t s l o w l y and t h e n more and more r a p i d l y ( t h e change o f g and U ) and t u r n s b r o a d s i d e a l o n g

the wave, f i r s t on i t s f o r w a r d s l o p e ( u p t o ^ = 1.57) and t h e n on t h e backward s l o p e o f t h e f i r s t and t h e s u c c e s s i v e waves.

(10)

« . .... . . a .

... ^

h . . . . „ „ „ ^ „ ^ „ ^ ^ ^ ^^^^ ^^^^^^^^

. ... . M . _^ ^ ^ " i s s t a b l e .

^ven W i t h the a s s u m p t i o n s i n t r o d u c e d Tor s o l v i n g t h e p r o b l e m c a l c u l a t i o n r e s u l t s (Pi;.3 7 e ) n h ^ - •,

^ ^ i g s . ^ . e ; o b v i o u s l y p r o v i d e a t r u e p i c t u r e .

I n t h e above i n s t a n c e the r e s t o r i n g moment was f o u n d by t h e m e t a c e n t r i c f o r m u l a . For an a n a l y s i s o f t h e p o s s i b i l i t y o f c a p s i z i n g we o b v i o u s l y need i n t r o d u c i n g i n t o our c a l c u l a t i o n s t h e r e s t o r i n g moment as d e t e r m i n e d by Heed's d i a g r a m . A l s o t h e n a t u r a l c o n c l u s i o n i s t h a t we need e x t e n s i v e e x p e r i m e n t i n g r o r t h e s t u d y o f y a w i n g and h e e l i n g i n a f o l l o w i n g sea. I t would be w e l l t o m e n t i o n . i n c o n c l u s i o n , t h a t b o t h en-t r a p m e n en-t and y a w i n g o c c u r o n l y w i en-t h i n a m a en-t en-t e r o f one , en-two waves. T h e r e f o r e , wave i r r e g u l a r i t y seems t o be o f l i t t l e con sequence t o t h e problem d i s c u s s e d , and the r e s u l t s o b t a i n e d f o r r e g u l a r waves a r e amply r e p r e s e n t a t i v e o f the r e a l s t a t e o f a f f a i r s .

18

Beferences.

K.Davidson: "Note on t h e S t e e r i n g o f Ships i n F o l l o w i n g Seas". P r o c . o f t h e 7 t h I n t e r n . Congress f o r A p p l . Mechanics. V o l . 2 , p t 2. 1948.

O.orim: "Das S c h i f f i n von A c h t e r n A u f l a u f e n d e r See". J a h r b u c h der STG. B d. 4 5 , 1951.

D.M.Ananyev: "On Entrapment o f S h i p by t h e F o l l o w i n g Sea." P r o c . o f the 1 6 t h Conference on t h e Theory o. S h i p , i s s u e 73. R e s e a r c h S o c i e t y o f S h i p b u i l d

-i n g I n d u s t r y , C e n t r a l B o a r d , L e n -i n g r a d . 1966. D.M.Ananyev: " D i f f r a c t i o n F o r c e s and S t e e r i n g i n a Seaway".

T r a n s , o f T a l l i n P o l y t e c h n i c a l I n s t i t u t e . Ser.A, Mo.222, 1965.

D.M.Ananyev: " D i r e c t i o n a l S t a b i l i t y o f S h i p i n a P a r t i c u l a r i n s t a n c e o f F o l l o w i n g Seas." T r a n s , o f T a l l i n P o l y t e c h n i c a l I n s t i t u t e , Ser.A, No.222, 1965-D.M.Ananyev: ".awing and H e e l i n g i n a F o l l o w i n g Sea." From

" S e a w o r t h i n e s s and S t e e r i n g " , p u b l . 1 0 5 , Research S o c i e t y o f S h i p b u i l d i n g I n d u s t r y .

L e n i n g r a d .

1969-...L.Makov: " C e r t a i n R e s u l t s i n S t u d y i n g S h i p Entrapment t h e F o l l o w i n g Sea." From " S e a w o r t h i n e s s and S t e e r i n g " , p u b l . 1 2 6 . Research S o c i e t y o f S h i p -b u i l d i n g I n d u s t r y . L e n i n g r a d .

(11)

1969-.3 comparlaou o f e x p e r i m e n t a l and oomputenvproceaaed r e s u l t s :

1 _ e x p e r i m e n t a l r e s u l t a , 2 - oompater-prooeaad r e a u l t a .

(12)

2.0 2.5

—-F i g . 4 Two e n t r a p m e n t z o n e s a t — - 25. C i r c l e s show n e x p e r i m e n t a l r e s u l t s : • - e n t r a p m e n t , 0 - a b s e a o e o f e n t r a p m e n t .

(13)

O 0,5 1,0 i,5 2,0 2,S J.0 JI5 iO

? i g . 7 . S h i p motion parameters d u r i n g i t s t u m on the wave under the i n f l u e n c e of i n i t i a l broadside i m p u l s e .

(14)

8. Yu.L.Makov: "An E x p e r i m e n t a l Study o f S h i p Entrapment by t h e F o l l o w i n g Sea." P r o c . o f t h e 1 5 t h Conference on E x p e r i m e n t a l Naval H y d r o m e c h a n i c s y , publ.128, Research S o c i e t y o f S h i p b u i l d i n g I n d u s t r y , L e n i n g r a d , 1959-2 i o t c : R e f e r e n c e s 3 - 8 a r e p u b l i s h e d i n R u s s i a n .

iijC-}

o f 0 0 0 1 ?

(15)
(16)

Cytaty

Powiązane dokumenty

The ZeroFlow method, unlike hitherto-used nitriding processes used, is characterized by a sim- pler and less expensive installation with regulation and monitoring of the chemical

autor stawia wiec pytanie, czy rzymianie dostrzegali nadużycie prawa jako problem i czy w ich prawie prywatnym znajdują się przejawy sprze- ciwu wobec nadużywania przez kogoś

Do rozwoju większej ilości kompleksowych i zintegrowanych struktur kierowni- czych oraz strategii dotyczących w szczególności interakcji i współzależności przepły- wu wiedzy,

spalania, stąd duże zainteresowanie możliwością optymalizacji pracy poprzez lepsze poznanie wpływu procesu mieszania na inne parametry technologiczno-eksploatacyjne jak:

De als gevolg lage geaggregeerde vraag verergert de productiviteitscrisis, want (zoals Adam Smith, Joseph Schumpeter en Nicholas Kaldor al wisten) als de economie slecht draait,

Although the research results (Tomova, von Davans, Heinrich, Silani, Lamm, 2014) suggest that women are more flexible in dealing with emergency situations and are able to adapt

'^'^'(,„4 = temperature fluctuation of the internal room of the heat-generation meter. b = constant, specific for the degree of con- version, involwed.. ratio of the volume of the

• Instantaneous stochastic switching on discrete changes of power setpoints, or when the controller switches between energy-provision and energy- absorption modes [8].. The