• Nie Znaleziono Wyników

On Circular Symmetrization of Starshaped Domains

N/A
N/A
Protected

Academic year: 2021

Share "On Circular Symmetrization of Starshaped Domains"

Copied!
4
0
0

Pełen tekst

(1)

A N N Л L E 8

U N I V E R 8 T T A T 18 MARIAE O U R 1 E - 8 К Ł O D O W 8 К А LUBLIN-POLONIA

VOL. XVII, 4 SECTIO A 1963

Z Zespołowej Katedry Matematyki Wydziału Mat.-Piz.-Chem. UMCS Kierownik: prof. dr Adam Bielecki

ZDZISŁAW LEWANDOWSKI

On Circular Symmetrization of Starshaped Domains

O symetryzacji kołowej obszarów gwiaździstych О круговой симметризации звездообразных областей

1. The fact that the circular symmetrization preserves the starsha­

pedness if the ray of synnnetrization emanates from the centre, remained unnoticed according to the best of my knowledge. Taking it for granted We can use the method of circular symmetrization for tackling extremal problems in the class of starlike univalent functions. As an application Ve solve an extremal problem analogous to that treated in a similar way by J. A. Jenkins, [2]. This example was suggested to me by J. Krzyz.

We now prove

Theorem 1. If U is a domain starshaped w. r. t. the point 0 and Oi is a ray emanating from 0, then the domain G* arising from G by the circular symmetrization w.r.t. 0 is also starshaped w.r.t. 0.

Proof. We may assume that the ray 01 coincides with the positive real axis in the (z)-plane. The intersection Ke G, where Ke — {z: |z| = p}, is an at most enumerable set of open circular arcs of total angular measure ({?). If 0 < q < q and oeiaeG, then pe,6eG in view of starshapedness. This implies that

(1) J(e)>i(e).

On the other hand, KQ G* = {z: z = pe19, |0| < I(p)/2} for any p > 0.

rom (1) we deduce that the angular measure of the circular arc r\ G*

is a decreasing function of p which implies the starshapedness of G* w.r.t.

the origin.

2« Let >S' be the class of functions f(z) — z-\-a2z2-\- ... regular and univalent in |ar| < i and let 8* be the subclass of functions mapping the m disc on domains starshaped w.r.t. the origin. Let L(r,f) for ftS

(2)

36 Zdzisław Lewandowski

denote the linear measure (w.r.t. the circumference |w| = r) of the set of points w such that |w| = r and w is not a value taken by f(z) in the unit disc. J. A. Jenkins determined [2] the precise value supi(r,/) for feS. We now solve an analogous problem for the subclass $*.

Theorem 2. We have

supi(r,/) = W99(r), Zrff*

where <p(r) is the inverse of the strictly increasing function r = 4 [(4 —

_i

—<p9?’’] 2, 0 < <p 2.

Proof. Let A(0) be the complementary set of the closed circular sector {«: |z| < 1,0 < argz < (2— 0)n}, where 0 < 0 < 2. The function

ll—Vw 1+ oVw +w ll+Vw/ 1— oVw+w

maps conformally the upper half-plane Sw >0 on A (0), cf. [3], p. 221.

Obviously

/l+lwV 1 —0j/w P(w) = ---= ---—---

\1 — vw I l+Orw-f-w

maps conformally the upper half-plane Jw > 0 on the domain P(0) =

= {W: |W| < 1} o {W: |W| > 1, 0 < argW < (2-0».

Hence the mapping

/(*) = / w0—

‘ 1-» /’

where w0 = |(02 — 2 + 10/4— 02), carries in a biunivoque manner the unit disc |z| <1 in P(0) so that /(0) = P(w0) = 0. We have

(2) df dF dw

dz «-0 dw W^Wq dz

i [(2+ 0)2+e(2 — 0)2-8]2,

where w = (wo—woz)l(l — z). Choose now a so that y>(z) = e“la|/'(0)r1 X f(zeia) belongs to S*. Then y>(z) maps the unit disc |z| <1 on Po(0) =

= {W: | W| < r}{W: |W| > r, |argW| <|7r0, where r-1 is equal to the last term in (2). The .set of values taken by y(z) in |z| < 1 does not contain the circular arc of angular measure (2— 0)n = yn on|W| = r.

This means that L(r, ip) = nr(p(r), where <p(r) is defined implicitly by r = 4f(4 — go)4-’’99’’]“1/2, 0 < <p < 2. Suppose now that we have i(r, » >

> L(r, ip) for a function yi^eS*. Let us now symmetrize the image domain

(3)

On circular symmotrization of starshaped domains 37 G of the unit disc under ipl w.r.t. the positive real axis. If y*(z) maps

|»| < 1 on the symmetrized starshaped domain G*, we have

(3) lv>'*(0)| >|?'(0)| =i,

cf. [1]> P« 81. However, G* c Po(0) and G* ^Po(0), since L(r, =

= L(r, ip*) > L(r, ip) and this contradits the inequality (3). The Theorem 2 is proved.

We can use the result of Theorem 2 to estimate the area A [/] of the part of the unit disc uncovered by the values of feS*. We have A[/] <

2

< 7i[l — 8 J (4 —9?)’’_4g>~’’<Z<p] < 0,47 for any feS*.

REFERENCES

[1] Hayman, W. K., Multivalent Functions, Cambridge Univ. Press 1958.

[2] Jenkins, J. A., On values omitted by univalent functions, American Journ. of Mathematics, 2, (1953), pp. 406-408.

[3] Koppenfels, W., Stallmann, F., Praxis der konformen Abbildung, Berlin, Got­ tingen, Heidelberg, 1959.

Streszczenie

Niech 8 oznacza klasę funkcji f(z) =zia2z1-[-holomorficznych i jednolistnych w kole ,«| < 1 zaś 8* niech będzie podklasą klasy 8, funk­

cji gwiaździstych względem początku układu. Niech L(r,f) oznacza miarę liniową na okręgu |w| = r punktów w takich, że /(z) w dla l«| < 1. W pracy tej dowodzę twierdzenia:

Twierdzenie 1. Jeśli G jest obszarem gwiaździstym względem punktu 0 i OZ jest pod prostą o wierzchołku 0, to obszar G* otrzymany z G przez symetryzację kołową względem OZ jest też gwiaździsty względem 0.

Twierdzenie 2. supi(r,/) = w<p(r), gdzie y(r) określone jest na str. 36. /««•

Drugie z tych twierdzeń jest analogonem twierdzenia Jenkinsa [2]

sformułowanego dla klasy 8.

Резюме

Пусть $ обозначает класс функций/(z) = e+a2z2+... голоморфных и однолистных в круге |z| < 1, а $* пусть будет подклассом класса <8 Функций звездообразных относительно начала координат. Пусть L(r,f) обозначает линейную меру на окружности lwi — г таких точек w, что /(г) w для |2| < i.

(4)

38 Zdzisław Lewandowski В этой работе доказаны теоремы:

Теорема 1. Если 6 область звездообразная относительно 0, а 01 полупрямая с вершиной 0, то область <?*, получаемая из в круговой симметризацией относительно 0, тоже оказывается звездообразной относительно 0.

Теорема 2.

вир£(г,/) = пг<р{г), /.Я'

где <р(г) определена на стр. 36.

Вторая из этих теорем аналогична теореме Дженкинса [2], сфор­

мулированной для класса 8.

Cytaty

Powiązane dokumenty

In this paper we prove that bounded Hua-harmonic functions on tube domains that satisfy some boundary regularity condition are necessarily pluriharmonic1. In doing so, we show that

If the assumptions of Corollary 2 are satisfied then R(Ω) must be simply connected, and therefore it is conformally equivalent to the unit disc by the Riemann mapping

As remarked in the introduction, sharp upper bounds on |b n | are known for all n and a sharp lower bound on Re(b 2 ) follows from results in [9]... It seems reasonable to expect

Let S(b) be the class of bounded normalized univalent functions and Σ(b) the class of normalized univalent meromorphic functions omitting a disc with radius b.. The close

109] introduced the concept of the linear-invariant family M and showed that numerous theorems about the family M followed immediately once we have proved that M is a linear-

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

Предметом заметки является вывод вариационных формул типа Шиффера для функций мероморфных и однолистных в единичном круге

Key words and phrases: complexification, orbit convexity, orbit connectedness, matrix Rein- hardt domains, extended future tube.. Research partially supported by a grant NFT000 from