• Nie Znaleziono Wyników

Some Results Concerning Univalent Majorants

N/A
N/A
Protected

Academic year: 2021

Share "Some Results Concerning Univalent Majorants"

Copied!
6
0
0

Pełen tekst

(1)

UNIVERSITATIS MARIAE C U R I E - S К Ł O D О WS К A LUBLIN - POLONIA

VOL. XVIII, 3 SECTIO A 1964

Z Zakładu Matematycznych Metod Fizyki Zespołowej Katedry Matematyki Wydziału Mat.-Fiz.-Chem. UMCS

Kierownik Zakładu: doc. dr Zdzisław Lewandowski i

ZDZISŁAW LEWANDOWSKI

Some Results Concerning Univalent Majorants

Kilka wyników dotyczących majorant jednolistnych Некоторые результаты относящиеся к однолистным мажорантам

The papers of M. Biernacki [6], [7], G. M. Golusin [8], [9], [10] and also some papers due to A. Bielecki and the author [1], [2], [3], [4], [5], [12], [13], indicate that there exists a relation between subordination and modular majorization. The aim of this paper is to point out further relations of this kind. The Theorem 1' stated below is an analogue of a theorem due to M. Biernacki [6], restated in an improved form by Golusin [8] and Shah Tao-Shing [15]. Similarly, the Theorem 2 is an analogue of a well-known result of M. Schiffer [16]. The supposition of subordination in the results referred to is replaced here by the assump­

tion of modular majorization. The remaining results are of similar type.

In what follows $ denotes the class of functions f(z) = z+a2z2-\~...

regular and univalent in the unit disc |z| < 1 and S* c S denotes the subclass of functions starshaped w.r.t. the origin.

Let B(a), 0 < a < 1, denote the class of functions cd(z) = af-(i1z+

+ /?a224-... regular and bounded in the unit disc such that |co (z)|<l for |«| < 1 and let B be the union U B(«) °f all classes B(a). We now

prove 0!Sa<1

Theorem 1. Suppose that F(z)eS and f(z) = az+... (0 < a < 1) is regular in the unit disc. If the inequality |/(z)| < |P(2)| holds for any z in the unit disc, then |/'(«)| < |-F'(z)| holds for any z in the disc |«| < r(a), where r(a) is the least positive root of the equation ar3 — 3ar2 — 3r+l = 0.

The radius r(a) is best possible.

(2)

14 Zdzisław Lewandowski

Proof. Obviously,/(z) = jF(z)co(z), with <o(z)eB(a). Besides, we have (see [11], [10])

(1)

(2)

(3)

l-|z| zF'(z) I l+|z|

l+l«l

|to(z)| 5?

!«'(«)! <

F(z) P l-l^l’

|s|+|a>(0)l

l+|<u(0)||z| ’ l-|ft>(z)|2

1-|Z|*

Suppose that r is a fixed real number which satisfies 0 <r < r(a) and put W(r, a) = — ar3 + 3ar2 + 3r—1. We have obviously W(r, a) =r[l-p

+ a+(l-|-a)r] — (1 — r)2(l + ar) < 0 for re[0,r(a)) and this implies

<

1 — r

(4) 1-r

1+-r+ a 0 < r < r(a).

1+ar From (2) and (4) we obtain for |z| = r:

1 —r2

(3) 1+r

? 1 — r < l+|o>(z)|

Using next (1), we get 1 F(z)

(6) F'(z)

(i-r2)(i-Mz)|) l-|e,(z)|2 Applying finally inequalities (3) and (6) we have

|co(z)| + F'(z)

<

|«/(z)|<l, that is

\F'(z)co (z) | + |l’(z)co'(2)| < |F'(«)|. This means that \f (z)| < \F'(z)| in the disc |z| < r(a). An easy calculation shows that for F0(z) = z(l + z)-2, o)o(z, a) = (z+a)(l +az)-1, we have [F0(z)co0(z, a)]' — F'0(z) at z = r(a).

The theorem is proved.

Since the extremal function in Theorem 1 belongs to S*, the some results hold for starlike majorants.

It is easy to see that r(a) decreases in [0, 1) and lim r(a) = 2 —

This implies immediately a->1

Theorem 1'. Suppose that F(z)eS and f(z) = az+ ... (0 < a < 1) is regular in the unit disc. If the inequality |/(z)| < |F(z)| holds for any z

(3)

in the unit disc, then |/'(«)| < |F'(2)| holds for any z in the disc |«| <2— 1^3.

The number 2 — ^3 is best possible.

We now show that if we confine ourselves to starlike f and F, the radius 2 — ^3 cannot be increased.

Theorem 1". Suppose that F(z)eS* and that f(z) with f(0) = 0, /'(0) >0, is univalent and starshaped (w.r.t. the origin) in the unit disc.

If the inequality |/(«)| < |F (z) [ holds in the unit disc, then \f (z)| < \F' («)|

holds for any z in the disc |«| < 2 —/,3. The number 2 — ^3 is best possible.

Proof. Suppose that for any f(z) and F(z) satisfying the assumptions of Theorem 1'' we have \f (z)| < |.F'(«)| in the disc |«| < R with R > 2—V3.

Put Fe(z) = 2(1+ e«)-2, coe(z) = (ez + a)(l + aez)_1, where 0 < q < 1, 0 < a < 1, and consider fe(z) — Fe(z)we(z). The functions fe and Fe satisfy the assumptions of Theorem 1”. Besides,

» zf’o(z) 1 — QZ 02(1—a2) (7) g,(*) = -777- = -L- + j-- - •, ■

fe(z) 1+pz (1 + agz)(oz + a)

The real part of the first term on the right hand side is at least equal to (1— g)(l+ £?)~\ whereas the second term tends uniformly to 0 if a -> 1 Hence for any fixed q, 0 < q < 1, there exists t0, 0 < t0 < 1, such, that for a«[f0,l) we have re{zf'B(z)lf0(z)} > 0 in |«| < 1. However, g(0) = 1, and for ae[f0,1) the function fB(z) is univalent and starlike in the unit disc. On the other hand fB(r) = FB(r) for the least positive root r of the equation

(8) aQ3r3-3ag2r2-3gr+l = 0.

From (8) we deduce that r = r(a)g~1. Now, r(a)\2 — 13 for u -> 1 and we can choose a and qso that 2—v3 <r < R which contradicts Theorem 1'.

Theorem 2. Let f(z) be regular for |«| < 1 with f(0) = 0, f'(0) 0, and let F(z)cS. If |/(«)| < |F(z)| for |s| < 1, then

(9) !/'(*)! < 1+1*1

(l-

Proof. We have f(z) = F(z)io(z) with w(z)eB. The well known estimations: |F(2)| sg |«|(1— |«|)-2, \F’(z)| < (1+ |z|)(1 — |2|)~3, and (2), (3) imply

!/'(*)! = \F'(z)(o(z) + F(z)o/(z)\

1+1*1

(1-1* l)S+o| + 1*1 l-H2 (i-l*l)2 lkl2

1+1*1 r , 1*1(1-ltol2)1 (l-kl)’L (i+|*|)2 T

(4)

16 Zdzisław Lewandowski

The expression in square brackets attains a maximum for a fixed to , |to| < 1, and z ranging over the unit disc if |«| = 1, the maximal value being

[H + K1— M2)]- Now> the values of a?+{(1 —®a), a>«[0,1], (1 — l2l)

lie within [J, 1], and this proves Theorem 2. Another analogue of a well known result for subordinate functions is

Theorem 3. If

oo oo

/(«) = ^(«) = £ Akzk

fc-1 Jfe-1

are regular in \z\ < 1 and if \f(z)| < |P(«)| in |z| < 1, then

n n

(10)

J 1

< 2 ^*|2-

Jte-1 fc—1

Proof. Put

n n oo

sn = akz , 8n = Akz t Bn = Akz .

k=l k=l k=n+l

We have f(z) = F(z)a>(z) with M(z)eB. Hence

/(») = £»(«) to («)+-»„(«) co (z) = Sn(z)(»(z) + \ akzk.

k=*n+l

Besides,

(11) 8„(z)m(z) = 8n(z) +

V

akzk.

A-=» + l

The inequality

/ \Sn(z)a>(z)\*dO J \Sn(z)\2dO, z = rei9,

0 0

and (11) imply

2n oo n

f |s„(2)+ J; a'k'zkl2dO^ ^fAki2r2k

o k*=n+i k=l

that is

2'io»iv‘+ j? ia,iv*;

k=l *=»+1 Jfc=l

and for r -> 1 we obtain (10).

The relation (10) holds also under the assumption of subordination, (cf. [14]). The proofs in both cases are similar.

(5)

Theorem 4. Under the assumptions of Theorem 3 we have l«il < |Ai|, |a2| <1+|Ц2|2/Ц1|.

Proof. Let f(z) = F(z)m(z), where w(z) = aof-aiZ+...еВ. We have

«! = «„Aj and a2 = a0A2-(- ajlj. In view of |a0| <1 we have |ax| <

Besides from (3) it follows that |w'(0)| <1—|w(0)|2, i.e. |ax| <1 — Icą,!2.

Hence |a2, < |a,| |A2|+|ax| |AX| |a0| |A2| + (1 — |«0|2) |AX|. Now, the right hand side attains a maximum 1 +J |A2|2/|AX| for |a0| =

and the bound for |a2| follows.

REFERENCES

[1] Bielecki, A., Lewandowski, Z., Sur certaines familles de fonctions a-étoilées, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 15 (1961), p. 45-55.

[2] —, Sur une généralisation de quelques théorèmes de M. Biernacki sur lesfonctions analytiques, Ann. Polon. Math. 12 (1962), p. 65-70.

[3] , Sur certaines majorantes des fonctions holomorphes dans cercle unité, Coll.

Math. 9 (1962), p. 299-300.

[4] —, Sur un type de fonctions holomorphes subordonnées, Biuletyn Lubelskiego Towarzystwa Naukowego, 2 (1962), p. 92-94.

[5] , Л theorem concerning majorants of regular functions, Biuletyn Lubelskiego Towarzystwa Naukowego, 2 (1962), p. 95-96

[6] Biernacki, M., Sur les fonctions univalentes, Mathematica (Cluj), 12 (1936), p. 49-64.

[7] —, Sur quelques majorantes de la théorie des fonctions univalentes, C. R. Acad.

Sci. Paris, 201, (1935), p. 256-258.

[8] Голузин, Г. M., Мажорация подчиненных аналитических функций 1, Математический сборник, 29 (1951), р. 209-224.

[9] — Мажорация подчиненных аналитических функций II, Математический сборник, 29 (1951) р. 593-602.

[10] Геометрическая теория функций комплексного переменного, Москва- Ленинград, (1952).

[11] Hayman, W. К., Multivalent Functions, Cambridge, (1958).

Г12] Lewandowski, Z. Sur les majorantes des fonctions holomorphes dans le cercle,

|z| < 1, Ann. Univ. Mariae Curie-Sklodowska, 15 (1961), p. 5-11.

[13] —, Starlike Majorants and Subordination, Ann. Univ. Mariae Curie-Sklodowska 15 (1961), p. 79-84.

[14] Littlewood, J. E., Lectures on the theory of functions, Oxford, (1944).

[15] Shah Tao-shing, On the radius of superiority in subordination, Sci. Rec., 1, 5 (1957), p. 329-333.

[16] Schiffer, M.Sur un principe nouveaupourl'évaluation des fonctions holomorphes, Bull. Soc. Math. France, 64 (1936), p. 231-240.

Streszczenie

W pracy tej zajmuję się zagadnieniem wyznaczenia dokładnej wartości z przedziału (0,1) promienia koła w którym zachodzi nierówność |/'(s)'| <

< |F'(s)| przy założeniu, że funkcja f jest modułowo podporządkowana

(6)

18 Zdzisław Lewandowski

funkcji F w kole jednostkowym. O funkcji F zakłada się, że jest jedno- listna i gwiaździsta w tym kole. Prócz tego dowodzę dwu innych twierdzeń będących analogami odpowiednich twierdzeń z teorii majoryzacji funkcji z tym, że założenie podporządkowania obszarowego zastępuje nierównoś­

cią modułów funkcji f i F.

Резюме

В этой работе автор занимается определением радиуса гое(О,1) круга в котором истполняется неравенство |/'(г)| < |Р' (з)|, если в це­

лом одиночном кругу имеем \/(г)\ < |^(г)|, где Р — однолистная или звездообразная функция. Доказанные еще две теоремы аналогичны хорошо известным теоремам из теории подчиненных функций.

Cytaty

Powiązane dokumenty

We now examine problems about the growth of |#'(z) | where g is analytic and bounded in A (and not necessarily univalent) and for simplicity take the bound to be 1.!. The

O sumach częściowych pewnej klasy funkcji jednolistnych Об отрезках ряда Тейлора одного класса однолистных функций.. Subsequently the

It follows at onoe from relation (2.1) that inequality (1.2) holds, then So C So- In particular, the class So contains known subclasses ctf the class of univalent

Functions feUp corresponding to the non-singular boundary points of A we shall call extremal functions.. In order to determine the set of non-singular boundary points we shall

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

Предметом заметки является вывод вариационных формул типа Шиффера для функций мероморфных и однолистных в единичном круге

The determination of the region D(z1,zi) of variability of the ratio /(г1)//(гг)&gt; where Zj,z2 are fixed points of К different from 0 and from each other and f ranges over 8,