• Nie Znaleziono Wyników

Variational Formulae for Functions Meromorphic and Univalent in the Unit Disc

N/A
N/A
Protected

Academic year: 2021

Share "Variational Formulae for Functions Meromorphic and Univalent in the Unit Disc"

Copied!
8
0
0

Pełen tekst

(1)

ANNALES

UNIVEESITATI8 MARIAE CUEIE-SKŁODOW8KA LUBLIN-POLONIA

VOL. XVII, 7 SECTIO A 1963

Z Zespołowej Katedry Matematyki Wydziału Mat.-Fiz.-Chem. UMCS Kierownik: prof. dr Adam Bielecki

ZDZISŁAW LEWANDOWSKI and ELIGIUSZ ZŁOTKIEWICZ

Variational Formulae for Functions Meromorphic and Univalent in the Unit Disc.

Wzory wariacyjne dla funkcji meromorficznych i jednolistnych w kole jednostkowym

Вариационные формулы для мероморфных и однолистных в единичном круге функций

1. Introduction.

Let U(p) be the class of functions f(z) = z + a2z2 + ..., |«| < |p| < 1, meromorphic and univalent in the unit disc K which have a simple pole at z — p, 0 < |p| < 1.

Let Z be the class of functions E(C) = £-t-fy>+f)i/C + ••• regular and univalent for |£| > 1 and let £(l/p) be the subclass of all FeZ vanishing at C = l/p.

The class U(p) was investigated by several authors, cf. Goodman [2], Jenkins [3], Komatu [4], Ladegast [5], however no variational formulae for U(p) have been given so for to the best of our know­

ledge.

In this paper we obtain variational formulae of Schiffer's type for fhe class U(p) and give some applications of these formulae.

2. Main results

Theorem 1. If feU(p) and z„ z2,zm are arbitrary points of K, different from p, then for arbitrary, fixed complex numbers Alf A2,Am,

(2)

48 Zdzisław Lewandowski and Eligiusz Złotkiewicz

a positive can be chosen so that for a = — p/resp/(z) and for all A«<0, 2o> the functions:

m . -

+1

y it

№Jk, - < ,0 |±5t+i±^l | + 0 m, (2) /***(«) = f(F) + l\f(z)-zf’(z)^^+af(z)?^] + 0(A2),

L ~oP J

where |z0| =1 belong to U(p).

Besides, if the complementary set ^f(K) contains interior points w1,wi, then the function

(3) /••(»)+»(!•),

fc»l Wk-f(z) also belongs to U(p).

The terms 0(A2)/A2 have uniform bounds on compact subsets of K punktured at p.

Proof. If { = 1/z, then obviously f(z)e U(p) if and only, if [/(1/£)]_1 X X eZ(l/p). Now, according to H. G. Shlionsky [7], the following varia­

tional formulae for the class 2 hold:

d') F*(C) = +

k-l

<2

F(t)-F(Ck) +

+ +

)’ ?«>- & <«^=r] +♦<*>.

(3') +0(A2),

(3)

Variational formulae for functions meromorphic and univalent... 49 where Wk, £k, & = 1,..., »1 play an analogous role as wk, zk reap., and

IC.I = 1.

If F(^)(F(l/p) and a= jP'I —I, then the following variational P \PI

formulae for the class 27(l//>) can be easily derived from (!') —(3'):

(1”) F*(O=-P(C) + ;^'A* F

F(£k)[A(C)-.F(?*) +

2Z/ k\^F'(Ck)][ ^f-fk l-xj

m --- _ _

+ïï^a‘( M )'[fK,-fp'<f,s1ëï+fê]+W)’

+ 0(A*), (2") r,(f) = P(C)+I V ' £

V-

Wk[F(t)Wk]

(3") F*“(^)==J’(O-A[j’(C)-fJ’'(C)4±^ +0(A‘),

L c-Co l—XoJ

In view of (!'') —(3") and of the relation:

/(«)

-№

U(P),

we obtain (1) — (3). Obviously a = — p /resp/(z).

5. Applications

Let Uq be the class of functions f(z) = z+atz*+ ... meromorphic and univalent in K which have a simple pole at a point of the circumference l«| = p. Obviously U(p) <= Ue if and only, if |p| = q. Besides, f(z)cUe implies e~ig,f{zetlF)e Uq for any real <p. Therefore the maximal absolute values of the n-th coefficient for U(p) and U(q) (|p| = q) coincide. It is well known that for f(z) = z + a2zt-\- ... cU(p), we have |a,| < |p| + + ,p|-1 cf. Komatu, or Ladegast. In connexion with a conjecture of A. W. Goodman [2]. J. A. Jenkins showed [3] that, if the Bieberbach's

l + ®2 + ... +p2n-2

conjecture holds for all k N, then |a„| <---—--- for any n < A and any f(z)cU(p).

Annates t. XVII, 1963 4

(4)

50 Zdzisław Lewandowski and Eligiusz Złotkiewicz

The variational formulae given in sect. 2 enable us to find the diffe­

rential equation for functions yielding the maximal value of an within the class Q and to prove the inequality 1^2! IpI + IpI '•

Theorem 2. The function /(z) yielding the maximal value of an within the class Uo satisfies the following functional equation

2 z-p 2 1 — pz

where |p| = q, a = —p/res„/(z), and {/„(£)}„ denotes the n — th coeffi­

cient of the power series expansion of /„(C) at f = 0.

The functions satisfying (4) map K onto the w — plane slit along a finite number of analytic arcs, which are the integral curves of the following equation:

l>W JT

(5)

k-=l

{/+1C)}»

zfc+I(f) +1 = 0.

Proof. We may suppose without loss in generality that an > 0.

We first prove that the complementary set 'tff(K) has no interior points.

Suppose 011 the contrary that w, is an interior point of Using (2) with m = l we obtain

— an — A A ,

(6) /2(z)w2 I

+0U2)-

«h-/!«) k

v {fk+1(z)}n .

=2 - -J-» .„k-2 18 equal x’

W1

Since the coefficient of w, in

»!-/(«) in

this expression is different from 0 if wl is suitably chosen. Hence we can determine A.! and A > 0 so that |a**| > an, where a** denotes the n th coefficient of /**(«). However, this contradicts the extremal property of |an|.

We now apply the formula (1) with w = 1. After some calculations we obtain the equality

+ l+ £g

1-Ô?"n “ 1 —pz

(5)

Variational formulae for functions meromorphic and univalent... 51 which can be brought easily to the form (4). Obviously the r.h.s. in (7), and also in (4) is real on |«| = 1. The formula (3) gives

(8) aT =«„+ 4a»-jO)—+ -^- {/»(C)}„1 +0(2«)

L I

z0-p

J

In view of the extremal property of an we have

for any z0 with |z0| = 1. We see therefore that the r.h.s. in (7) and also in (4) is non-negative on |z| = 1 and has as a rational function of z only even zeros on (z| = 1. Let P(z) be the r.h.s. in (4). The equation (4) takes now the same form as the analogous equation for the class $:

*/'(*) \2 y {/fct l(C)}»

/(«) / z /»(«) = P(z).

Hence we deduce that the boundary of f(K) is a finite union of analytic arcs. Putting z = el°, t = fVP(et0 )d0 we obtain, in view of (10) the differential equation of the boundary in the form (5). The theorem 2 is proved.

Let us now consider the particular case n = 2. The equation (2) takes the following form

(11) g/'(g)V 1 q I g I 1 a Z + P a 1+pz . /(«) / /(«) ai Z z 2 z-p 2 1-pz

Multiplying both sides in (11) by z and comparing the coefficients of

« we obtain a = a. Hence (11) takes the form (12) zf'W\2

J_

fW / /(*)

Z”!---1

Z -a(l— |p|a) Z (z-p)(l-pz)

After integrating the equation (5) we can state that the image arcs of |^| = l under w = /(z) is either a straight line segment if the integra­

tion constant c = 0, or an arc of a cardioid which does not contain the double point at the origin, if c 0. We have f'(z) = 0 at the end points of the image arc. Hence the r.h.s. in (12) has double zeros at the points of |»| = 1 corresponding to the end points of the image arc. Putting z = e1’’, p = |p| elv, we obtain

(13) ffl2+ 2cos<p— a (1— Lp»I

1+ IpI2 —2|p|cos(ç> —y) (14) sinç>— a(l— |p|2) p sin (93— y)

[1+ IPl2—2|p|cos(<p —y)]2 = li 0

(6)

52 Zdzisław Lewandowski and Eligiusz Złotkiewicz

If sin(<p—yi) = 0, also simp = 0, and in view of (13) we obtain for the extremal case

(15) a = --- ,1—p2

P 0 < p < 1.

If sin(y>— y>) 0, we obtain after inserting (14) in (13) sin? L,+_Ц_2 sin(2y~y) sin(<p—y>) V \p\) sin(<p-y>)

and it is easy to see that a2 < |p|- x(srM-

(15) , (12) yield (16)

IP I in this case since ct2 sin?9 x 2cosy>. Therefore (15) holds for the extremal case and

(1-г2)2 IP

After integrating both sides we see, in view of f(p ) = oo, that the extre-

, z

mal function has the form j[z) =

-p?)z+z1

REFERENCES

[1] Голузин, Г. M. Некоторые вопросы теорий однолистных функций Труды Мат. института им. Стеклова 27 (1949).

[2] Goodman, A. W. Functions Typicall — Realand meromorphic in the unit circle, Trans. Amer. Math. Soc. 81 (1956) p. 92-105

[3] Jenkins, J. A. On a Conjecture of Goodman Concerning meromorphic univalent functions, Mich. Math. Jour. 9 (1962) p. 25-27

[4] Komatu, Y. Note on the theory of conformal representation by meromorphic functions I and II, Proc. Imp. Acad. Tokyo 21 (1945) p.p. 269-277 and 278- -284.

[5] Ladegast, K. Beitrage zur Theorie der schlichten Functionen, Math. Zeit. 58 (1953) p. 115-159

[6] Schiffer, M. Variation of the Green Function and Theory of the p valued Functions, Amer. Jour. Math. 65 (1943) p. 341-360

[7] Шлионский, Г. Г. Экстремальные проблемы для дифференцируемых функ­ ционалов в теорий однолистных функций. Вест. Лен. Университета 13(1958) р. 64-86

(7)

Variational formulae for functions meromorphic and univalent... 53

Streszczenie

Przedmiotem noty jest wyprowadzenie wzorów wariacyjnych typu wzorów Schiffera dla funkcji meromorficznych i jednolistnych w kole jednostkowym oraz zastosowanie ich do problemu współczynników.

Резюме

Предметом заметки является вывод вариационных формул типа Шиффера для функций мероморфных и однолистных в единичном круге и применение их к проблеме коэффициентов.

(8)

Cytaty

Powiązane dokumenty

Помимо обозначения нефактивного действия предположения, употребления в придаточных предложениях и полипредикативных цепях, в целом словоформы е со

W., On Ike domaina of valnee of certain ajeteme of fnnctionala in Ike daaaee of anivalenl fnndione (Russian), Vestnik Leningrad.!)nivAlatb. 16 (1960) no

Section 3 is devoted to obtain distortion properties and radius of meromorphic convexity of order i (0 &lt; 6 &lt; 1) for functions in EJ^(a).. In Section 4 we

Univalent anti-analytic perturbations of convex analytic mappings in the unit

the univalence of / whose all coefficients a* in the expansion (1.2) vanish, it seems natural to ask whether a suitably modified oondition (1.5) involving the coefficients a*

Functions feUp corresponding to the non-singular boundary points of A we shall call extremal functions.. In order to determine the set of non-singular boundary points we shall

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

Agrafeuil and Zarrabi in [1] characterized all closed ideals with at most countable hull in a unital Banach algebra embedded in the classical disc algebra and satisfying