• Nie Znaleziono Wyników

On some class oî integral-functional equations in locally convex spaces

N/A
N/A
Protected

Academic year: 2021

Share "On some class oî integral-functional equations in locally convex spaces"

Copied!
15
0
0

Pełen tekst

(1)

ROOZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PEACE MATEMATYCZNE X X (1978)

M a r i a n K w a p i s z a n d J a n T u r o ( G d a n s k )

O n some class oî integral-functional equations in locally convex spaces

At the first part of the present paper we describe a general setting of the equation solving problem and we show a general pattern of proofs of the existence, uniqueness and convergence of successive approxima­

tions based on the idea of comparative method.

Further we analize, following the above mentioned pattern, a class of a non-linear comparative operators and we give for such operators an effective conditions being sufficient to ensure the existence, uniqueness and convergence of successive approximations for some class of integral- functional equation with an unknown function of n real variables defined on an unbounded domain with a range in an arbitrarily fixed topological locally convex space (see equation (11)). We also give an effective theorem on continuous dependence on the right-hand side of a solution of this equation.

In the last part of the paper we consider in a topological locally convex space with a family of generalized seminorms an integral-functional equation with upper limits of integrals appearing in considered equation depending also on an unknown function.

Our result are generalizations of some results contained in [1]-[11].

Because the method used in the present paper is very close to th a t used in [2]-[8] we shall not give here the detailed proofs of theorems stated.

1. General assumptions and theorems. Let R m denote some m-dimen- sional-real linear space. If x e R m and x = (aq, ..., xm), then x > 0 means th a t Xi > 0, i = 1, .. . , m, however, x < y when у — x > 0, \x\ = ( |®х| , ...

..., \xm\), R™ - [x: x e R m, x > 0].

Suppose th a t a set X is given. Let in X a family of semimetrics Qt>i\ t e T , l e A (T, Л — arbitrary sets), be defined. We assume th a t this family has the following properties:

1° Qui00* У) > ° j t e T, 2 6 Л,

6tA æ > У) = °» t e T > 1 e A iff x = У,

(2)

378 M. K w apisz and J. Turo

3° Qi,dx i y) = QtAVi x, y e X , < e Tf l e A 1

4° е и (х ’ У) < QtJVy z ) + QtAVy z)i a>,yt z e X , t e T , l e A.

For a fixed l e A, x, у e X we shall denote the function defined on T with the values of>l(x, у ) by the symbol д{.л){х, у ).

We mean for xn, x e X , xn->x iff gt>i(xn, x)->0, n-+oo for any t e T, l e A.

Suppose th a t X is a sequentially complete, i.e., if {a?n}, xn e X , the condition Qt,i(œ’m xk)-> n ,T c-+ o o , is satisfied for any f e T, l e A, then there exists x e X such th a t xn->x, n->oo.

We consider in X an equation

{1) x = f(ae),

where / : X-> X.

Let F ( T , R™) be a set of mappings from T into R™ and let G (T, R™) a F (T , R™). We mean for u, v e F (T , R™), u ^ v iff u(t) < v(t), t e T , and un, и e F ( T , R™), un-+u iff un(t)-+u(t) for any t e T . Suppose th a t G (T , R™) has the properties: a) if u, n eG (T , R™), then u + v eG (T , R™), b) if un e G(T, R™), un+l < un and un->u, then и e G (T , R™).

A s s u m p t io n A . Suppose that

1° there exists a fam ily of operators Qt : G{T, R™)-+G(T, R™), l e A, which has the following properties:

(a) i f u ,v e G (T ,R ™ ) and u ^ v , then й г{и) < &i(v), I e A,

(b) i f un, и e G (T , R™), un+1 < un, n = 0,1, and un->u, then O ^ u J-^Q ^ u ), l e A,

2° the inequality

Q tA fW ’f W < Qi( 6{;Ax ’ У))(*), t e T , l e A , holds for any x, y e X .

A s s u m p t io n В (ht). Suppose that

1° for a fixed function ht e G (T , R™) for any l e A there exists a solu­

tion дг e G( T , R™) of the inequality

&i(9i) + ^ дг}

2° for any l e A, in the class of functions belonging to G(T, R™) and satisfying the condition 0 < gt < gt , l e A, the function gt = 0, l e A is the only solution of the equation

9i = ®i(9i), l e A .

Let us define the sequence {xn} by the relations

{ 2 ) ® n + i ~ f ( x n ) i n = 0 , 1 ,

where x 0 is an arbitrarily fixed element of X .

(3)

To prove the convergence of the sequence {xn} to the solution x of equation (1) we define the sequence {gi>n}, l e A, by the relations (3) 9i.о = 9n 9i,n+1 = Qi(9i,n), l e A i n = 0,1, ...

Similarly as it was done in [3], [7], by induction, we can easily prove the following two lemmas.

L emma 1. I f Assumption B(7q) and condition of Assumption A are satisfied, then

0 < 9itn+i < 9 i , n < 9 u 0 , 1 , . . . , 1 e Л , 9i,n- >0 for oo, l e A.

L emma 2. I f Assumptions A and B(7iz) are satisfied for hft)

= Qtjfi® o), a?0), 7 e T, l e Л, ht e G{T, Й” ), l e A, and i f x is a solution of equation (1) sueh that Qt>i{oc, x Q) < 9i{t), t e T , l e Л, then the estima­

tions

Qi,i(xn+p 1 Xn) ^ 9i,n(t) i Vi ^ 1? • • • i I ^ T, I g A, Qt,i(xn i x ) < 9i,n(t) > n = 0, 1, ..., t e T , l e Л, hold true.

By Lemmas 1 and 2 we obtain

T h e o r e m 1. I f Assumptions A and В(& г) are satisfied with ht(t)

= Qt,i{f(x o)i x o)i l g T, \ e G( T, R™), l e A, then there exists a solution x of equation (1) being the limit of the sequence {xn} defined by (2) and the following estimations

(4) Qt)l(x, x 0) < gj(t), t e T , l e Л,

Qt,i(v > xn)< 9г,п(1) i n = 0 , 1 , . . . , t e T , l e A,

hold true, where the sequence {дг>п} is defined by (3). A solution x of (1) is unique in the class of functions satisfying (4).

2. The main lemma and some remarks. If M is an m x m matrix, then M > 0 means th a t all elements of the matrix M are non-negative.

We denote by q (M) the spectral radius of the matrix M.

How we give conditions under which the family of non-linear opera­

tors Qi defined by the formula

n ns ô S,Vs(i) p

№iU)(t) = JTw ?’rs ( 7 , r - e&?*rs(i) f u(T)drj + £ À u (t)u(Pi(t)),

s = 1 rs=l 0 i=l

t e R +y e A, where cof^, Ц,Гз, Ku, are non-negative, continuous vector-functions and matrix-functions respectively, and <5s,rs,

& are continuous functions on R +, satisfies Assumption B(7q). By the

10 — Roczniki PTM Prace Mat. XX 2

(4)

380 M. K w ap isz and J. Turo

general considerations it follows th a t these conditions will be sufficient for the existence, uniqueness and the convergence of successive approxi­

mations for equation (1) or for its special cases considered in adequately- chosen spaces.

Let

5S,rS(t)

8 = 1 r- = l

2o> î-r’ ( t , t n- 3kpr4t) / «(T)dr), I e R , 0

t

W ’ n m = j u ( г » * ) , 0

(X,«)(«)= «(&(*)), г е Л .

».

г - 1

P u t Xf = ХгХ*-1, к = 0 , 1 , . . . , X° = I, l e Л, where 1 denotes the identity operator in F ( R +, R+).

From the definition of the operators L u l e Л, it follows th a t

P P

№*«)(<) = У ... .... •*№),

i i = l i fc= l

where

A (<) = A(«), /& -* * + • «) = A 1 '* (Ai+1 <*)) ’

&(*) = A„(t), *;•;<*+■№ = k ik+1 W A r - ik( K +i W>

Ь ~ 1» • • • » V > & = 0 ,1 , ...

P ut

00

j ¥ , « =

k — 0

with the pointwise convergence of the series in R +.

By the same way as in [2], [6], [8] and [10] (being some generaliza­

tion of the method use in [3]) we get

L e m m a 3 . I f

1° the vector-functions o)i,rs: R + xR™->R™ are continuous, non-de­

creasing, cof’r« (t, 0) == 0, and there exist constants df'**, g 8^ 8 e R +, v\,r* 6 [0 ,1 ] such that

«rv.,rf’r*

(5) yv) < df’^ fi ||y|| coïr»{t, v) for t e R + , /ле (0 ,1 ]

and for any constant matrix y > 0, s = 1, ... , n, r8 = 1, ..., n9, l e A,

(5)

2° the functions \ e C{R+, R™), Xu e C ( R +, R f ) , ôs’r*, ft e C { R +, R +), are non-decreasing, ô8,fa{t), ft(t) e [0, t], t e R +, s = 1, n, rs = 1, ...

. . . , n s, i = 1 , ..., p, l e / 1 (the case p — +oo is also possible), and (6) $i(t) — (AIihx)(t) < c+ °°> l e Л, t e R +,

(7) 8 ‘/ - ( t ) ü ( M l a‘l^ ) ( t ) < + o c , l e A , t e R + ,

where fff’sff) = [tn- ’ l}tf’r>(l)\\Ss’r° (t)y and sup№'»(«)«

< +oo,

3° for any l e A, there exists a non-decreasing function gt e C{R+, R™) being a solution of the integral inequality

n n s

£ d y * W r‘m + s„

8 = 1 Ts= 1 where ё8,Га = df,r*sup [Sf’rst 1 ];

4° for any l e Л the function дг — 0 is the unique solution of the equation

' П n8

ft = Z ] ? d r ‘Vl-r*9„

s = l rs = 1

in the class C (R +> , R™), then

(a) for any l e A there exists a non-decreasing solution щ e G( R+, R™) of the equation

(8) щ = MjQfUi + Mihi,

(b) for any l e A the function ux is a solution of the equation

(9) щ — QiUi~\-LiUi-j-hi,

(c) any solution щ e MX( R+, R™, щ), l e A, of equation (9) is a solu­

tion of equation (8), where

M X( R+, Jt“ , щ) = {и: и e M ( R +, R™), fw ]< + oo}, M = inf {1^1 < сщ, c e R +}

C

and A I(R +, R™) is the class of all non-negative and non-decreasing vector- functions defined on R +,

(d) for any l e A the function щ — 0 is in the class M f R +, R™, щ) the unique solution of the inequality

щ < йУщ+ЪгЩ.

R e m a rk 1. Condition (6) assumed for any у > 0 strongly restricts

the class of fun étions cof,rs satisfying the assumptions of Lemma 3. This

(6)

382 M. K w a p isz and J. Turo

condition can be weakened if we assume th a t (5) is satisfied only for any constant у 6 (0 ,1 ].

Now the functions oj,rs in conditions (7) are of the form af,r 3(t) =

s , r 4 ® Qj » „ s,rR

= [(5s,rs(t)] -t 1 and therefore instead of the operators Qf,rs we must t

take (Di,rsu)(t) = а)£*г«(<, tn~skf,rs(t) f u(r)dr).

0

E e m a r k 2. The examples of vector-functions cof,rs satisfying the assumptions of Lemma 3 are:

(a) the functions wi’rs(t,v ) — A%,rs(t)v, where A \,Vs e G(R+, JR+2) are non-decreasing and JL£,r*(Z) < Cf,rst 1 , Gi,rs ^ 0, qfrs > 0, t e R + (now con­

dition (5) is fulfilled with the constants d f rs ^ 1, vf,rs = 1 ) , (b) the functions defined by the formula

0 for v = 0, (Osy rs(t, V) = «|ln®| for 0 < v < e_1,

V for v > e~l. s = I, . . , n, T 8 = 1, .. . , n s, l e A (condition (5) is now fulfilled with the constants Щ’г> > 2/Ve, = 0, vf’rs — J and y e (0 ,1 ] — see Eemark 1).

E e m a r k 3. Now we give some effective conditions under which conditions (6) and (7) are fulfilled.

(a) If we assume th a t

(io) *„(*)< i„ , № ’rsm < M > r*t, ôs’rs ( t ) ^ ô s’r*t, д о o < A * , t e n +>

ôs,rs, Â g [0 ,1 ], g l l +, Xl{ are some constant matrices s = 1, n, rs = 1, . . . , n s, i — 1 , l g A, then conditions (6) and (7)-are satis­

fied if

oo p - p к к

1 2 - Ш 1 К Н * П ^ ) < + ° ° ’ ( e K + >

and

k=

P

0 i1=l ik= 1 m==x m — 1

É>(2 ^ l « i—1 ) < i , i G Л, X ~ min[(?i

s,rs ~ S + 2) vs,rs + qs,rs^ •

i? = 1, .. • 1 ^ t ~ • * • ? >

where we mean

oo p P oo p p 0

2 2 - ■■ 2 j Wk >4 = fo + V V j L j j L j 2 & ■•Л / K - L -

k —0 ii=l {k=l k= 1 *x=l tk==1 m=l

(b) If лн (t) < tin, (Oil < îcï’r*t, 0s’rs( t ) <à в,Гв<,

l*>rs 6 [0,1], A e [o ,i)i and if hi(t) < tHi, н г> ъ, Z g yl, then conditions

(6) and (7) are both fulfilled.

(7)

(c) Finally, if we suppose (10) and h^t) < A ffz, l e A , t e R +, for some

p M вг e R + and vector I I г > 0, then (6), (7) are satisfied if о (]? i= 1 < 1 with i = min{0z, min[(w —s + 2)rz’rs + </z’,'s]}, l e A, s = 1, 2, ..., n, rs

= 1, . . . , n s.

Particular cases of this conditions are the conditions appearing in [5], [7], [8].

3. Integral-functional equation with an unknown function of n variables. Let Y denote some real linear topological Hausdorff space, locally convex and sequentially complete with the topology given by the family seminorms {|-|z}Ze/1.

Let {II • ||}Zs/1 be a family of generalized seminorms in Y, the values of which lie in R ™, such th a t there exists numbers bx > 0, b2 > 0 sat­

isfying the condition

v l M i i |U » < for any v e Y ’ l e A -

We suppose th a t X from Section 1 is now a topological space С (I , Y) of all continuous functions defined on 1M = [ж: 0 < æ < -f oo], со, 0 e R n, with range in Y, with the topology given by the family seminorms (||* ||Zjfc}, where

INI/,* = max IMaOII*, l e A , z e C ( I eoiY ) f I k = [oo: 0 < æ < Щ,

x e I k

0 e R n, Tc = {( a , ...,/i) e R n, p = 1 ,2 ,...

If Y is sequentially complete, then 0 (1 ^ , Y) is also of such type.

In this case family of semimetrics (see Section 1) can be introduce by a different manner. We take for z ,z e X = 0 (1 ^, Y)

QU (z,z) = \\z-z\\ht, where ||z -z ||M = max ||«(®)-g(®)||„

l e A , t e R + , and

IN = l*xl+--. + l*»l for any * = ( * ! , . . . , sn) e R n.

For the class 0 ( T , R™) now we shall consider the class of all non-negative and non-decreasing vector functions defined in й + .

Now we consider the integral-functional equation in the unbounded domain I TO of the following form

v\’n4x) v]ln4x)

(11) z(co) = f [ x , f ... J f ’ni(x, rlf ..., Tn , z[%x, ..., rn))drx ... drn,

о 0

У 2,1(х) -4’V)

/ ... J f 2,1 (oc, T2, ..., rn, z(y\>l {x), r 2, ..., rn))dt2... drn, ...

о 0

(8)

384 M. K w ap isz and J. Turo

vl'n4*) v2 n-i№

J ... J / 2’П2(®,г1,...,т п_1,«(т1,...,г п_1, й п*(®),)Дт1...Лгп_1,...

о 0

Vnn ’ \ x )

..., J f n,1(co, Tn, z(y^l (SG), . . . , y £ i ( ® h rn))drn, .

•.., / / n,”n (ж, T1? 2 r(r1? y l’n4x), ... (Ж))) dTj,

о

*(a}(®), •••, ai(®)), . ..,« K ( a > ) , <*£(<»))) =

where тг3 = an^ ^ e known functions f s,r«: I ^ x [0, + oo)M 8+1 x xY ->Y , loo X Y V+P->Y, v = 2n - l , A » 1: г. = 1 , . . . , л „ s = 1, . . . , n, are continuous.

The integrals appearing in equation (11) are generalized Riemann integral being defined by applying the ordinary defining procedure.

R e m a rk 4. If instead of !«, we take I a — [0, a] and Y = E being a Banach space, then we have the equation of the form (11) which was

considered in [5], [8].

(b) The Darboux problem for the differential-functional equation ux1 (v2,1(^)), •••» % п ( у 2,П2И Ь •••

• • • > (yn>1 И » • • » ^ 2...*п(уп'п” И , %...■* (а1И » —

can be reduced to a particular case (f8’r3{ot>,...,z ) = z) of equation (11).’

If the function F depends only on the first n - f l variables, then we have the differential-functional equation which has been considered in [9].

(c) The particular cases of equation (11) are also the integral-func­

tional equations which were considered in [4], [7] if n — 2 and in [3]

if n — 1.

A ssu m p t io n 0. Suppose that

1° there exist continuous and non-deereasing rector-functions <о8,Гз:

R+ x R™ ->R™, and matrics-functions l u : R +->JR™2, such that

|| F ( x , 21,ni, ..., zn,nn, v 1, ..., v p ) —F( %, z1,ni, ..., z“,n», v 1, ..., Vp)|||

n n e P

< Z Z m‘’r‘ <il*">ii2‘,r' - 2‘,r'ii<>+ Z д« 1 (i w i ) - 1 s'il> l e A >

s = l r a= 1 i = l

f o r e Y, s = 1 , r, = l , . . . f n 8, i = 1 ,

(9)

2° the functions f 8,rs satisfy Lipschitz condition with respect to the last variable, i.e., there exist continuous and non-decreasing matrix-functions 1c8,rs: R +-+ R f such that

\\f8'r*{x, . . . , z ) - f s’r*(x, z)||*< fc?,r*(INI)ll*-«ll/» l e A , s = 1, ..., n, rs = 1, ..., na, x e l ro, z , z e Y ,

there exist non-decreasing functions è8'*8, f}. e G(R+, R +), d 8,r9(t), Pi(t) e [0, t], t e R +, such that

ll/'r*(®)ll<^r*(INI), * = 1, ...,n , re = l, ...,we, w, = ( g"j), lla 'H IK РЛ\М), i = 1 , х е 1 ж.

P u t

(12) ht(t) = \\SFzQ- z 0\\ht, l e A, t e R +,

where 3F is defined by (11) and z0 is an arbitrarily fixed element of 0,(1^, Y).

Let ns define the sequence {zk} by the relations (13) zk+l = &як, f c = 0 , 1, ...

By induction and Lemma 3 we obtain

L emma 4. I f assumptions of Lemma 3 are satisfied, then 0 <Щк+1 < ипс<Щ, Те = 0 , 1 , . . . , l e A,

ulkz£ 0 for Tc-+oo, l e A ,

where the sign i t denotes the uniform convergence in any compact subset of R +, and

UlQ -— 'll] •

(14) Щк +1 = щЩк + Ц и 1к, Тс = 0,1, ..., l e Л,

and щ is the solution of equation (9) and operators Q\, L t are defined in Section 2.

L e m m a 5. I f Assumption О and assumption of Lemma 3 are satisfied, then

II**-*olli,i <«*(*)> Tc = 0 , 1 , . . . , l e A, t e R +, and

I t e k + j - z A t ^ u M , h ,j = 0 , 1 , . . . , l e A, t e R +.

From Lemmas 3, 4 and 6 it follows

T heorem 2. I f Assumption C and assumptions of Lemma 3 are satisfied for ht defined by (12), then there exists a solution z e 0 (1 ^ , Y) of equation (11)

and the estimation

^ uik(t)i f c = 0 , 1 , . . . , t e R +f l e A ,

(10)

386 M. K w ap isz and J. Turo

holds, where zk and ulk are defined by (13) and (14). The solution z of equa­

tion ( 1 1 ) is unique in the class of functions Z ( I Т, щ) , Z ( I œ, У, щ)

= l>: z g СЦы, Y), df z , z0) < + oo], where dt(z, z0) = inf [ \\z -z 0\\lt <

C

< cut{t), c e R +, l e Л].

4. Continuous dependence of solutions on the right-hand side. Let ns now consider another equation

? { > « !( * ) y ] l n 4 x )

(16) v{x) = F (a?, J ... f f hni(æ, т1} ..., rn, v(rlt ..., rn))dr, ... drn,

о 0

p 2' \ x ) у % \ х )

f ... / f 2,1(®, r 2} .. . , rn, v(y\>x{x), r2, ..., Tn))dr2 ... drn, ...

о 0

у \ п Ц х ) У п И \( х )

..., J ... J / 2' П 2( л ? , т 1 , . . . , T n _ 1 , ® ( т „ . . . , т га_ 1 , Й ’ и2 ( а ?) ) ] й г 1 . . . й г п _ 1 , . . .

о 0

. .., J Z”’1 (®, Tn , « (y ”'1 (®), ..., y l L1! (a>), т J ) drn, ..., 0

У^'ПЩх)

j p,nn (a, , Tl, v (Tl, У»•»» (®), . . . , y (®))) dr,, 0

®(5}(0), ...,ô i(® )), ...,«(5f(a?), ...,o*(®))) = (£v){< 0),

where / s,r«, ys’r», аг, are the same kind as F, f s>rs} ys,rs, s = 1, ..., n, r8 = 1 , i = 1 , . . . , ^ .

Let г; be a solution of equation (15). P u t

<Pi{t) = < e R + , 1 е Л,

where 3F is defined by (11), and let wl e G{R+, JR+), I g A be such th at P — v||w < t e R +, l e A .

P ut

ht(t) - max{to,(«), 9 >i(«),M 0 b ÎG /1 -

T h e o r e m 3. I / Assumption C, relations (12) assumptions of Lemma 3 are satisfied with ht replaced by then there exists a continuous, non-negative solution щ of the equation

Щ = Qi щ -\-LiUi + 9 Oj, I g A , such that

\\z-v\\ i.* < « i(0 , t e R + t l e A .

(11)

5. Another integral-functional equation. Kow we consider the case cof (t, ®) = Ц (t)v, I e A, where Ц are non-decreasing matrix-functions (now the double index s ,r s, s = 1 , ..., n, rs = 1, ns, ns = is replaced by single index s, s — 1, ..., S, S = 2n— 1).

Since the vector-functions cof are linear (with respect the second variable) therefore assumptions 1°, 3°, 4° of Lemma 3 are obviously ful­

filled.

We have

L em m a 3 . I f h l E(J(R+,R%), Jcf, Xu e 0 (R +, R f ) , Ô3, ft e 0 (R +, R +) are non-decreasing, 6s(t), p{(t) e [0, <], t e R +, s = 1, S, i = 1, ..., p, l e A (the ease p = + oo is possible), and

$i(t) — (ilfj/ij)(l) 4“ °°? t

g

R +, l e A ,

$i(t) — < + 00> i £ R+ > ï e /1, where hpt) = (^)<5s(i) <md i f su p --- < +oo, then

s^l t

(a) for any l e A there exists a solution щ e C( R+, R™) of the equation

8 às(t)

щ — where (Кгщ)Ц) = ^ Jcf(t) J ut(x)dx, l e A,

S = 1 0

(b) for any l e A the function щ is a solution of the equation иг = К г щ + L tUi A'hi, l e A ,

(c) assertion (c) of Lemma 3 is satisfied,

(d) for any l e A the function щ = 0 is in the class M t(R +, R™, Щ) the unique solution of the inequality

Щ < K ^ + L ^

(the operators М г, L l and the class M t(R +, К™, щ) are defined in Lemma 3, where Щ appearing in definition of this class is defined in (a) of Lemma 6).

К олу we consider the integral-functional equation of the form ÿî(x,s()) Vln { x , z {))

(16) z ( x ) = f ( x , f ... f f 1 (aff r1 J . . . , T„f e(rl t . . . f Tn))dv1 ...

о 0

' Vfx.zV)) Ÿrn(x’eA)

... d tn ... ; J* ... J f r ^ x , Ti , . . . , Tn, z ( x i , . . . , xn)^ dx\ ... dxn,

о о

г (a1 (a?)), . . . , z ( ap(x))} = (^z)(x),

(12)

388 M. K w ap isz and J. Turo where

v \(x ) q3n (x)

*(•)) = У(®, J • •• / Ф и •••> *n)d*i ••• drn, *К(®)))»

О О

and the functions F : I œ x Y r+p->Y, fc: I ^ x I ^ x Y - ^ Y , y3: I ^ x Y x x Y-> Iœ, a \ rf, aj : I ^ I ^ , j = 1, ..., r, i = 1, . . . , p , are continuous.

R e m a rk 5. The differential-functional equation

(17) иХх_ Хп{х) u[yx{x7 u ^ x ) ) , ...

w (/(® , « ф г(®)Ь \ . ÆJ f f r (a;)))),

^ X j . . . a ; n ( a * ( ® ) ) ) • • * ) '^'xx...x n ( a ^ ^ l o o 1

with conditions of Darboux type can be reduced to a particular case (/i(®, t j , rn, *) = e, j = 1, ..., r) of equation (16).

If n = 1, then equation (17) has the form

(18) u'(x) = f ( x , u[yx(x7 и{г)х{х))7и'{вх{хЩ, . . . , « ( / ( x, u(r)r{x)), ц' (ar (ж)))), и' (аЧ®)), ..., и' ( а * » ) ) , of which a particular case: r = 1 and F does not depend on the last p variables was considered in [11].

Theorem on the existence of solutions of equation (18), in the case where r = p = 1 and y does not depend on the last variable, and with assumption th a t the function F satisfies Lipschitz condition with respect th e last variable with constant less than 1 can be found in [1].

A s s u m p t io n D. Suppose that

1° there exist non-decreasing matrix-functions klj7 klj7 mlj7 e C (R +, B ? ) , such that

IIF ( x 7zX7 . . . 7zr7v17 . . . 7vp) - F ( x 7zX7 . . . , z r , t>1 ...,t>1,)||1

Г p

« 2 % ' (M)ll%- З Д + ÿ% <ll*ll)ll«i-0A ,

i = 1 i = 1

Щ х 7 rlf ..., xn7z ) - f i {x7 xx, ..., тп, з)||г< ^ ( И ) Н 2!-2|1г, j = 1, . . . , r ,

ll/jf(®, *11 •••, *n,z)\\i< Шу{\\х\\)-е, j = 1 , . . . , r ,

for x, x e /«j, ^ е Л , zj7 zj7 v{7v{ e Y, j = 1, . . . , r , i = 1, . . . , p ,

(13)

2° there exist non-decreasing functions /л^, vy g G{R+ , II™ ), yt , щ , 5if a{ 6 C( R+, R +), such that

ly»(®> z)|e < fitj (||a?||)||w — Щ\г -f Vy(||o ?||)\\z — z|||, l e Л,

||у*(я,и,г)||< у,||(® )||, У ( х ) \ \ < ъ ( М ) ,

H^(®)ll<ôry(|HI), 3 = l,...,r,

||а>)11 < « < ( » , * == 1,...,JP,

the norm ||*|| is defined in Section 3, <wd e e R m is the unit vector, i.o.f Put

M f) = + j = 1 , r, ï e A ,

(19) AK(t) = tn_1 (t)vH{t)mu (t) -Ь Ди(t), i — 1 , ma x( r , p) = g, PAG = max(5<(«), 5,(t)), i = 1 , . . . , m a x (r,p ),

< W = m a x(£;(<)> fy(*)b 3 = 1, ••*,

мЛеге AK(i) = 0 , аг(<) = 0 /or i = p - f l , . . . , r i f r > p and <n_1fcw(#)X X ^ (t)% (« ) = o, aw(t) = 0 /or i = r-f-1, . . . , p i / r < p .

Let us construct the sequence {zfc} by the relations

(20) 0fc+1 = «^3*, = 0,1,

where the operator is defined by (16) and z0 is an arbitrarily fixed element of 0 (1 то, Y).

From Lemma 6 it follows

T h e o r e m 4. I f Assumption D and assumptions of Lemma 6 are satis­

fied for ky, pif ôj, j = 1 , r, i = 1 , ma x (r,p ) = g, de/med % (19), then there exists a solution z g G(Iж, Y) of equation (16) and the esti­

mations

Ш - ZkWi.t < ЩкУ) » fe = o, 1, ..., Ï G A, t e R + , hold true, w/iere zk are defined by (20),

%> = %fc+i ^ к = 0,1, ..., I g A,

and u{, K lf L t are defined in Lemma 6. The solution z of equation (16) is unique in the class Z (ITO, Y , щ) (see Theorem 2).

P ro o f. At first we prove the following estimations (21) ll**-*olli.i< W ) , & = 0 ,1 , , t e R +, l g A , (22) II %k+m zk%,t ^ uikW)i ifc, w = 0 ,1 , .. . , t G R + , I g A.

2

(14)

390 M* K w a p isz and J. Turo

I t is obvious th a t (21) holds for к — 0. If we suppose th a t (21) holds for some к > 0, then we have for x e 7^, ||a?|| < t

r v \ \ x , z k {-)) Pn ( x ,s k (-))

ll**+l(®)-g!o(®)lll<^, ^(ll®ll)^(ll®ll) J ••• / IM* 1 , T„)-

J = 1 о 0

? • • • i rn)^i^ri • • • dTn -j- Г

+ tn~x ^ к^(\\х\\)ти(\\х\\)е\у3п(х, zk( ‘)j - f n(x, zQ(-))\ + j=i

p

4- ^ J u (\\x\\)\\zk (ai (x))--z0(ai (xj)\\l ^ h l(t) i=l

y { ( x , z k ( . ) ) y

3

( x , Z k ( ') )n

X k j W h j i t ) / ••• / ûl{r1+ ... + Tn)dT1 ... drn +

3=1 о 0

n-j ( v\ d I

+ tn- 1^ k lj(t)/iij(t)mij ( t ) j ... J \lzk (T1, . . . , Tn) - z 0(T1,...,T n)\lidT1...dTn+

3=1 о 0

r p

+ tn~x £ кцМщЮ' ГцУ) |K (M ^)) - *о(о* (®))\\i + Уз *МИа<И11) + MO

j = 1 г = 1

r _ llv-'(a:»«*(*))ll * »• 11^(011

< Г"1 £ кц{г)ТсцЦ) j üz(T)dT + (tn- 1)2^ f c ?i(t)Wy(f)/iy(t) J %(r)dT +

+ *'

r JJ

' '1 £ h (0 Щ (0 (0 K (0) + 4 (0 щ (â (0) + (t)

j = i i=i

r

< tn~l { M(0[M(0 + <n_1^ ( 0 ^ j( 0 ] J 5г(г)йг} +

i«a о

+ ^ P” = ( Kj i i i ) ( t ) ( L^i ) ( t ) — иг{ 1).

г=1

Now (21) follows by induction.

Similarly we prove (22).

From estimation (22) and from ulk->0 for k-+oo, l e Л follows the

existence of a solution of equation (16). The uniqueness p art of the theorem

follows from (d) of Lemma 6. Thus the proof of the theorem is completed.

(15)

R e f e r e n c e s

[1] L. J. G-rimm, Existence and uniqueness for nonlinear neutral-differential equa­

tions, Bull. Amer. Math. Soc. 77 (1971), p. 374-376.

[2] Z. K a m o n t and M. K w a p isz , On the Cauchy problem for differential-delay equations in a Banach space, Math. Nachr. 74 (1976), p. 173-190.

[3] M. K w a p is z and J. T uro, On the existence and convergence of successive approxi­

mations for some functional equations in a Banach space, J. Diff. Eq. 16 (1974), p. 289-318.

[4] — — On the existence and uniqueness of solutions of the Darboux problem for partial differential-functional equations in a Banach space, Ann. Polon. Math.

29 (1974), p. 89-118.

[5] — — On some integral-functional equations with unknown function of n variables, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astr. Phys. 22 (1974), p. 1001-1009.

[6] — — Existence, uniqueness and successive approximations for a class of in ­ tegral-functional equations, Aeq. Math. 14 (1976), p. 303-323.

[7] — — Some integral-functional equations, Funkcialaj Ekvacioj 18 (1975), p. 107-162.

[8] — — On a class of functional-integral equations treated by the comparative method, unpublished.

[9] A. P e lc z a r , Some functional differential equations, Diss. Math. 100 (1973), p. 3-110.

[10] J. T uro, On the existence, uniqueness of solutions and convergence of simple and approximate iterations of the integral-functional equations with an unlcnown function of several variables (Polish), doctors thesis, Faculty of Mathématics

Physics and Chemistry, University of Gdansk, 1974.

[11] L. A. Z y v o t o v s k iï, On the existence and uniqueness of solutions of differential equations with delay dependent on the solution and its derivative (Russian), Diff.

Urav. 5 (1969), p. 880-889.

Cytaty

Powiązane dokumenty

Therefore the function dcp (x, t) is continuous in A, which was to be proved.. Choc zew ski and

We assume the following hypotheses:. I

ROCZNIKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO Séria I: PRACE MATEMATYCZNE XXX (1991)A. We assume some conditions on /, a, b, which are weaker than the

Observe that Sazonov’s theorem for Hilbert spaces does not follow from Minlos’ theorem for nuclear spaces over R (cf.. Therefore each c-additive

Finally, the fundamental domains associated to an increasing sequence of subgroups behave in some sense like the rectangles in B n, and Section 4 is devoted to the

In Theorem 1 below we recall the Hille-Yosida Theorem ([8] Appendix or [10]) which gives necessary and sufficient condition in order that a closed linear

This note contains the representation theorem of a bounded linear functional in a subspace of a symmetric space made of functions with absolutely continuous

In final section, we give our main result concerning with the solvability of the integral equation (1) by applying Darbo fixed point theorem associated with the measure