• Nie Znaleziono Wyników

Application of a petrographic method to identification of the till floes

N/A
N/A
Protected

Academic year: 2022

Share "Application of a petrographic method to identification of the till floes"

Copied!
16
0
0

Pełen tekst

(1)

Geological Quarterly, Vol. 40, No.2, 1996, p. 283-298

Ryszard ZABIELSKI

Application of a petrographic method to identification ofthe till floes

One p~ntcd the results of the petrographic nnd mineralogical studies of tills from the environs of Sompolno (Kuj<lwy). On the basis of the pe!rographieeomposition ofgmvels, composition of heavy minemls as well as gmin size :md calcium carbonnte content one distinguished in tills sill lithoSlr.ltigmphit units. Intcl])rclnlion of the calcuhucd pctrog.mphic coefficientS Jed to the identificnlion of the floes of the older tills, occurring within the younger tills. An nttempl. was made 10 explain the mechanism of ineorpomtion.

INTRODUCTION

The studied area occurs to thc north and north-east from Sompolno in the ranges of Kujawy Lakeland (Fig. I). The pre-Quaternary substratum consists of Mesozoic (mainly Cretaceous) and Tertiary sediments, mostly Oligocene sands and Miocene clays, as well as Pliocene clays (E. Ciuk, 1979; E. Ciuk, A. Mari.kowska, 1981).

The petrographic and mineralogical studies were perfonned for profiles of four bo- reholes: O",boh;ka-II (0-11), M~koszyn Grochowiska-I 0 (MG-I 0), Mqkoszyn Grochowi- ska-20 (MG-20) and Mqkoszyn Grochowiska-25 (MG-25).

The profiles were obtained from the boreholes, that the Department of the Brown Coal Deposits of the Polish Geologica! Institute commissioned to perform in 19851"1986 (the profiles MG-IO, MG-20 and MG-25) and in 1989 (the profile 0-11) for prospecting purposes, and afterwards they were used in 1994 for preparation of the Detailed geological map of Poland in the scale 1:50000, the Sompolno sheet.

In the paper one presents the results of the petrographic and mineralogical studies of tills, occurring in the above-namcd boreholes (cf R. Zabielski, 1995). The studies wefe performed in the Laboratory of Lithology of the Department of Quaternary Geology of the Polish Geological Institute in Warsaw. For the tills one determined petrographic composi-

(2)

"4

D-11

" SOMPOLNO

=" ;:::::;

Fil. Ll.oclItion oft~ area orinvestiglllioll$

PoIotenic obszaro badari

RyS7.Drd Znbielsti

MG·25

2 3 4 5km

tion of gravels (5.0--10.0 mm fraction), heavy minerals (0.1-0.25 mm fmetion), content of calcium carbonate

«

0.1 mm fraction) and grain size.

The two first features are characterised in details, .md the olher ones are outlined. The results of lhe analysis of lhe pctrognlphic composition of gravels were especially useful, as well as the petrographic coefficients, calculated on the basis of the petrographic composi- tion, namely O/K, K/W, AlB, where: O-Iolal of the Scandinavian sedimentary rocks (Wp

+ Op + Lp + Pp); K - total of the Scandinavian crystalline rocks and quartz (Kr + Qp); W - total of the Scandinavian limestones and dolomitcs (Wp + Dp); A - lotal of the Scandinavian rocks not resistant to weathering (Wp + Op + t.p); B - (olal of the Scandinavian rocks resistant to weathering (Kr + Pp + Qp).

LITHOLOGIC CHARACTERISTICS AND CHRONOSTRATIGRAPHY

On the basis of the perfonned studies, one divided the tills occurring in (he profiles into si;ll separate lithostratigraphic units (I-VI, Fig. 2), differing first of all in petrographic composition of gravels, heavy mineral composition and to lessere;lltent grain size. The tills are characterised in the sequence from the bottom toward the top. Petrographic composition of the gravels and the respective values of the petrographic coefficients. and the heavy mineral composition one presented in graphs (Figs. 3-8) as means for a peculiar till (excluding the

noes,

whose values of the petrographic coefficients arc given separately).

The plots present the vertical variations of the calcium carbonate content as well.

One should accentuate, that during the distinguishing of tills one accepted the opinion, that tills connected with (he consecutive glacial periods may be characterised by petro·

graphic coefficients depending on the petrographic composition of gravels O. Rzechowski.

(3)

D- l l mal

.,.Iol

. <

0

,

Application ofa petrographic method to identification ..

MG- tO

"JIll! .. )

-

wm'~M m10ra

\LQJJJ OJ

MG-20

..,u( .. ) o •

=

emJlIl!1I p!mki &Iill)' mImi

lllJQIllU J!IItS

1/

iill

Fig. 2. Geologica.l profilcs of tile invcstigaled bon:holcs

MG-25

..,0.(..)

- •

I!~l<

285

l-Vl- lilhostratigrnphica.l units; Pl -

n oes

of Pliocene; Tr - Tertiary; numbers at the right side of the profilcs - samplcnumbelS

Profile geologiczne badanych otworOw wiertniczyc:h

I-VI- jcdnostki litostrntygraficUlC:; PI- Jay plioccnskie, Tr- tnec:ion¢; lic:zby z prnwej strony profil6w- numery probek

(4)

286 RyS7..11rd Z:lbielski

1971, 1974, 1976, 1977, 1980,1982; K. Chamn-Maryl et al., 1991; W. Stankowski, D.

Knyszkowski, 1991; B. Gronkowska, 1993; K. Kenig, 1993). The differences in petro- graphic composition probably resulted from coming of the rock material from various alimentation areas in Scandinavia, what one may connect with migration of the glaciation centres and change of the location of the ice di vide. This change was ascertained by textural studies of tills as well as on the basis of the distribution of several lens of kinds of the Scandinavian erratics on the European continent (1. Dudziak, 1961; J. Nunberg, 1971; I, Ehlers, H. J. Stephan, 1983).

Till I occurs in the profile MG-20, where it achieves thickness of c. 2 m (Fig. 2), It is gray sandy till with gravel, overlying Tertiary sediments. One distinguished it in a uniform till complex only in the profile of the borehole MG-20 due to a different petrogrnphic composition of gravels, when compared with the remaining part of the complex. This till may be a floe in the bottom oftillil (Fig. 3). Probably the till, occulTing in the lowermost part of the profile MG-2S directly on the Miocene beds (Fig. 2), is the age equivalent of the discussed till I, however, due to low content of gravels, it was not investigated.

The values ofthc pctrographic coeff.cients of the till I (Fig. 3) are comparable with the coefficients of the lithotype PI distinguished by 1. Rzechowski (1971, 1974, 1977) in the group of tills of the South-Polish Glaciations in the area of central Poland. Regarding this fact and the lowermost stratigraphical position of the tilt (it occurs under the till

n

of the accepted. connection with the San Glaciation), apparcntly one may relate this till to the Nida Glaciation (/nstrukcja ... , 1991).

Till 11 occurs in all the investigated profiles (Fig. 2). The till is clayey-sandy (locally only sandy one, as in the profileMG-2S), gray. with occasional pebbles of the Scandinavian rocks. Prevailing of crystalline rocks over Scandinavian limestones and the high value KIW with respect to other coefficients (this causes that the plot has a shape of the upside-down- oriented letter V. Fig. 4) are the characteristic features of this till.

Frequency of the local rocks is small. Only in the profile 0-11 the high content of the local limestones was found, what influenced the perccntage content of the remaining components, though thc proportions of the main groups, i.e. crystalline rocks and Scandi- navian limestones are similar to those in the other profiles. Domination of the local limestones in the profile 0-11 might be of a local importance (e[ 1. Rzechowski, 1980).

because this profile occurs in a significant distance from the other ones (Fig. I).

The till witha high valueofthceoefficient K!W occurs commonly in the area of Western Poland and it is connected with the South-Polish Glaciation. J. E. Mojski (1985) relates the till with this kind of the coefficient value with the sccond stadial of the South-Polish Glaciation (in the tripartite division) and 1. Rzcchowski (197 J, 1974, 1977) with the second and the third lithotype of the South-Polish tills.

The floes of older sediments one observed in the till TI. In the profile 0-11 they are compact silts and overlying gray and gray-green clays with yellow and olive mottles, and with slips. almost calcareous-free. occurring at the depth of 56.3-53.6 m. At the border of the clays with the overlying till one observed disturbances in form of small involutions. On the basis of the macroscopic features of the sediments, their gcneml type and the disturb- ances Ht the clay/till border one may ascertain, that Ihese sediments are a floe of PI iocene beds, because till under- and overlying lheclays and silts, has the same petrographic features (Fig. 4). A similar floe of the Pliocene clay occurs at the depth of 46.1-43.8 m (profile

(5)

MG-20

l1 :~o.;q"

t:t ",I~ I'

0

Tr

Application or /I pctroy..phic method to identification ... 287

,

b

c d

~

IITJ

5 . .

'

1

t::: JL

1. 4 4)4

.,.".'"

~

lW

J

rr ""'~~"" 1)1 OJ'J U1 A P Bel CDS

O/~ J/I A/8

Fig. 3. l'elrogmphic and mincmlogical clulmctcristiQ; orthc till I

11 _ pelrOgmphical CQmposition or gmvels; Kr _ crystalline rocks, Wp -Scandinavian limestones, Dp - Seandinavi:ln dolomite~ Pp -Scandinavian sandstones, Qp - Scnndinnvian quartz, W - local limestones, P- local $Md$lones, Mt - Palzocene mudstones, J - others; numbers in the quanel1 - ~mplc numbers; b - pclrogrnphical coefficients: O/K, KIW, AlB «(or explamuioM 5ee the text); c - heav, minerals: A - :lmphibolc, p - p,roxene. 8 - biotite, G - lamet, T -tourmaline, C - rircon, D - dislhcne, S - sllIurolitc; d - contcnt of calcium carbonate; otno::rcxplnnGlionl see Fig. 2

Pe1roll'llficzna i mineraJogiC2;ll:l eh3r.Wcryst,ka ,lin, twalowcj I

a - sklad pe!rogmficZllY twir6w: Kr - sbly krystalicr.nc, Wp - w:lpicnic sknndynawskM::. Dp - dolomily sk:mdynowskic, Pp - pi:lSkowcc sl:andyn:lwskic. Qp - kwan:: skandynnwski. W - wapicnie [okalne. P - piaskowcc !okalne, Mj - mlllowce p:lleocc"skic, [ - innc: [ic7by w kwndrnlach - numery pr6bc:k; b - wspdlClynniki pclrogmficZllc: OIK, KJW, AlB (objn!nicnin w Ick$cie); c - mincmly ciQ~ic: A - amfibo!, P- piroben, B - biot,l, G - gl"".II1nt, T - lUrmnlin C -cyrkon, D- dyslcn, S- staurolit: d - 2.01wart~ wc:,lanll wapnin: powslnte obj~nicniajnk nn fig. 2

0·11), above the till IV (Figs. 2, 6). Floes occur as well in the profile MG·25, but they are fragments of older tills (probably of the Nida Glaciation). Onc distinguished them on the basis of their petrographic composition, which differed from the composition, generally observed in the till O. The distinguished floes occur at the depths of c. 41-40 and 37-34 m as well as 19-17.3 m. Palaeozoic limestones (42-50%) prevail on crystalline rocks (27- 28%) in the petrographic composition of the gravels (in the floes), with a scarce dolomite share (2-5%) and a little higher content of the Scandinavian sandstones (4-5%) and quartz (7-9%). This caused different proportions of the petrographic coefficients than for the till II (Fig. 4). Among the local rocks, limestones (5-6%) and sandstones (3-4%) prevail. Till balls and wood fragments arc completely absent here, whereas in the till U they occupy 3-6% of the total gravel frequency and are present there in majority of the samples.

In the heavy mineral assemblage the association: gamet·amphibole-tourmaline is ap·

parent, though the percentage contents of the m incrals in various profilcs may be different.

One does not observe any decrease of calcium carbonate content within the limits of the distinguished floes; Ihis content equals 7-9% and is the same as in the till U.

Till

m

occurs first of all in the profile MG-20, where it achieves the thickness of c. 12 m, and in the profile MG· I 0 in the lower part ohhe glacial comple)!; at the depth of34.5-33.5 tn. II is gray clayey till with occasionally present pebbles of the Scandinavian rocks. The lil1 was distinguished on the basis of the values of the petrographic coefficients, among which the O/K and AlB are extremely divergent, and the KJW achieves an intenncdiate

(6)

28'

Rysurd Zabielski

· . ([L:. 1::::: .... . ~ .

. ~ ... .. " ~"'.~ ~

~ , " ~

-II

;"

~:C: , . "'- .

~ ~ . . .. : .. "."' . r

r\ ~~I

IEll

l.A (i]jgjj~ '

.. """" . . . " U IJI UI ~'" (.1

,. 1If '"

(7)

Applicalioo of a pctro&rapliic method IQ ilicntific:lIicwI... 289

Fig. 5. Pl:trogropbic and minc:mJogicaJ CliaroctcriSlics orllic till III Foruplllllalions see Figs. 2 and 3

Petrogralic1.n3 i minemlogic'l.n.l ch:lmklerySlyka gliny zwalowej III ObjMnieninJak na fig. 2 i 3

value or a value close to the AlB. The till typically has an uniform petrographic and mineralogical composition.

At the depth of28.5-27.0 m (profile MG-20) there has observed different petrographic composition of gravels, in which crysrnllinerocks(44%}distinctlydominated on Palaeozoic limestones (32%), what influenced the proportions of [he petrographic coefficienlS: O/K = 0.82, KJW

=

1.38 and AlB

=

0.66. These proportions are characteristic for the earlier described IIIIll. In the assemblage of heavy minerals, the decrease of amphibole content (6%), and domination of garnets (45%) and tourmalines (16%) are apparent. flowever.the content of CaCO} (6.2%) did not decrease, what one would expect due to the oecurrence of a weathering horizon, and what could be the reason of the high share of the crystalline rocks. Supposedly, it is a noe of older till, all the more so as the till under and above the floe showed very similar petrographic composition and similar heavy mineral and calcium carbonate contenlS.

Till of such characteristic dislribution of the values of the petrographic coefficients, i.e.

thcirdccrease from the OIK through the KJW to the AlB is similarto the youngcstlithotype of the South-Polish till, dislinguished by J. Rzechowski (1971, 1974, 1977). Both the !iIIIll

I-'1g. 4. I'clrogrnpliic and rnincmtogica! clinraclerislics ofjhe lill fI For eXI!!analions see Figs. 2 and 3

Pclrogmlic7.na i minera!ogicUla eharoklcrySlykD gtiny zwalowcj [I ObjMnieniajak na fig. 2 i 3

(8)

290 RysWtl Zabielski

0-11

PI , , . 01 i b

~

,0

I

P ..

\4

o '

rl,

,

t:.:l:1

D .. q.r,Q>I " I I)I IJi 11)1 ~P8C!tDS

,

II

iG-tO

"':_. -J

1-01

==

1.11 W

Fig. 6. Pctmgropltic:md mincrnlogiCllI characteristics of the till IV For explilJ1ations!ICC Figs. 2 3nd 3

PeU'l,lgmficzna i mincrnlogiczna char.tkterystyka gtillY zW3towej IV Obj,unicniajnk 11:1 fig. 2 i 3

and the earlier described till II in the sense of the names used for the Detailed geological map of Poland in the scale 1:50000 one may probably attribute to the San Glaciation (1r1Sfl"ukcja ... , J991).

Till IV one distinguished in the profile 0-11 at thcdeplh of 51.0-46.1 m directly on Ihe till II and in the profile MG-IO at the depth of33.5-20.0 m, where it occurs on the tillliL It is a Jight gray till of the silty-sandy variety in the profile D-l1 and the sandy one in the profile MG-IO. Taking into account [he proportions between the petrographic coefficients.

one ascertained. that in the discussed till. unlike in the earlier described ones, the coefficient O/K achieved the maximum value and the coefficient AlB ranged about I. They are plolted in the shape of the leiter V (Fig. 6), thus the proportions among them are different than in the tills II and III. K. Kenig (1993) obtained similar values of the petrographic coefficients for the tills of the Slcsin environments (occurring to the west from the studied area) and included them to the tills of the South-Polish Glaciations. J. E. Mojski (1985), quoting other authors, presents comparable values of the pelrographiccoefficients as typical of the Wilga

(9)

v

HG-JO

V

MG-20

v

'"

MG-25

.. ,

'.1

V

II o 0

Application of Il pctrogropllic method to identification ...

nl ~IL~ ~ 'k _ 1l9l

lrr;.C\lPP~IPV1I..1S Ojl Il,M AP8C1CDS

~

,.rp~Pp~'PMll.lO

", C= lUI '

1 OJ!! OJII

~

1 AP8C1CDS 1

..

11 ' l l

"

dL::~ , , ,

lr Ip~Pp~' P MI 1.i1

.. ..

AP Bel CO 5

Fig. 7. Pelrograpllic!llld mincralogical charactcristics oflhe till V

Forexpl~natiolls see Figs. 2 nnd 3

PctrograliCZll:l i millcrnlogiczM charaktcrystyka glilly zwalowcj V Obja$lIieniajak lIa lig. 2 i 3

291

1

(10)

292 Rynard Zabielski

D-II

Fig. 8. Petrographic and mirn:l1Ilogic:t1 ch!ll1lCteristics orelle till VI For explnnutions see Figs. 2 nnd)

PctrogmfiC1.l1:1. i minernlogiC1;lla chl1r.lktcrySI)'kn glin)' ~wn!owej VI

Obj~nicniaj:ik na fig. 2 i 3

Glaciation. An attention should be paid to relatively high biotite content (9-12%) in tills I-IV, which decreases to few percentage in younger tills.

Till IV has a relatively uniform petrographic composition, if compared with other horizons. where this composition is more variable. Only in the top part of the till allhe depth of21-22 m (profile MG-IO) it is a liule different. The content of the crystalline rocks and Scandinavian limestones is the same here (c. 34%), what influences the values of the petrographic coefficients, equal a~ follows: O/K = 1.04, KfW = 1.08 and AlB = 0.84. Such proportions of the cocf(icients are characteristic for the till

m

and it is not excluded, thnl within the ranges of the till IV a noc ofthc till ill may occur. Calcium carbonate content in the discussed till with respect to the other tills is high and ranges in most samples from II to 15%.

Till Vane distinguished in allihe investigated profiles. It is a gray lill of the sandy-silty variety in the profiles 0-11 and MG-IO, and sihy-clayey in the profiles MG-20and MG-25.

Average composition and the values of the petrographic coefficients one presented in Fig.

7. Despite the differences in the petrographic and mineralogical compositions in individual profiles. these lills wcrc correlated among othcr things for this reason, that they occur liS

the only ones among the sandy sediments (except of the profile MG-25, where Ihis till lies directly on the till IT). 1. Czerwonka, B. Witek (1977) obtained comparable valucs of the petrographic coefficients for the tills from south-west Poland and K. Kenig (1993) - for tills found to the west of the studied area, correlating them with the Warta Glaciation.

Different petrographic composition of gravels observed in the profile D-II at the depth of 30-3 1 m one should probably connect with the

n oe

of till Ill.

Till VI was distinguished only in the profileD-II, because in the othcr profiles the upper pruts of the drilling cores did not prescrvc. This lilllies on light gray hiatal sands, in tum underlain by the oldertill V (cf R. Zabielski, 1995). The till Vl is gray, sandy, with adistinct bipartition of its bed. In its lower part (depth 6.0-3.0 m) it has gray colour and displays weathering features, thus this part was not taken into account in further considerations. In Ihe upper part (depth 2.0-0.3 m) its colour is yellow-gray with rare pebbles of the Scandinavian rocks. Each of the parts probably accumulated at different stage, separated by n period of weathering, that was recorded in the lower part oflhe described \ill.

(11)

Application ofa petrogrol'hic method 10 idenliricnlion ... 293

The high values of the coefficients O/K Dnd NB in the upper part of the till (Fig. 8) and their significant difference with respect to the K.IW values indicate a till, different that the earlier described ones. Such proportions of the petrographic coefficients, that caused the plot shape of the letter V with sleep branches, typical of the Wisla Glaciation (J. Rzechow- ski, 1980). K. Kenig (1993) obtained similar values of the petrographic coefficients for tills occurring to the north of Konin, and she related those tills to the same glaciation.

MECHANISM OF THE FLOES INCORPORATION

The floes, occurring in the investigated tills one distinguished essentially on the basis of the different petrographic and mineralogical composition, when compared with the surrounding till. Certain researchers exclude such values of the coefficients from the calculations of the mean as the extremum ones. The present author, however, interpreted such values as an evidence of the occurring floes of the older tills. It is interesting, that the petrographic composition of the floes most frequently is close to that one observed in the older distinguished tills, where from they might have been taken by the transgressing younger inland ice. The occurrence of f10cs and glacial floes carried by inland ice has been described many times in literature (J. Weertman, 1961; R. F. Flint, 1971; G. S. Boulton, 1972; H. Ruszczynska-Szenajch, 1976; M. Pasierbski, 1984), however, the mechanism of their incorporation is discussed rather rarely.

According to G. S. Boulton (1972), the processes of glacial erosion are influenced by thermic structure of the inland ice. Within the inland ice limits one may distinguish a zone, where the rock material from the base of ice is imbibed due to rege/ation.

H. Ruszczynskn-Szenajch (1976) described the mechanism of the incorporation of the material from the base of the inland ice and fonnation of the floes, which occurred within tills or in their neighbourhood. She distinguished the floes of the glaciotectonic genesis (depressions and squeezing moraines) and the floes formed due to glacial sedimentation.

According to the latter author, the material of certain glacial floes could enter the just- melted-out and not consolidated bottom moraine as an element of an unsedate density- driven system. The floes may fonn as well due to mechanical action (decollement) of the inland ice having an uneven bottom surfuce with abundant frozen-in moraine. The glacial floes may be transported not only within the ice but also within thejusi-formed tilt.

From the J. Weertmans model (1961), concerning the mechanism of the incorporation of the large fragments of the base (Fig. 9), there appears, that the fTont of the inland ice thrusting over its forefield under certain conditions freezes to the forefield sediments. This causes the increase of the thickness of the inland ice front and incrcaseofthe strain necessary to continue the ice movement. The freezing of the sediments to the inland ice boltom causes the shifl of the isotherm O·C deeper in the base. Along this isothenn a detache surface appears similarly to the origin of the sliding plane (Fig. 10). In resull of that, the volume of the sediment (or floe), detached along the weakened COllltlC! with the base, and frozen to the ice bottom, starlS to move together with the inland ice, and subsequently the floe can be incorporated along the sliding planes into the ice body, frequently without any change of the primary structure of the sediment (M. Pasierbski, 1984).

(12)

294

A

B

c

<D

lo .. tum. 0- C' IsDt~t"" O'C',

Rys:tatd Zabielski

<D ®

Podl" ••

,,",ma ..

,,'.I. "od. , .. ,mUle]..,. do podlo . . Colol - ... ., .... I ... '" , ... d. 'D III, b ....

," .. Iei-ma 0" C IsO/hlrm O· C

<D

®

P<>dl . . .

. _.

P.dlue

._.

®

Fig. 9. Incorporntion ofbasc deposits by inl:md ice, after J, Weenm:m (1961). slightly modified A-C - consccuitive ph3ses

Inkorpornc;a osad6w podlob przt~ 11Idol6d wedtug 1. Wccrtmano (1961), nieco zmicnionc A-C - koJejne fat)'

In Ihe studied case, the occurrence of the older tills within the younger ones should be connected with cxaralion, that resulted in taking the base fragments and their lransponation either in the inland ice bottom, or along the in-glacial sliding planes. Formation of the sliding planes (strike-slip dislocations), which are of the fault nature, resulted from the exceeding of the ice resistance to shearing. The stiding planes form in the areas of the compensation strain (Fig. 10), which occur most frequently:

- whcn a passive flow of the inland ice occurs, caused by the base morphology,

(13)

AppliC1ltion of a pclrogr:l.phic method to idcntific:ltion ...

(~

Fig. 10. Model of sliding plane in compression zone or inland icc aftcr J. F. Nay (1952) Modcl plas1.tZy1.11 ~Iizgowych w strefie pasywncj Iqdolodu wedlug J. F. Naya (1952)

- close to the ice front, where the ice movement is slower than in the upper pmt of the inland ice due to ice thinning,

_ when friction of the inland ice on the base increases or the ice freezes to the base.

The moraine material occurring in the bottom of the inland ice is cut by sliding planes, stimulating fonnalion of fissures that may collect and transport the material from the base (Fig. II).

As it appears from the J. Wecrtmans studies (1961), the value of the adhesion force, that appears at the contact of ice with its base in extremal cases may exceed ten times the resistance to shearing of ice. Thus, this relation indicates, that the shear surface develops at

Fig. II. Paucrn ofincorpomlion offices Schemat inkorpor:l.cji porwak6w

por \·f1ki jloes

Podslawa Do.se

(14)

296 Rys:mrd Zabielski

the places of the [east resistance, not at the contact or tile ice frozen to its base. fncorporation of the soft bOl(om sediments as well as the dead ice with moraine (from the preceding transgression) was ascertained during transgression of the glacier Variegated in the years 1982-1983 (M. Sharp fide 1. lanin, 1993).

After the inland ice extinction the till forms, typical of a given glaciation, with floes of an older sediment (e.g. Poznan clay or an older till) embedded in it. Consequences of such process may be recorded by the petrogrnphiccomposition of gravels of the tills, what means changes of this composition and different petrographic coefficients.

Evidently, the material transported along the sliding planes nol always must occur as a block of an undisturbed structure, especially that in these planes there act shearing forces and the material taken from the base may mix with the moraine material, occurring in the bottom of the inland ice. Due to such process a partial change of the petrographic composition of the gravels may occur (especially at the COntact of the

nee

with the surrounding till), and the petrographic coefficients would have thus intermediate values between the ones of the wall till and the ones of the detached material.

FLNAL REMARKS

The above presented considerations, concerning the mechanism of incorporation and transportation of the floes of the older tills in the younger oncs have an interpretational character. The profiles of the boreholes were the studied material, thus the observation of the described phenomenon was limited to the location of the profile. Similar values of the petrographic coefficients, occurring in certain depth intervals within the vertically continu- ous complexes of tills, yielded the dividing of the tills inlo separate lithostratigraphic units, each one of the specific petrographic and mineralogical composition. According 10 the commonly accepted opinion. the units may be related 10 succeeding glaciations. whose centres changed their positions, resulting in alimentation of the rock material from various areas of Scandinavia. Changes of the petrographic composition of gravels, observed at certain depths within the ranges of the distinguished units, one interpreted as the floes of the older tills, occurring at the secondary deposit in the younger tills.

Acknowledgements. I wish to thank Prof. Dr. L. Marks for review of previous draft of the article and 1. Zaj,lczkowski for help in created computer drawings.

Zukl::td Geologii C7.W.lrt0r7,(:du P;II'iSlwowCgO tnsl)'lulU Geologic7.ncgo

W.ln;7.aw~. ul. Rakowicck~ 4 Recei .. cd: 0 1.03.1996

TralZll/U~d fry III/druj Kollowlk!

(15)

App1i~lion of a pclrogrophic melhod 10 idenliri(;a1ion ... 291

REFERENCES

BOULTON G. S. (1972) - The role of lhem1;lJ regime: in glacial sedimcnlation. In:Polnr geomorphology (cds.

R.l. Price, D. E. Sugden).lnsl. Br. Geogr. Spec.I'ub1., 4, p. 1-19.

CHOMA-MORYL K .. CZERWONKA J., MORYL J. (1991) _ Pelrogrophy and mineralogy of lills Ihe vicinily of SZamoiuJy (in Polish wilh English summruy). UAM SeT. Geogr., SO, p. 227-236.

CIUK E. (1979) - Mapa geologkzoa Polski 1:200 000, ark. Konin. Insl. Geol. W~7.nWa..

CIUK E., MANKOWSKA A. ( 1981) - Objatnit:nia do mapy goologicz.nej Polski 1:200 000 ark. Konin. Wyd.

Gool. W:US7.nwa.

CZERWONKA J., WIT[iK B. (1977)- Gmnulomclric and pctrogrnphicstudies oflills OfSOUlh-we5lcrn Poland.

Biul. InSI. Geol., JOS, p. 45-58.

DUDZIAK 1. (1961) _ Emilie boulders atlhe boundary of glaciation in lhe Westcrn OIrpathians (in Polish with English summary). Pr. Geol. Kom. Nauk. Goo!.. 5. PAN. Krakow.

BHLERS J., STEPHAN II. J. (1983) - Till fabric and ice movement in NOrlh_WcSI Europe. Balkem:m, Rotherdam, p. 207-274.

FLINT R. F. (1971)- Glacial ruld Quaternary gcology. 1. Wiley and Sons, lne. New York.

GRONKOWSKA B. (1993) - Szc~&olowa mapa gcologiema Polski 1:50 000, ark. Nowe Mias\o Md Pilic~.

Bad:mia lilologiQno·pctrOgraliel./lC osadOw c:t.wanorn;dowych. An::h. Pans\. InSl. Oeol. Warszawa.

INSTRUKCJA w SPRAWIE OI'RACOWANIA I WYDANIA SZCZEG6t.OWEJ MAPY GEOLOGICZNEJ POLSKI W SKALII:50000(I99I)- Patist.lnSt. Ceol. Wam:awa..

JANIA J. (1993)-GJacjologia. PWN. WnrsZOlWU.

KENIG K. (1993)- S:tC~g610wa mapa geologicwa Polski 1:50000, ark. Slesin. Badrulia lilologicwo-petrogra- riczne osad6w czwartorn;dowych. Areli. Pans!. Inst. Geol. Wnrst.1Wa..

MOJS KI 1. E. (1985) - Geology of Pol~nd, I. S!r.Iligropliy, part. 3b. Cainol..oie. Qunlcrnary .Inst. Geol. Wars7.nwa.

NAY J. F. (1952) - The mc(;hanics of glacier now. 1. G!:lCiol., 2, p. 82-93.

NUNBERG 1. (1971) - An application of Slotistienl rncthods to the. investigations of Fcrmo-Scandirul erratic boulder associations from lhe. gl:ICial deposits of tho::. north-castcnl Poland (in Polisli with English summary).

Stud. Geol. Pol.. 37.

PASIERBSKI M. (1984) - Struklum moren t'l..olowychjako jeden 71! wska7.11ik6w sposobtJ deglacj:u:ji obszaru oSlatnicj!:o :iJodowoeenia w I'ols~. RO"lprn.wy UMK. Toruli.

RUSZCZYNSKA-SZENA1CH H. (1976)- Glacirectonicdcpressions and glacial mflS in mid'caslcrn Poland (in Polish with Englisli summary). Stud. Geol. Pol., SO.

RZECHOWSKI J. (1971) - Granulornelric-pclrographic propenics of the till in drainage basin of lhe middle Widawka Biul.lnsl.Gcol., 254. ".III-ISS.

RZECHOWSKI J. (1974) - On 1i11101ype5 of Lower and Middle Pleistocene li1J$ in Polish Lowland (in Polish with English summary). Zcsz.. Nauk., UAM, Scr. Gcogr.,10, p. 87-99.

RZECHOWSKI J. (1976) - Lilhological JlCCuliarilics of Polish Lowlands tills. ZCst. Nallk .. UAM. Su. Geogr ..

12. p. 33-48.

RZECHOWSKI J. (1977) - Main lilOOtypcs o(lills in the Cenlml Polish an:3. Biul. Inst. Geol., 305, p. 31-43.

RZECHOWSKI1. (1980) - An allcmpl of litl10strntigrnphical subdivision of the VistullaA glacintion lills in Poland. Quatcm. Stud.,2. p. [07-120.

RZECHOWSKI J. (19g2) - Dependence ofliUlilnology on properties of U ItX::Il Qu:uem:lry bedrock in Cenlrnl Poland. 5iul.lnst. Gcol., 343. p. 111-134.

STANKOWSKI W., KRZYSZKOWSKI D. (991)- The Qualernary stmligmphy oflhe Konin area (in Polish wilh English summary). In: przcmiany 'rodowiska gcografiC1".ncgo obS"auu Konin-Turek. Wyniki rcalizacji Programu RR.Il. 14 wokresie 1986-I990(ed. W. Stankowski), p. 11-31. Wyd. UAM. Pownl'i.

WEERTMAN 1. (1961)-Mechonizm for the formation of inner morains found ncar lhe. ege of cold caps and ice sheets. J. Glacial., 3. p. 967-978.

ZABIELSKI R. (1995) - Szc7.cg61owa mapa gcologiC7.l13 Polski 1 :50 000, ark. Sompolno. Badrulia litologicz- no-pclrogr-,llic-J.IlC osad6w czwarton¢owych. Arch. Pails!. lnst. Gcol. WarsUlwa.

(16)

29'

RyS7.ant Z:Jbielski Ryszard ZABIELSKI

ZASTOSQWANIE METODY PETROGRAFICZNEJ DO WYOD~BNIENIA

PQRWAKOW GLIN ZWALOWYCII

Streszczenic

B:Jdaniami obj<;to glioy zwalowe wystcpuj:JCC w profiloch" otwor6w wiertniczych 7Jokalizowanych nl! N i NEod Sompolna(Pojezicrlc Kujawskie) (fig. I). W glinoch tychokrclJono: skbd pctrogr:lJic7.nytwir6w (rrnkcja 5,0-10,0 mm), skl:ld minernlow ci~1.kich (Fmkcja 0.1-0,25 mm), 1.awnrtoot wcglanu wnpnia (Frakej::. < 0,1 Inm) i uzi3ll1icnic. W :lrtykulc polotono naeisk PI7.edt: wstystkim na wyoiki hadan dw6ch picrwszych cech, a pozosllllc om6wiono og610ic. S7.c7.cg6Inc 7.nIK:;tCnic prq intcrprt:t:ICji miDI)' w:utoki wsp61czynnik6w pclrogrnfiCl.nych O/K, KIW i AlB, obliczonc na podstawicskladu pcttogmlicr.ncgo twirow. gdzie: O- sumaskondynawskichskal osadowych (Wp + Dp + t.p + Pp); K - suma skat krys!aliCVIych i kw=u sbndynawskiego (Kt + Qp); W_ suma wapieni i dolomi!6w sJrondynawskich (Wp + Dp); A - suma skandynawskich skrll nicodpornych na wielT7.enie (Wp + Dp + t.p); B - suma skandynawskich skat odpornych n~ wic!ranie (Kr+ Pp + Qp). D3ly onc

podstaw~ do podzialu glln i wyad~bnicnia w nich porwak6w os~d6w s!aruych (fig. 2-8).

Zblitonc wOl1oki wsp6IC1.ynnik6w petrogmfic;u1ych, uzyskane w pewn ych jnlelW~lach glcbokoilciowych w obrcbie ciqgJych pionowych komplcl;s6w glin 1.walowych, pozwolily podzicli~ gliny na 6 od~bnych jcdllOS!ck litos!rntygrnfiC1.l\ych chnmktery"l,uj~cych si(: okrd1onym sklndcm pclrogrnficznym i mincrnlnym (J. Rzcchowski, 1971,1974,1976,1977,1980.1982; K. Choma-Moryl i in., 1991; W. Stankowski, D. KrLyS"Lkowski, 1991; 8. Gronkowska, 1993; K. Kenig, 1993). Zgodnie 1. powsze:::hnic panujqcym pogl~rn mog~ onc by~ zlVi~;f.:lIle z kolejnymi 7Jodowaceniami, ktorych centrum zmicnialo swc p%ttnie, co 1. kolei wplywa/o nn pobicmnic materialu skalnegOZrOtnychobszamw Sk~ndynawii (J. Dudl.iak. 1961;J. Nunbcrg, 197 I ;J. Ehlers, H. J. Stcphan, 1983). Wydzlclonc jcdnOSlki I ilOl>trnlygroficzne mOZna przyporz:jdkowaC odpowicdni m jeunOSlkom chronoslrn- tygrafic"l.nym (J. Rzcchowski, 1971, 1974, 1976. 1977, 1980; J. CZCrwOlli:;l, lJ. Witek. 1977: J. E. Mojski. 1985;

IlIslrllkcja ...• 1991; K. Kenig, 1993).

Zmienno~ci skladu petrogrnficzncgotwirOw, 7.aobscrwowan-e n:!. pewnychglebokokiach w obrebie wydziclo- nych jednostek litostrntygrnfiC".lIIych, 1.interpretowano jako porwnki SIarS"l.ych glin 1.wnlowych wystepuj:\CC nn wt6mym zlo~u w obrebie gtin mlodszych (fig. 4-8). Na uwage z.:lSluguje f1lk1, toll sklad petrogrofktny twir6w wydzic[onych porwllk6w w wiekszo~ci prLypntlkow jest b:m:lzo zblitony do ~k/adu l.aobserwowanego w glinnch 51:lrS%ych. Z kt6rych prnwdopo<.lobnic mogly by~ one pobicrnnc pr£c7. trnnsgrcduj~cy m/odszy l~doIOd.

Powstanic porwilkow n~!e1.y wi'lzac! Z cgz:llllCjq i inkorporacj'l osad6w podlot., (fig. 9). W wyniku cgtnrncji os:ldy po<.Ilota by/y odkluwnne przez transgrodujqcy l'IdoIOd. Odlqczonc ft:lgrncnly podlotadosl:lwaly sic w obreb l:\dolodu ijego mon:ny {fig. 10, II) w.wlut planczyzo slizgowych (J. F. Nay. 1952; J. Wccl1num. 1961; R. F.

Flint, 1971; G. S. Boulton, 1972; H. RuS"£czyriskn-5zcnnjch, 1976; M. Pasierbski, ]984).

Po stopieniu Illdoladu powstala glina zwalowa wt:lik:iwa uanemu zlodowaceniu "I. porwakami SI:lf'$7.t:go osOOu (np. slnrszcj gliny zwalowej, ilu pliocdskicgo jak w przypadku otworu wic:nnicu;go D-]]) w jej obn;bic.

Konsckwcncje t:lk 7.achodlllccgo procesu rnogll by~ zapisane w sktadzic pettogrnfic7.nym 7.wirow gIi1l1.wn/owych, co wyrain WliennoS~ Icgo slcladu w profilu i adrnicnne wsp6lczynniki petrogrnficr.ne.

Cytaty

Powiązane dokumenty

1 Kodeksu postępowania cywilnego prokurator może żądać wszczęcia postępowania w każdej sprawie, jak również wziąć udział w każdym toczącym się już postępowaniu,

−−−− współpraca z urzędowymi jednostkami kontrolnymi w innych państwach w zakresie kontroli jakości handlowej artykułów rolno-spoŜywczych, w tym wymienianie

Plik pobrany ze strony https://www.Testy.EgzaminZawodowy.info.. Wi cej materia ów na

Wydaje się jednak, że John Mandeville — stary, schorowany człowiek, przebywający w Leodium, chciał także stworzyć summę wiedzy geograficznej swoich czasów na

Można jednak na obraz kultury w „Historia Apollonii regis Tyri” spojrzeć bardziej pozytywnie, im więcej szacunku ma się wobec kultury późnoantycznej z jej postępującą

Możliwe, że jedną z przyczyn nie- ukończenia kursu przez niektórych studentów była zbyt wielka kondensacja informacji, poza tym obecna forma nauczania języka

Wokóá mistrza gromadzą siĊ uczniowie, którzy sáuchają go, uczą siĊ od niego, korzystaj ą z jego dorobku, a czasem kontynuują jego dzieáo.. Idą dalej drogą,

Odpis z ksiąg grodzkich krzemienieckich zawierający skargę ihumena Poczajowskiego Hioba Zelezo przeciwko Kasztelanowi Bielskiemu Andrzejowi Firlejowi za nasłanie na monaster