• Nie Znaleziono Wyników

On a convex class of univalent functions

N/A
N/A
Protected

Academic year: 2021

Share "On a convex class of univalent functions"

Copied!
8
0
0

Pełen tekst

(1)

U N I V E R S I T A T I S M A R I A E C U R I E - S K Ł O D O W S K A L U B L I N – P O L O N I A

VOL. LX, 2006 SECTIO A 31–38

URSZULA KORZYBSKA, KAROL KOWALCZYK and PAWEŁ WÓJCIK

On a convex class of univalent functions

Abstract. For some M > 0 the classes Qn(M ) of all functions z 7→ f (z) = z +P

j=n+1ajzjanalytic on the open unit disk ∆, and such that |f00| ≤ M on

∆, consist only of univalent starlike or convex functions. In the article we get some sharp results in the classes Qn(M ), that improve Theorem 5.2f.1 and Corollary 5.5a.1 from the monograph [2] of S. S. Miller and P. T. Mocanu. Ap- plying our results we construct some not trivial examples of univalent starlike or convex functions.

Let H (∆) denote the class of all analytic functions on the unit disk

∆ = {z ∈ C : |z| < 1} and consider the following convex subsets of H (∆):

An=n

f ∈H (∆): f(0) = f0(0) − 1 = 0, f(j)(0) = 0 for 2 ≤ j ≤ no , A1=f ∈H (∆): f(0) = f0(0) − 1 = 0 ,

Qn(M ) =f ∈ An: f00(z)

≤ M for z ∈ ∆ , M > 0, n = 1, 2, . . . . Clearly, the classes

Qn(M, α) = (

f ∈ Qn(M ) : f(n+1)(0) (n + 1)! = α

)

, α ∈ C, are empty for |α| > M/ n2+ n. Also

An⊃ An+1 and Sc ⊂ S ⊂ S ⊂ A1,

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Univalent, starlike, convex functions.

(2)

where Sc, S and S consist of all classically normalized analytic functions on ∆ that are univalent convex, univalent starlike and univalent :

f ∈ Sc if and only if f ∈ A1 and Re



1 +zf00 f0



> 0 on ∆,

f ∈ S if and only if f ∈ A1 and Re zf0 f



> 0 on ∆, and

S = {f ∈ A1: f is an injection},

see [1]. Moreover let Sc(β), S(β) denote subsets of suitable classes Sc, S: f ∈ Sc(β) if and only if f ∈ A1 and Re



1 +zf00 f0



> β on ∆,

f ∈ S(β) if and only if f ∈ A1 and Re zf0 f



> β on ∆, where 0 ≤ β < 1.

An extension of the Theorem 5.2f.1 [2] and a generalization of the Corol- lary 5.5a.1 [2] contains

Theorem 1.

(i) max{M > 0 : Qn(M ) ⊂ S} = max{M > 0 : Qn(M ) ⊂ S} = n, (ii) max{M > 0 : Qn(M ) ⊂ Sc} = n

n + 1.

Proof. Consider f (z) ≡ z + M zn(n+1)n+1. Clearly f ∈ Qn(M ) and if M > n, then f0(z) ≡ Mn Mn + zn vanishes on ∆, i.e.

max{M > 0 : Qn(M ) ⊂ S} ≤ max{M > 0 : Qn(M ) ⊂ S} ≤ n.

Also zf00(z)/f0(z) ≡ nM zn/(n + M zn), and if M = n/(n + 1) + ε, 0 < ε <

n2/(n + 1), then

znlim→−1

zf00(z)

f0(z) = −n (n + ε (n + 1)) n2− ε (n + 1) < −1, i.e.

max{M > 0 : Qn(M ) ⊂ Sc} ≤ n n + 1. Observe now that for f ∈ A1 we have

(1) z2

Z 1 0

tf00(tz)dt ≡ Z 1

0

∂t f0(tz) tzdt ≡ zf0(z) − f (z) and

(2) z2 Z 1

0

(1 − t) f00(tz) dt + z ≡ Z 1

0

∂t f0(tz) (1 − t) zdt + z ≡ f (z).

(3)

Let f ∈ Qn(M ). By the maximum modulus theorem, for z ∈ ∆ we get

|f00(z)| ≤ M |z|n−1 and hence, according to (1)–(2),

f0(z) − f (z) z

≤ M |z|n Z 1

0

tndt = M |z|n n + 1 and

f (z) z

≥ 1 − M |z|n Z 1

0

(1 − t) tn−1dt = 1 − M |z|n n2+ n > 0 whenever M ≤ n(n + 1). Thus for M = n and z ∈ ∆ we get

zf0(z) f (z) − 1

≤ nM |z|n

n(n + 1) − M |z|n = n|z|n

n + 1 − |z|n < 1, i.e. f ∈ S and

max{M > 0 : Qn(M ) ⊂ S} ≥ n.

Similarly, take any f ∈ Qn(M ). Then |f00(z)| ≤ M |z|n−1 for z ∈ ∆ and adding (1) and (2) we get

Z 1 0

zf00(tz)dt + 1 ≡ f0(z), i.e. |f0(z)| ≥ 1 − M |z|nR1

0 tn−1dt = 1 − M |z|n/n > 0 whenever M ≤ n.

Thus for M = n/(n + 1) we obtain

zf00(z) f0(z)

≤ nM |z|n

n − M |z|n = n|z|n

n + 1 − |z|n < 1, i.e. f ∈ Sc and

max{M > 0 : Qn(M ) ⊂ Sc} ≥ n n + 1.

 From the proof of Theorem 1 it follows

Corollary 1.

(i) If f ∈ Qn(M ), 0 < M ≤ n(n + 1), then

zf0(z) f (z) − 1

≤ nM |z|n n(n + 1) − M |z|n for all z ∈ ∆.

(ii) If f ∈ Qn(M ), 0 < M ≤ n, then

zf00(z) f0(z)

≤ nM |z|n n − M |z|n for all z ∈ ∆.

(4)

Example 1. As the first application of Theorem 1 we examine the following function

z 7−→ f (z) = z + λ

−

n

X

j=1

ajz2j−1+ tan z

, where

tan z =

X

j=1

ajz2j−1.

By definition, the tangential function is analytic on C \ {π/2 + kπ : k = 0, ±1, ±2, . . .}, so the seriesP ajz2j−1 is convergent on {z ∈ C : |z| < π/2}.

Using induction, we deduce that all the Taylor coefficients aj are strictly positive. By the identity tan z cos z ≡ sin z we obtain the formula aj = Tj/(2j − 1)!, where Tj2j−12 Tj−1+ 2j−14 Tj−2− . . . + (−1)j−1 2j−12j−2T1 = (−1)j−1, T1 = 1, whence T1= 1, T2 = 2, T3= 16, T4= 272, T5 = 7936, . . . , i.e.

tan z ≡ z + 1

3z3+ 2

15z5+ 17

315z7+ 62

2835z9+ . . . . Thus f ∈ A2n,

f00(z) = λ

−

n

X

j=2

(2j − 1) (2j − 2) ajz2j−3+ 2 tan z 1 + tan2z

 and

f00(z) ≤ |λ|

−

n

X

j=2

(2j − 1) (2j − 2) aj+ 2 tan 1 + tan31

= 2 |λ|

−

n

X

j=2

(j − 1) (2j − 1) aj+ tan 1 + tan31

. Hence f ∈ S whenever

|λ| ≤ n

n

X

j=2

(j − 1) (2j − 1) aj + tan 1 + tan31 and f ∈ Sc whenever

|λ| ≤ n

(2n + 1)

−

n

X

j=2

(j − 1) (2j − 1) aj+ tan 1 + tan31

 .

(5)

In particular we get the function f (z) = z + λ



−z − z3 3 − 2

15z5− 17

315z7+ tan z

 which is starlike for

|λ| ≤ 2.141 < 4

tan 1 + tan31 − 52/15 and convex for

|λ| ≤ 0.237 < 4

9 (tan 1 + tan31 − 52/15). Example 2. As the next application we examine the function

f1(z) ≡ z + λ

 1 −z2

2! + z4

4! + . . . + (−1)n z2n (2n)!



− λ cos z

= z − λ



(−1)n+1 z2n+2

(2n + 2)! + (−1)n+2 z2n+4

(2n + 4)! + . . .



with λ ∈ C. Then f1 ∈ A2n+1 and f100(z) = λ



−1 + z2 2! −z4

4! + . . . + (−1)n−2 z2n−2 (2n − 2)!



+ λ cos z

= λ



(−1)n z2n

(2n)! + (−1)n+1 z2n+2

(2n + 2)! + . . .

 . So for z ∈ ∆ we have

f100(z) < |λ|

 1

(2n)!+ 1

(2n + 2)! + . . .



= |λ|



cos i − 1 −1

2 − . . . − 1 (2n − 2)!



= |λ|

cosh 1 −

n−1

X

j=0

1 (2j)!

.

Applying Theorem 1, we deduce that the function f1∈ S whenever

|λ| ≤ 2n + 1 cosh 1 −

n−1

X

j=0

1 (2j)!

,

and also f1∈ Sc if

|λ| ≤ 2n + 1

(2n + 2)

cosh 1 −

n−1

X

j=0

1 (2j)!

 .

(6)

Example 3. And another example similar to the last one. The function f2(z) = z + λ

 z −z3

3! +z5

5! + . . . + (−1)n+1 z2n−1 (2n − 1)!



− λ sin z with λ ∈ C is in class A2n. Thus f2 ∈ S whenever

|λ| ≤ 2n

sinh 1 −

n−1

X

j=1

1 (2j − 1)!

and f2∈ Sc whenever

|λ| ≤ 2n

(2n + 1)

sinh 1 −

n−1

X

j=1

1 (2j − 1)!

 .

Theorem 2.

(i) max{M > 0 : Qn(M ) ⊂ S(β)} = (1 − β) n(n + 1) n + 1 − β, (ii) max{M > 0 : Qn(M ) ⊂ Sc(β)} = (1 − β) n

n + 1 − β.

Proof. Let f (z) ≡ z +n(n+1)M zn+1. It is clear that f ∈ Qn(M ) and f0(z) = 1 + M zn/n, f00(z) = M zn−1. For M < n we have

zf00(z)

f0(z) = M zn 1 + M zn/n

zn→−1

−→ −M

1 − M/n < β − 1 whenever M > (1−β)nn+1−β, so that

max{M > 0 : Qn(M ) ⊂ Sc(β)} ≤ (1 − β) n n + (1 − β). Similarly

zf0(z)

f (z) = z + M zn+1/n z + M zn+1/ (n(n + 1))

zn→−1

−→ 1 − M/n

1 − M/ (n(n + 1)) < β for M > (1 − β)n(n+1)n+1−β and therefore

max{M > 0 : Qn(M ) ⊂ S(β)} ≤ (1 − β)n(n + 1) n + 1 − β.

Similarly to the proof of Theorem 1, if M = n(1 − β)/(n + 1 − β), then

zf00(z) f0(z)

≤ nM |z|n

n − M |z|n = n(1 − β)|z|n

n + (1 − β) − (1 − β)|z|n < 1 − β, and from this we see that

max{M > 0 : Qn(M ) ⊂ Sc(β)} ≥ n(1 − β) n + (1 − β).

(7)

Analogously,

zf0(z) f (z) − 1

≤ nM |z|n

n(n + 1) − M |z|n = n(1 − β) |z|n

n + (1 − β) − (1 − β)|z|n < 1 − β, so we have

max{M > 0 : Qn(M ) ⊂ S(β)} ≥ (1 − β)n(n + 1) n + 1 − β,

the desired result. 

Example 4. Similarly to Example 2 we consider the function k(z) = z + λ

 1 −z2

2 +z4 4



− λ cos z with λ ∈ C, which is in A5. Since the second derivative of k is

k00(z) = λ



−1 + z2 2



+ λ cos z, we get

k00(z) = |λ|

z4 4! −z6

6! +z8 8! − . . .

≤ |λ| 1 4!+ 1

6!+ 1 8!+ . . .



= |λ|



cos i −3 2



for z ∈ ∆. Hence from Theorem 2 we deduce that if 0 ≤ β < 1 and

|λ| ≤ 30 (1 − β) (cosh 1 − 3/2) (6 − β), then k ∈ S(β). Also if 0 ≤ β < 1 and

|λ| ≤ 5 (1 − β)

(cosh 1 − 3/2) (6 − β), then k ∈ Sc(β).

Example 5. For the next application of Theorem 2 assume λ ∈ C and 0 ≤ β < 1, and consider the function

h(z) = z + λ

 z −z3

3! +z5 5!



− λ sin z.

Obviously

h(z) = z + λ



−z7 7! +z9

9! − . . .

 ,

(8)

i.e. h ∈ A6. For the function h we have a sharp bound

h00(z) = |λ|

−z5 5! +z7

7! − . . .

≤ |λ| 1 5!+ 1

7!+ 1 9! + . . .



= |λ|



i sin i − 1 − 1 3!



= |λ|



sinh 1 −7 6

 for all z ∈ ∆. Therefore, if

|λ| ≤ 42 (1 − β) (sinh 1 − 7/6) (7 − β), then h ∈ S(β), and if

|λ| ≤ 6 (1 − β)

(sinh 1 − 7/6) (7 − β), then h ∈ Sc(β).

Acknowledgments. The authors would like to express their gratitude to Professor Wojciech Szapiel for suggesting the problem and several stimulat- ing conversations.

References

[1] Duren, P. L., Univalent Functions, Springer-Verlag, Heidelberg–New York, 1983.

[2] Miller, S. S., Mocanu, P. T., Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York–Basel, 2000.

Urszula Korzybska Karol Kowalczyk

Institute of Mathematics and Informatics Institute of Mathematics and Informatics

The John Paul II The John Paul II

Catholic University of Lublin Catholic University of Lublin

ul. Konstantynów 1 H ul. Konstantynów 1 H

20-708 Lublin, Poland 20-708 Lublin, Poland e-mail: ulakorz@kul.lublin.pl e-mail: charles@kul.lublin.pl Paweł Wójcik

Institute of Mathematics and Informatics The John Paul II

Catholic University of Lublin ul. Konstantynów 1 H 20-708 Lublin, Poland e-mail: wojcikpa@kul.lublin.pl Received February 24, 2006

Cytaty

Powiązane dokumenty

Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) &gt; 0 inside the disc |«| &lt; rn,

It follows at onoe from relation (2.1) that inequality (1.2) holds, then So C So- In particular, the class So contains known subclasses ctf the class of univalent

The region D(r, k) of variability oj log/' (z) for a fixed z, zeK,, and f ranging over the class Lk of k-symmetric close-to-convex functions is a closed, convex domain symmetric

This problem was investigated by many authors for various classes of holomorphic functions usually under the assumption of univalence.. An interesting result for the class

A Distortion Theorem for Close-to-Convex Functions Pewne twierdzenie o zniekształceniu dla funkcji prawie

On Some Generalization of the Well-known Class of Bounded Univalent Functions 51 is an extremal function in many questions investigated in the class S(M).. It is evident that,

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

A packed bed of catalyst AT-20 (chlorinated alumina with 0.25 wt % of platinum) is located on the inside of the tubes. Appendix O: Scheme of both options) The membrane separates