• Nie Znaleziono Wyników

On the Univalence of Taylor Sums for a Class of Univalent Functions

N/A
N/A
Protected

Academic year: 2021

Share "On the Univalence of Taylor Sums for a Class of Univalent Functions"

Copied!
4
0
0

Pełen tekst

(1)

ANNALES

UNI VEBSITATIS MARIAE C U R I E-S К Ł O D O W S К A LUBLIN-POLONIA

VOL. XVII, 9 SECTIO A 1963

Z Zespołowej Katedry Matematyki Wydziału Mat.-Piz.-Chem. UMCS Kierownik: prof. dr Adam Bielecki

FRANCISZEK KUDELSKI

On the Univalence of Taylor Sums for a Class of Univalent Functions

O jednolistności odcinków szeregów Taylora pewnej klasy funkcji jednolistnych Об однолистности частных сумм рядов Тайлора для некоторого класса однолистных функций

Let Ra, ae<0,1), be the class of functions f(z) = z+a2z2 + ... regular and univalent in the unit disc K which satisfy 91/(«) > a.

Put fn(z) = z+a2z2+ ... +anzn. L. A. Axentiev [1] investigated the univalence of the Taylor suras fn(z) for /eRo and showed that for a fixed integer n and for any feR0 we have ^fi(z) > 0 inside the disc |«| < rn, where rn is the least positive root of the polynomial 2r” + r—1. In parti­

cular fn{z) is univalent for |«| < rn.

In this paper we deal with an analogous problem for Rn and show the following

Theorem 1. If fcRa, then fn(z) is a function whose derivative has a po­

sitive real part inside the disc < rn(a) is the least positive root of the equation

4a t

(1) 2rn + r-1+---—— = 0

1 —a 1 + r Proof. From the definition of Ra it follows that

(2) 91 ~ --- > 0.

1 —a Using the Herglotz's formula we obtain

(3) 1 — a

0

e“ + z

Annales t. XVII, 1963 5

(2)

66 Franciszek Kudelski

where /u(t) is a function non-decreasing in <0,2ji> which satisfies

2n

\ dp(t) = 2n 0

The equation (3) can be brought to the form

1 f e<ł-f-(l —2a)«

e“-z

dp(t)

This implies

a~ini„n

1 f 1 + (1 - 2a) e~uz - 2 (1 - a) e~lnlz'

= -f

2tt

J

l~e~uz d/Ąt)

Separating (5)

where

the real part in (4) we obtain

<*/“(*) = 2^/ W’*»’1 *“

0

1 — (1 — 2a)r2—2arcos 6 — 2(1 — a)r"{cosnO — rcos [(n —1) 0]}

1 —2rcos0 + r2 z = rei<r, 0 = (p—t.

Suppose that 0 < r < r(a). In view of (1) and of the definition of r„(a) we obtain after multiplying both sides of (1) by (1 —«)(!-(-r):

(6) 2rn(l —a)(l + r) + (l-a)r2 + 4ar+a-1 < 0 From (6) we have

(7) --- a1- (1-2a)r2 —2ar —2(1- a)r”(l + r) (1 + r)2

The numerator of (7) is positive for r < rn(a) and less than the numerator of Fn(r, 0, a) whereas the denominator of (7) is greather, or equal to the denominator of Fn(r, 0, a) which means that Fn(r, 0, a) > a. Using (5) we see that 9?/^(«) > a on |«| = r which proves the Theorem 1.

Theorem 1'. If feRa, then fn(z) is univalent for |«| < Rn(a), where Rn(a) is the least positive root of the equation

(8) 2r“+r—1 —

1 — a

(l~r)8 1 + r = 0

Proof. Let w(r) be for a fixed a the l.h.s. of (8). For r«<O,22n(a)> we have w(r) < 0 by the definition of Rn(a) since w(0) = —1. Obviously

(3)

On the univalence of Taylor sums for a class of univalent functions 67

— w(r)/(l + r)2 > 0, and also Fn(r, 0, a) > — w(r)/(l + r)2 for r chosen.

In view of (5) we have 91/'(2) > 0 for |«| = r < _R„(a) and this proves Theorem 1'.

Putting a = 0 we obtain some results of Axentiev.

REFERENCES

[1] Л. А. Аксентьев, Об однолистности отрезков степенных рядов, Известия высщих учебных заведений, Математика, б (1960), р. 12-15.

Streszczenie

W pracy tej podaje się promienie kół jednolistności odcinków taylo- rowskich funkcji /(г) = 2+a22a+ ••• regularnych i jednolistnych w kole

|«| < 1 i spełniających tam warunek 91/(2) > a, gdzie 0 a < 1. Podobne zagadnienie w przypadku a = 0 badał L. A. Aksentiew [1].

Резюме

В этой работе вычисляется радиусы кругов однолистности част­

ных сумм тейлоровых рядов для функций /(2) = 2 + а222+ ... голо­

морфных и однолистных в круге |г| < 1 и удовлетворяющих в этом круге условию 91/(2) > а, где 0 < и < 1. Ту-же самую проблему в частном случае а = 0 (но другим методом) исследовал Л. А. Аксен­

тьев [1].

(4)

Cytaty

Powiązane dokumenty

the univalence of / whose all coefficients a* in the expansion (1.2) vanish, it seems natural to ask whether a suitably modified oondition (1.5) involving the coefficients a*

The family starts from unsymmetric radial slit case 2:2 mentioned above and evolves through unsymmetric curved 2:2- cases up to the final one which is either symmetric

This problem was investigated by many authors for various classes of holomorphic functions usually under the assumption of univalence.. An interesting result for the class

Note that from the well-known estimates of the functionals H(.f) a |a2| and H(,f) = |a^ - ot a22j in the class S it follows that, for «6S 10; 1) , the extremal functions

Предметом заметки является вывод вариационных формул типа Шиффера для функций мероморфных и однолистных в единичном круге

Let p, q be different

Let S(b) be the class of bounded normalized univalent functions and Σ(b) the class of normalized univalent meromorphic functions omitting a disc with radius b.. The close

This follows from the domain monotonic- ity of conformal radius (Schwarz’s lemma) and the following symmetrization result which is due to P´ olya, Szeg˝ o, Hayman and Jenkins (see