• Nie Znaleziono Wyników

Verification of a new radiation condition for two ships advancing in waves

N/A
N/A
Protected

Academic year: 2021

Share "Verification of a new radiation condition for two ships advancing in waves"

Copied!
16
0
0

Pełen tekst

(1)

Applied Ocean Research 48 (2014) 186-201

ELSEVIER

Contents lists available at ScienceDirect

Applied Ocean Research

journal homepage: www.elsevier.com/locate/apor

O C E A N R E S E A R C H

Verification of a new radiation condition for two sliips advancing

in waves

Z h i - M i n g Yuan*, Atilla Incecik, Day Alexander

Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, UK

d)

CrossMark

A R T I C L E I N F O

Article history: Received 4June 2014

Received in revised form 15 August 2014 Accepted 19 August 2014

Available online 16 September 2014

Keywords:

Hydrodynamic interaction Ranlcine source method Radiation condition Wave pattern Forward speed

A B S T R A C T

3-D Ranlcine source method is used to investigate the hydrodynamic interactions between two ships arranged side by side w i t h forward speed. The radiation condition is satisfied by using a modified Som-merfeld radiation condition w h i c h takes into account the Doppler shift of the scattered waves. This new radiation condition is applicable to a w i d e range of forward speeds, including very l o w forward speed problem where the parameter T (T = U(u/g) is smaller than 0.25. The numerical solution is evaluated by applying the present method to t w o pau's of models and compared w i t h experimental data and Green function method. Through the comparison study, we verify the new radiation condition and examine the wave patterns for a f u l l range of f o r w a r d speeds. Discussions are highlighted on the effect of the radiation conditions.

© 2014 Elsevier Ltd. All rights reserved.

1. I n t r o d u c t i o n

H y d r o d y n a m i c i n t e r a c t i o n b e t w e e n t w o or m o r e ships occurs i n h a r b o r area a n d w a t e r w a y s w i t h dense s h i p p i n g t r a f f i c as t h e vessels h a v e t o pass each o t h e r i n close p r o x i m i t y ; b e t w e e n tugs a n d vessels d u r i n g e s c o r t i n g or m a n e u v e r i n g a n d b e r t h i n g o p e r a -t i o n s as w e l l as d u r i n g s h i p - -t o - s h i p o p e r a -t i o n s f o r cargo -t r a n s f e r s d u r i n g o i l a n d gas o f f l o a d i n g o p e r a t i o n s . The b e h a v i o r o f t w o s h i p s i n w a v e s w i t h speed e f f e c t is o f special c o n c e r n t o t h e N a v y , t h a t is, f o r u n d e r w a y r e p l e n i s h m e n t , a n d f o r o t h e r c o m m e r c i a l p u r p o s e s .

Because o f t h e h y d r o d y n a m i c i n t e r a c t i o n s , e v e n r e l a t i v e l y s m a l l w a v e can i n d u c e large m o t i o n s o f the s m a l l e r s h i p due t o t h e n e a r -ness o f t h e l a r g e r s h i p . W h e n t h e ships are t r a v e l i n g w i t h f o r w a r d speed, t h e h y d r o d y n a m i c i n t e r a c t i o n s b e c o m e m o r e c o m p l i c a t e d . Fang a n d K i m [ 1 ] firstly t o o k f o r w a r d speed i n t o c o n s i d e r a t i o n i n s h i p - t o - s h i p p r o b l e m . T h e y u t i l i z e d a 2 - D p r o c e d u r e , i n c l u d i n g t h e h y d r o d y n a m i c i n t e r a c t i o n a n d a n i n t e g r a l e q u a t i o n m e t h o d , to p r e -d i c t t h e c o u p l e -d m o t i o n s b e t w e e n t w o ships a -d v a n c i n g i n o b l i q u e seas. They f o u n d t h a t t h e r o l l m o t i o n w a s r e d u c e d w h i l e t h e ships w e r e a d v a n c i n g . H o w e v e r , d u e to t h e 2 D a s s u m p t i o n s , s o m e d e f i -ciencies i n c l u d i n g t h e special t r e a t m e n t o f t h e c o n v e c t i v e t e r m s t i l l exist. K a s h i w a g i [ 2 ] used a u n i f i e d t h e o r y t o i n v e s t i g a t e t h e h e a v e a n d p i t c h m o t i o n s o f a c a t a m a r a n a d v a n c i n g i n w a v e s . I w a s h i t a a n d

* Corresponding author at: Department of Naval Architecture, Ocean & IWarine Engineering, University of Strathclyde, Henry Dyer Building, G4 OLZ Glasgow, UIC Tel.: +44 0141 548 2288; fax: +44 0141 552 2879.

E-mail address: zhiming.yuan@strath.ac.uk (Z.-IW. Yuan).

0141-1187/$ - see front matter © 2 0 1 4 Elsevier Ltd. All rights reserved. http://dx.doi.Org/10.1016/J.apor.2014.08.007

K a t a o k a [ 3 ] used t h e 3 D t r a n s l a t i n g a n d p u l s a t i n g G r e e n - f u n c t i o n m e t h o d to analyze t h e h y d r o d y n a m i c i n t e r a c t i o n b e t w e e n steady a n d u n s t e a d y fiows f o r a c a t a m a r a n . Chen a n d Fang [ 4 ] e x t e n d e d Fang's m e t h o d [1 ] t o 3 - D . T h e y used a 3 - D G r e e n f u n c t i o n iTiethod t o i n v e s t i g a t e t h e h y d r o d y n a m i c p r o b l e m s b e t w e e n t w o m o v i n g ships i n waves. I t w a s f o u n d t h a t t h e h y d r o d y n a m i c i n t e r a c t i o n s c a l c u l a t e d b y 3 - D m e t h o d w e r e m o r e r e a s o n a b l e i n t h e resonance r e g i o n , w h e r e t h e responses w e r e n o t so s i g n i f i c a n t p r e d i c t e d by 2 - D m e t h o d . H o w e v e r , t h e i r m e t h o d w a s o n l y v a l i d a t e d b y m o d e l tests w i t h zero speed. M o r e r i g o r o u s v a l i d a t i o n s h o u l d be m a d e by f u r t h e r e x p e r i m e n t s . The first m o d e l t e s t o f t w o ships a d v a n c i n g i n w a v e s w a s c o n d u c t e d b y Li [ 5 ] . B o t h ships w e r e r e s t r a i n e d i n surge, s w a y a n d y a w , as w e l l as t h e f r e e m o t i o n s i n heave, r o l l a n d p i t c h . M c T a g g a r t et al. [ 6 ] a n d Li [ 7 ] used t h a t m o d e l test data t o v e r i f y t h e i r n u m e r i c a l p r o g r a m s , w h i c h w a s based o n 3 D G r e e n f u n c -t i o n m e -t h o d . The n u m e r i c a l p r e d i c -t i o n s a n d e x p e r i m e n -t s s h o w e d t h a t t h e presence o f a l a r g e r s h i p c o u l d s i g n i f i c a n t l y i n f l u e n c e the m o t i o n s o f a s m a l l e r s h i p i n close p r o x i m i t y . B u t the n u m e r i c a l p r e -d i c t i o n o f r o l l m o t i o n w a s n o t accurate. A n o t h e r m o -d e l test o f t w o ships a d v a n c i n g i n w a v e s w a s c o n d u c t e d b y R o n s s s [ 8 ] at M A R I N -TEK. The e x p e r i m e n t s w e r e p e r f o r m e d at d i f f e r e n t speeds a n d w i t h d i f f e r e n t l o n g i t u d i n a l distance b e t w e e n t h e ships. The n u m e r i c a l p r o g r a m based o n u n i f i e d t h e o r y w a s v e r i f i e d . It w a s f o u n d t h a t heave a n d p i t c h m o t i o n s c o u l d be p r e d i c t e d w e l l w h i l e t h e r o l l m o t i o n w a s h a r d t o p r e d i c t d u e t o t h e viscous e f f e c t s . Ronsss's m o d e l t e s t data w a s u s e d b y X u a n d F a l t i n s e n [ 9 ] t o v e r i f y t h e i r n u m e r i c a l p r o g r a m based o n 3 - D Ranlcine source m e t h o d . They a p p l i e d a n a r t i f i c i a l n u m e r i c a l b e a c h t o s a t i s f y t h e r a d i a t i o n c o n -d i t i o n . T h e y f o u n -d t h a t t h e h y -d r o -d y n a m i c peaks a n -d spikes w e r e

(2)

Z.-M. Yuan et al./Applied Ocean Researcix 48 (2014) 186-201 187 r e l a t e d to t h e resonance m o d e s i n t h e w a t e r gap b e t w e e n t h e h u l l s . H o w e v e r , t h e y also f a i l e d t o p r e d i c t t h e r o l l m o t i o n precisely. Recently, w i t h i n t h e f r a m e w o r k o f G r e e n f u n c t i o n , X u a n d D o n g [10] d e v e l o p e d a 3-D t r a n s l a t i n g - p u l s a t i n g (3DTP) source m e t h o d to c a l c u l a t e w a v e loads a n d f r e e m o t i o n s o f t w o ships a d v a n c i n g in w a v e s . M o d e l tests w e r e c a r r i e d o u t t o m e a s u r e t h e w a v e loads a n d t h e f r e e m o t i o n s f o r a p a i r o f s i d e - b y - s i d e a r r a n g e d s h i p m o d e l s a d v a n c i n g w i t h a n i d e n t i c a l s p e e d i n h e a d r e g u l a r w a v e s . B o t h the e x p e r i m e n t a l a n d t h e n u m e r i c a l p r e d i c t i o n s s h o w e d t h a t h y d r o -d y n a m i c i n t e r a c t i o n e f f e c t s o n w a v e loa-ds a n -d f r e e m o t i o n s w e r e s i g n i f i c a n t . T h e y also p o i n t e d o u t t h a t t h e p r e d i c t i o n accuracy o f the 3DTP m e t h o d w a s m u c h b e t t e r t h a n t h a t o f 3DP, especially f o r peak values o f the f r e e m o t i o n responses.

W e find t h a t m o s t o f the p u b l i c a t i o n s o n t w o ships w i t h f o r -w a r d speed p r o b l e m are based o n G r e e n f u n c t i o n t h a t satisfies the K e l v i n f r e e surface c o n d i t i o n , as w e l l as t h e r a d i a t i o n c o n d i t i o n . I t is a n e f f e c t i v e m e t h o d f o r t h e zero speed p r o b l e m s , b u t i f t h e vessel is t r a v e l i n g w i t h f o r w a r d speed, t h i s m e t h o d s t i l l has s o m e l i m i t a -tions. F i r s t i y , i t c o u l d n o t a c c o u n t f o r t h e n e a r - f i e l d flow c o n d i t i o n . A l t h o u g h s o m e researchers [ 1 1 , 1 2 ] e x t e n d e d i t t o i n c l u d e t h e near-field f r e e surface c o n d i t i o n , t h e s o - c a l l e d i r r e g u l a r f r e q u e n c y s t i l l c a n n o t be a v o i d e d . A n d i t w i l l b r i n g s i n g u l a r i t y to t h e c o e f f i c i e n t m a t r i x e q u a t i o n . Secondly, i t is i m p o s s i b l e f o r t h e Green f u n c t i o n to account f o r t h e e f f e c t s o f t h e s t e a d y flow o n t h e u n s t e a d y p o t e n t i a l . In t h e p r e s e n t study, t h e R a n k i n e source a p p r o a c h w i l l be a p p l i e d , w h i c h uses a v e r y s i m p l e G r e e n f u n c t i o n i n t h e b o u n d a r y i n t e g r a l f o r m u l a t i o n . This m e t h o d r e q u i r e s the sources d i s t r i b u t e d n o t o n l y on t h e b o d y surface, b u t also o n t h e f r e e s u r f a c e a n d c o n t r o l sur-face. T h e r e f o r e , a flexible choice o f f r e e - s u r f a c e c o n d i t i o n s can be r e a l i z e d i n these m e t h o d s . The c o u p l e d b e h a v i o r b e t w e e n steady a n d u n s t e a d y w a v e p o t e n t i a l c o u l d be expressed i n a d i r e c t f o r -m u l a . M e a n w h i l e , t h e n o n l i n e a r i t y o n t h e f r e e s u r f a c e c o u l d also be a d d e d i n t h e b o u n d a r y c o n d i t i o n .

The R a n k i n e source a p p r o a c h has b e e n used b y m a n y i n v e s -t i g a -t o r s since i -t has b e e n firs-t p r o p o s e d b y Hess a n d S m i -t h [ 1 3 ] . I n v e s t i g a t o r s f r o m M I T [ 1 4 - 1 6 ] a p p l i e d t h e R a n k i n e source a p p r o a c h to m o d e l s t e a d y a n d u n s t e a d y w a v e s as a s h i p m o v e s i n w a v e s . A n analysis t e c h n i q u e d e v e l o p e d b y Scalvounos a n d Nal<os [ 14 ] f o r t h e p r o p a g a t i o n o f g r a v i t y w a v e s o n a p a n e l i z e d f r e e surface s h o w e d t h a t a R a n k i n e m e t h o d c o u l d a d e q u a t e l y p r e d i c t t h e s h i p w a v e p a t t e r n s a n d forces. T h e i r w o r k l e d t o t h e d e v e l o p m e n t o f a f r e q u e n c y - d o m a i n f o r m u l a t i o n f o r s h i p m o t i o n s w i t h a c o n s i s t e n t l i n e a r i z a t i o n based u p o n t h e d o u b l e b o d y steady flow m o d e l w h i c h assumes s m a l l a n d m o d e r a t e F r o u d e n u m b e r s . A p p l i c a t i o n s w e r e r e p o r t e d b y Nakos a n d Sclavounos [ 1 5 ] . This m o d e l w a s e x t e n d e d to t h e t i m e d o m a i n b y K r i n g [ 1 6 ] w h o also p r o p o s e d a p h y s i c a l l y r a t i o n a l set o f K u t t a c o n d i t i o n s at a ship's t r a n s o m s t e r n . Recently, Gao a n d Z o u [ 1 7 ] d e v e l o p e d a h i g h - o r d e r Rankine p a n e l m e t h o d based o n N o n - U n i f o r m R a t i o n a l B-Spline (NURBS) t o solve t h e 3¬ D r a d i a t i o n a n d d i f f r a c t i o n p r o b l e m s w i t h f o r w a r d speed. T h e i r results h a d v e r y g o o d a g r e e m e n t w i t h t h e e x p e r i m e n t a l data. H o w -ever, t h e r e are s t i l l s o m e l i m i t a t i o n s f o r t h e e x t e n s i v e use o f t h e Rankine source a p p r o a c h . First o f all, t h e R a n k i n e source m e t h o d r e q u i r e s m u c h m o r e panels w h i c h w i l l c o n s i d e r a b l y increase t h e c o m p u t a t i o n t i m e , especially w h e n t h e m a t r i x e q u a t i o n is f u l l range m a t r i x . H o w e v e r , t h e c o m p u t a t i o n time w i l l s t r o n g l y d e p e n d o n t h e n u m e r i c a l m e t h o d a n d c o m p u t e r language. As t h e p e r f o r m a n c e o f c o m p u t e r s increase r a p i d l y , i t o n l y takes less t h a n 1 m i n t o solve a l O ' ' X 1 0 ^ f u l l r a n g e m a t r i x u s i n g M a t l a b . T y p i c a l l y , t h e n u m b e r o f p a n e l s w i l l be n o m o r e t h a n 10,000. The c o m p u t a t i o n time is acceptable i n e n g i n e e r i n g a p p l i c a t i o n s . Besides, t h e R a n k i n e source m e t h o d r e q u i r e s a s u i t a b l e r a d i a t i o n b o u n d a r y c o n d i t i o n t o a c c o u n t f o r t h e s c a t t e r e d w a v e s i n c u r r e n t . A v e r y p o p u l a r r a d i a t i o n c o n d i -tion f o r t h e f o r w a r d speed p r o b l e m , w h i c h is s o - c a l l e d u p s t r e a m r a d i a t i o n c o n d i t i o n , w a s p r o p o s e d b y Nakos [ 1 8 ] , The f r e e surface w a s t r u n c a t e d at s o m e u p s t r e a m p o i n t s , a n d a q u i e s c e n t b o u n d a r y

Fig. 1. An example vessels and coordinate system.

c o n d i t i o n w a s i m p o s e d at these p o i n t s t o e n s u r e t h e c o n s i s t e n c y o f t h e u p s t r e a m t r u n c a t i o n o f t h e f r e e s u r f a c e . A n o t h e r m e t h o d to d e a l w i t h t h e r a d i a t i o n c o n d i t i o n is t o m o v e t h e source p o i n t s o n t h e f r e e s u r f a c e at s o m e distance d o w n s t r e a m [ 1 9 ] . The results f r o m these t w o m e t h o d s s h o w v e r y g o o d a g r e e m e n t w i t h p u b l i s h e d e x p e r i m e n t a l data w h e n t h e p a r a m e t e r r ( r = u w / g ) is g r e a t e r t h a n 0.25, since t h e y are b o t h based o n t h e a s s u m p t i o n t h a t t h e r e is n o s c a t t e r e d w a v e t r a v e l i n g ahead o f t h e vessel. H o w e v e r , w h e n t h e f o r w a r d s p e e d o f t h e vessel is v e r y l o w , r w i l l be s m a l l e r t h a n 0.25. W h e n t h i s case occurs, t h e s c a t t e r e d w a v e s c o u l d t r a v e l ahead o f t h e vessel, a n d these t r a d i t i o n a l r a d i a t i o n c o n d i t i o n s c o u l d n o l o n g e r be v a l i d . For s h i p t o s h i p p r o b l e m , t h e f o r w a r d speed is u s u -a l l y l i m i t e d t o -a l o w l e v e l f o r t h e s-afe o p e r -a t i o n . T h e r e f o r e , -a n e w e x t e n s i v e r a d i a t i o n c o n d i t i o n s h o u l d be p r o p o s e d t o deal w i t h t h e v e r y l o w f o r w a r d speed p r o b l e m . Das a n d Cheung [ 2 0 , 2 1 ] p r o v i d e d an a l t e r n a t e s o l u t i o n t o t h e b o u n d a r y - v a l u e p r o b l e m f o r f o r w a r d speeds above a n d b e l o w t h e g r o u p v e l o c i t y o f t h e s c a t t e r e d w a v e s . T h e y c o r r e c t e d t h e S o m m e r f e l d r a d i a t i o n c o n d i t i o n b y t a k i n g i n t o a c c o u n t t h e D o p p l e r s h i f t o f t h e s c a t t e r e d w a v e s at t h e c o n t r o l s u r f a c e t h a t t r u n c a t e s the i n f i n i t e fluid d o m a i n . T h e y c o m p a r e d t h e i r r e s u l t s w i t h the e x p e r i m e n t a l data, a n d g o o d a g r e e m e n t w a s a c h i e v e d . T h e y also c o m p u t e d t h e w a v e e l e v a t i o n o n t h e f r e e s u r -face, a n d a reasonable w a v e p a t t e r n w a s o b t a i n e d at r < 0 . 2 5 b y u s i n g t h e i r n e w r a d i a t i o n c o n d i t i o n . Y u a n e t al. [ 2 2 ] a p p l i e d Das a n d Cheung's r a d i a t i o n c o n d i t i o n t o a W i g l e y III h u l l a d v a n c i n g i n w a v e s , a n d v e r y g o o d a g r e e m e n t h a d b e e n a c h i e v e d b e t w e e n t h e i r p r e d i c t i o n s a n d m e a s u r e m e n t s . In t h e p r e s e n t s t u d y , w e w i l l e x t e n d Das a n d Cheung's r a d i a t i o n c o n d i t i o n t o t h e s h i p - t o - s h i p p r o b l e m . A 3 - D p a n e l code based o n R a n k i n e source m e t h o d w i l l be d e v e l o p e d t o i n v e s t i g a t e t h e h y d r o -d y n a m i c i n t e r a c t i o n b e t w e e n t w o vessels a r r a n g e -d si-de b y si-de w i t h f o r w a r d speed. The m o t i o n responses o f b o t h ships w i l l be c a l c u l a t e d a n d c o m p a r e d to Li's a n d Ronaess' e x p e r i m e n t a l r e s u l t s . Discussions w i l l be h i g h l i g h t e d o n t h e w a v e p a t t e r n s at f u l l range o f f o r w a r d speeds. 2. M a t h e m a t i c a l f o r m u l a t i o n s of the p o t e n t i a l s 2 . 3 . Coordinate systems The c o r r e s p o n d i n g r i g h t - h a n d e d c o o r d i n a t e s y s t e m s are s h o w n i n Fig. 1. The b o d y c o o r d i n a t e s y s t e m s Oa-XayaZa a n d 0i,-XbybZb are fixed o n Ship_a a n d Ship_b, r e s p e c t i v e l y w i t h t h e i r o r i g i n s o n t h e m e a n f r e e surface, c o i n c i d i n g w i t h t h e c o r r e s p o n d i n g c e n t r e o f g r a v i t y (CoG) i n r e s p e c t t o x a n d y c o o r d i n a t e s w h e n b o t h o f t h e

(3)

188 Z.-M. Yuan et al. /Applied Ocean Research 48 (2014) 186-201

ships are at t h e i r static e q u i l i b r i u m p o s i t i o n s . Oa-Za a n d Ob-Zn are b o t h p o s i t i v e u p w f a r d . The i n e r t i a c o o r d i n a t e s y s t e m oxyz w i t h o r i -g i n l o c a t e d o n t h e c a l m f r e e s u r f a c e coincides w i t h Oa-XaVaZa w h e n t h e s l i i p has no u n s t e a d y m o t i o n s . OXYZ is t h e e a r t h f i x e d c o o r -d i n a t e s y s t e m w i t h its o r i g i n l o c a t e -d o n t h e c a l m f r e e s u r f a c e a n -d OZ axis p o s i t i v e u p w a r d . T h r e e c o m p o n e n t s o f t r a n s l a t i o n m o t i o n s i n c l u d e s u r g e ()?^ a n d } ] \ , w h i c h are p a r a l l e l t o x - a x i s ) , s w a y (/;^ a n d w h i c h are p a r a l l e l t o y - a x i s ) a n d heave (T/^ a n d r]^, w h i c h are p a r a l l e l to zaxis). A n o t h e r t h r e e r o t a t i o n a l m o t i o n c o m p o -n e -n t s are r o l l (7;^ a -n d w h i c h r o t a t e a r o u -n d x-axis), p i t c h (/;^ a -n d ;?5, w h i c h r o t a t e a r o u n d y - a x i s ) a n d y a w and w h i c h r o t a t e a r o u n d z - a x i s ) . The i n c i d e n t w a v e d i r e c t i o n is d e f i n e d as t h e angle b e t w e e n t h e w a v e p r o p a g a t i o n d i r e c t i o n a n d X a x i s . ,0 = 1 8 0 ° c o r r e -sponds t o head sea; j8 = 9 0 ° c o r r e s p o n d s to b e a m sea. d t d e n o t e s the t r a n s v e r s e d i s t a n c e b e t w e e n t w o s h i p s w h i l e dl is t h e l o n g i t u d i n a l distance. UQ is t h e f o r w a r d speed.

I n t h e c o m p u t a t i o n , t h e m o t i o n s a n d forces o f Ship-a a n d S h i p - b are c o n c e r t e d t o t h e local c o o r d i n a t e s y s t e m i n w h i c h the o r i g i n is at t h e c e n t e r o f g r a v i t y o f each s h i p .

2.2. Diffraction wave potential

I t is a s s u m e d t h a t the s u r r o u n d i n g fluid is i n v i s c i d a n d i n c o m -pressible, a n d t h a t t h e m o t i o n is i r r o t a d o n a l , the t o t a l v e l o c i t y p o t e n t i a l exists w h i c h satisfies t h e Laplace e q u a t i o n i n t h e w h o l e f l u i d d o m a i n . Let t d e n o t e t i m e a n d x = (x, y, z ) t h e p o s i t i o n v e c t o r . A c o m p l e x v e l o c i t y p o t e n t i a l p r o v i d e s a d e s c r i p t i o n o f t h e flow as

6

ir{x, t ) = 'iio[^ös(x) -x] + ReY^[,]f(p9{x)e~"'^' + i]^cp^[x)e-"'^'^] j = i

+ Re[»?o^o(x)e-''''^f] + Re[),7?'7(x)e-''"^'], j = 1, 2, . . . , 6 ( 1 ) w h e r e (ps is t h e s t e a d y p o t e n t i a l a n d i t is n e g l e c t e d i n t h e p r e s e n t s t u d y ; (p9 a n d cpP ( / = 1,2 6) are t h e s p a t i a l r a d i a t i o n p o t e n t i a l i n six degrees o f f r e e d o m c o r r e s p o n d i n g t o t h e o s c i l l a t i o n s o f Ship.a a n d Ship-b r e s p e c t i v e l y a n d ly (j'= 1 , 2 , . . . , 6 ) is t h e c o r r e s p o n d i n g m o t i o n a m p l i t u d e surge; >?2.sway; 773, h e a v e ; )/4, r o l l ; ??5, p i t c h ; );6, y a w ) ; rn = rjQ is t h e i n c i d e n t w a v e a m p l i t u d e ; cpj is t h e s p a t i a l d i f f r a c t i o n p o t e n t i a l ; cpo is t h e s p a t i a l i n c i d e n t w a v e p o t e n t i a l a n d oje is t h e e n c o u n t e r f r e q u e n c y . G e n e r a l l y , t h e b o d y b o u n d a r y c o n -d i t i o n s c a n be t r e a t e -d s e p a r a t e l y b y t h e -d i f f r a c t i o n a n -d r a -d i a t i o n p r o b l e m as f o l l o w s : ( 1 ) B o d y b o u n d a r y c o n d i t i o n s f o r t h e d i f f r a c t i o n p r o b l e m : dtpo dn dn 0<P7 d(po dn dn So St ( 2 ) ( 3 ) ( 2 ) B o d y b o u n d a r y c o n d i t i o n s f o r t h e r a d i a t i o n p r o b l e m ( S h i p . a is o s c i l l a t i n g w h i l e S h i p . b is fixed): = -icoeiij + LiQinfis, 9 < dn ( 4 ) ( 5 ) ( 3 ) Body b o u n d a r y c o n d i t i o n s f o r t h e r a d i a t i o n p r o b l e m ( S h i p . b is o s c i l l a t i n g w h i l e Ship.a is fixed): 9^? - g i = - ! a ) c n j ' + i / o m f l s , ( 6 ) dn = Ols„ ( 7 ) w h e r e n = ( n i , 112, n 3 ) i s t h e u n i t n o r m a l v e c t o r d i r e c t e d i n w a r d o n b o d y s u r f a c e . The mj d e n o t e s t h e j - t h c o m p o n e n t o f the so-c a l l e d m - t e r m a n d f o r t h e s l e n d e r vessels, i t so-can be expressed b y ( n i l , 1712, 1113) = ( 0 , 0, 0 ) ( m 4 , Ills, me) = {0, 113, - / 1 2 ) ( 8 ) The f r e e s u r f a c e b o u n d a r y f o r b o t h d i f f r a c t i o n a n d r a d i a t i o n p r o b l e m can be w r i t t e n as: ^ dz 9 . 3(pi nd'^CPi .(oi<pj + 2wJeUo^ + 4 - ^ : 0 , J = l , 2 , 7 ( 9 ) 2.3. Radiation condition

Fig. 2 s h o w s the D o p p l e r S h i f t o f the s c a t t e r e d w a v e field b y a vessel t r a v e l i n g w i t h c o n s t a n t f o r w a r d speed UQ i n t h e p o s i t i v e X d i r e c t i o n . W h e n a vessel is m o v i n g f r o m p o i n t B t o p o i n t 0, the t r a v e l i n g time s h o u l d be t=BOjuo. D u r i n g t h i s p e r i o d o f t i m e , the vessel p r o d u c e s s c a t t e r e d w a v e s a l l a l o n g BO ( t h e first s c a t t e r e d w a v e s h o u l d arise at p o i n t B). The c o n t r o l s u r f a c e h e r e is d e f i n e d as a c i r c l e w i t h its c e n t r o i d o n p o i n t 0 a n d its radius as BO. The v e l o c i t y o f t h e s c a t t e r e d w a v e is d e f i n e d as c, BOIuo=BDIc. A c c o r d i n g to the sine t h e o r e m , i t can be easily t r a n s f e r r e d t o

( 1 0 ) UQ s i n 9 c ~ s i n a The s c a t t e r e d w a v e v e l o c i t y a t D can be e x p r e s s e d as c^ = f - tan/i/<sd '<s w h e r e « s is t h e a n g u l a r f r e q u e n c y o f t h e s c a t t e r e d w a v e s f r o m a fixed r e f e r e n c e p o i n t g i v e n as ( 1 1 ) 0 ) 5 = coe + U Q / C S cos ( a - 9 ) <Ws =g/<stan/i/<sd (12) ( 1 3 ) i n w h i c h Ics is t h e local w a v e n u m b e r at a n y p o i n t o n t h e f r e e or c o n t r o l surface, a n d d is t h e w a t e r d e p t h .

(4)

C o m b i n i n g Eqs. ( 1 0 ) ( 1 3 ) , w e can o b t a i n t h e f o l l o w i n g g o v e r -n i -n g e q u a t i o -n cos^ o' - s i n -I- | 2 T C O S v ^ s i n f f y t a n l i ( / c / f ^ ) ^ / V K s i n a a - s i n ^ t a n / i ( / f / F 2 ) ( 1 4 )

A t i n f i n i t e w a t e r d e p t h , d^oo, Eq. ( 1 4 ) can be r e d u c e d t o cos^Ia; - sin'^'^iVK sin a)]K^

+ { 2 T cos [a - sin"^ ( , / } ? s i n a ) ] - 1 }/c - f = 0 ( 1 5 ) w h e r e Xs = 2n/ks is t h e local w a v e l e n g t h , y = Xsg/ul is t h e

d i m e n s i o n l e s s local w a v e l e n g t h , f h = uo/^/gd is t h e d e p t h F r o u d e n u m b e r , ic = I n / y is t h e d i m e n s i o n l e s s local w a v e n u m b e r , a n d p a r a m e t e r r =

uoOe/g-Let's discuss t h e d i m e n s i o n l e s s local w a v e l e n g t h o n x - a x i s . A t a = 0oT7t, sin~^(/f s i n a ) = 0 Eq. ( 1 5 ) b e c o m e s

cos^ (a)/c^ -I- [ 2 T cos (o') - 1 ]/c -i- = 0 The s o l u t i o n s f o r Eq. ( 1 6 ) can be w r i t t e n as

( 1 6 ) ( 1 7 ) y i = Y2 = _ 1 - 2 T C O S Q ; ± V I

-4Tcosffi

2 cos2 a

A t a = 0 a n d T < 0.25, t w o s o l u t i o n s can be o b t a i n e d f r o m Eq. ( 1 7 )

47r

1 - 2 T - V T ^ ^

47r

( 1 8 ) ( 1 9 ) A t a; = jr, a n o t h e r g r o u p o f t w o s o l u t i o n s can be o b t a i n e d f r o m E q . ( 1 7 )

47r

Y3

Y4 =

1 - h 2 T - V T T 4 T

4k

l+2r + VTT4r

( 2 0 ) ( 2 1 )

These f o u r s o l u t i o n s are s h o w n i n Fig. 3, w h i c h are i d e n t i c a l t o Becker's [ 2 3 ] results. I t has b e e n f o u n d b y u s i n g t h e Green f u n c -t i o n m e -t h o d -t h a -t a-t r &l-t; 0 . 2 5 , -t h e r e are -t h r e e w a v e s y s -t e m s : o n e r i n g w a v e s y s t e m a n d t w o K e l v i n f a n w a v e systems w i t h d i f f e r e n t w e d g e angle [ 2 3 , 2 4 ] , A t T > 0.25, t h e r e are o n l y t w o w a v e systems, one o f w h i c h is t h e w a v e s y s t e m f o r m e d b y t h e o u t e r f a n w a v e s . F r o m Fig. 3, w e find t h a t at T < 0.25, t h e r e are f o u r w a v e l e n g t h s i n X - a x i s : yi a n d ys c o r r e s p o n d s t o t h e r i n g w a v e s y s t e m , y2 a n d y4 c o r r e s p o n d s to t h e i n n e r a n d o u t e r K e l v i n f a n w a v e s y s t e m s respec-t i v e l y . Irespec-t can also be f o u n d respec-t h a respec-t arespec-t T &grespec-t; 0.25, respec-t h e r e are o n l y respec-t w o w a v e l e n g t h s i n x - a x i s : y^ c o r r e s p o n d s t o t h e r i n g w a v e s y s t e m a n d 5/4 c o r r e s p o n d s t o o u t e r K e l v i n f a n w a v e s y s t e m . W e n o t i c e t h a t t h e w a v e l e n g t h o f t h e r i n g w a v e s y s t e m is m u c h larger t h a n t h a t o f K e l v i n f a n w a v e s y s t e m s . I n t h e n u m e r i c a l s t u d y , the f r e e s u r f a c e is u s u a l l y t r u n c a t e d at 2 L 3 L u p s t r e a m a n d d o w n s t r e a m . This t r u n -c a t i o n l e n g t h is i n t h e same o r d e r as t h e l e n g t h o f t h e r i n g w a v e s y s t e m . B u t f o r t h e K e l v i n f a n w a v e s y s t e m s , t h i s t r u n c a t i o n l e n g t h is m u c h larger, and i t c a n be r e g a r d e d as i n f i n i t y . I n R a n k i n e s o u r c e m e t h o d , i f t h e t r u n c a t i o n l e n g t h is v e r y large (R -> 00), t h e r a d i a t i o n c o n d i t i o n is n o t necessary since t h e n u m e r i c a l d a m p i n g m a y d i s -sipate t h e scattered w a v e s b e f o r e t h e y r e a c h t h e t r u n c a t e d c o n t r o l surface. A n d also, as d e m o n s t r a t e d b y N a k o s [ 1 8 ] , t h e s h o r t w a v e s y s t e m c a r r i e d i n s i g n i f i c a n t e n e r g y . T h e r e f o r e , i n the p r e s e n t s t u d y , t h e r e is n o r a d i a t i o n c o n d i t i o n i m p o s e d t o K e l v i n f a n w a v e s y s t e m s . The r a d i a t i o n c o n d i t i o n p r o p o s e d i n t h i s p a p e r is o n l y a p p l i c a b l e t o solve t h e r a d i a t i o n a n d d i f f r a c t i o n p r o b l e m o f t h e r i n g w a v e s y s t e m . T h e r e f o r e , t h e p a r a m e t e r ks o n l y r e f e r s t o t h e local w a v e n u m b e r o f t h e r i n g w a v e s y s t e m .

Let's d e f i n e a p o i n t D, w h i c h is used t o d i v i d e the c o n t r o l s u r f a c e i n t o t w o parts, a n d Sc2. I f w e c a n n o t find t h e s o l u t i o n s f r o m

(5)

190 Z.-M. Yuan et al./Applied Ocean Research 48 (2014) 186-201

e q u a t i o n s y s t e m ( 1 0 ) - ( 1 3 ) , tiiese p o i n t s m u s t be o n t h e c o n t r o l s u r f a c e Sc2. O t h e r w i s e , t h e y are o n 5 ^ . T h e c r i t i c a l 0 at p o i n t D c a n be d e r i v e d a n a l y t i c a l l y . The s c a t t e r e d w a v e r e a c h i n g p o i n t D is p r o d u c e d b y the vessel at p o i n t B. N o t i c e t h a t a = 2 Ö , Eq. ( 1 0 ) can be w r i t t e n as ijo c - ( 2 2 ) 2COS0 S u b s t i t u t i n g Eqs. ( 1 1 ) a n d ( 2 2 ) i n t o Eq. ( 1 2 ) , w e c a n o b t a i n t h e f o l l o w i n g e q u a t i o n at i n f i n i t e w a t e r d e p t h g " 4 cos 6 N o t i c e t h a t r •-(23) i i o « e / g , Eq. ( 2 3 ) b e c o m e s c o s Ö = } -4 T (24) F r o m Eq. ( 2 4 ) , w e f i n d t h a t i . r < 0 . 2 5 , n o s o l u t i o n c a n be f o u n d f o r t h e c r i t i c a l 9 since t h e s c a t t e r e d w a v e s can r e a c h a n y p o i n t s o n t h e w h o l e c o n t r o l sur-face. A t t h i s case, t h e s c a t t e r e d w a v e p r o d u c e d at p o i n t B s h o u l d reach s o m e w h e r e ahead o f p o i n t A. C o r r e s p o n d i n g l y , t h e w a v e g r o u p w i l l t r a v e l ahead o f t h e vessel.

i i . r = 0.25, the c r i t i c a l r o t a t e d angle 0 = 0. A t t h i s case, t h e scat-t e r e d w a v e p r o d u c e d ascat-t p o i n scat-t B is p r o p a g a scat-t i n g scat-t o p o i n scat-t A. C o r r e s p o n d i n g l y , t h e w a v e g r o u p is r e a c h i n g p o i n t 0 .

i i i . T > 0 . 2 5 , t h e c r i t i c a l 9 c a n be f o u n d at p o i n t D . A t t h i s case, t h e c o n t r o l surface c o u l d d i v i d e i n t o arc DB ( S ^ ) a n d arc DA [Sal I n t h e n u m e r i c a l c a l c u l a t i o n , t h e c o o r d i n a t e s o f a n y a r b i t r a r y p o i n t o n t h e c o n t r o l s u r f a c e are g i v e n , a n d t h e n t h e u n k n o w n s 9 a n d fcs c o u l d be o b t a i n e d b y s o l v i n g t h e n o n l i n e a r e q u a t i o n sys-t e m ( 1 0 ) - ( 1 3 ) . The r a d i a sys-t i o n c o n d i sys-t i o n is d e f i n e d as sys-t w o d i f f e r e n sys-t e q u a t i o n s o n a n d Scj i n d e p e n d e n t i y . : 0 0' = 1 , 2 , . , 7 ) o n

Sc2

7) o n Sc (25) (26) 9<»i - ikscpj cos 9 •-V<pj = 0 0 ' = 1 , 2 , Eq. ( 2 5 ) is a n u p d a t e d S o m m e r f e l d r a d i a t i o n c o n d i t i o n w i t h f o r -w a r d speed c o r r e c t i o n . If t h e f o r -w a r d speed is zero, ks = k, 0 = 0 a n d Eq, ( 2 5 ) c o u l d reduce t o t h e S o m m e r f e l d r a d i a t i o n c o n d i t i o n as

an

^--ikcpj^O 0 ' = 1 , 2 , 6) o n Sc (27) The r a d i a t i o n c o n d i t i o n ( 2 5 ) a n d ( 2 6 ) can also be a p p l i e d t o s h i p -t o - s h i p p r o b l e m , as s h o w n i n Fig. 4 . I-t is a s s u m e d -t h a -t -t w o ships a r e a d v a n c i n g i n w a v e s w i t h t h e same f o r w a r d speed. The t r a n s -verse a n d l o n g i t u d i n a l distances b e t w e e n t w o ships are dt a n d dl, r e s p e c t i v e l y . The i n e r t i a c o o r d i n a t e s y s t e m is s h o w n i n Fig. 4 w i t h its o r i g i n l o c a t e d o n t h e c e n t r a l l i n e b e t w e e n t w o s h i p s . Fig. 5 is a n u m e r i c a l case o f t w o o s c i l l a t i n g sources a d v a n c i n g i n t h e p o s i t i v e X d i r e c t i o n . The f r e e s u r f a c e is t r u n c a t e d b y a c i r c l e . To s i m p l i f y t h e p r o b l e m , o n l y 4 0 nodes are d i s t r i b u t e d o n t h e c o n t r o l s u r f a c e ( 2 0 n o d e s o n t h e u p p e r h a l f c i r c l e a n d 2 0 nodes o n t h e l o w e r h a l f c i r -cle). Fig. 6 is t h e c a l c u l a t e d local w a v e n u m b e r a n d r o t a t e d angle r e s p e c t i v e l y at T = 0.2. The s o l u t i o n s o f ks a n d 0 can be f o u n d a t a n y n o d e s o n t h e c o n t r o l surface, w h i c h i l l u s t r a t e t h a t t h e s c a t t e r e d w a v e s c o u l d reach a n y p o i n t s o n t h e t r u n c a t e d surface. Due t o t h e D o p p l e r e f f e c t , t h e s c a t t e r e d waves u p s t r e a m have s h o r t e r w a v e -l e n g t h s . As a r e s u -l t , t h e -l o c a -l w a v e n u m b e r u p s t r e a m is greater t h a n t h a t d o w n s t r e a m , w h i c h is s h o w n i n Fig, 6a. B u t t h e m a x i m u m v a l -ues o f r o t a t e d angle appear a r o u n d y = 0, a n d i t decreases u p s t r e a m a n d d o w n s t r e a m g r a d u a l l y . I t is v e r y i n t e r e s t i n g to f i n d t h a t o n t h e u p p e r h a l f circle, t h e r o t a t e d angle 0.a is close t o zero at N o d e 1 a n d

Fig. 4. Sketch of Doppler shift and radiation condition of two ships advancing in waves.

Node 19 w h i l e o n t h e l o w e r h a l f circle, 9.b t u r n s t o be zero at Node 1 a n d N o d e 19. This is because these t w o nodes are a l m o s t o n the t r a j e c t o r y o f source a a n d source b, w h i c h can be s h o w n i n Fig. 5. A t these p o i n t s , t h e s c a t t e r e d w a v e d i r e c t i o n is p a r a l l e l t o x axis and i t w i l l n o t be r o t a t e d at a l l . Since t h e o r i g i n o f t h e c o n t r o l surface is l o c a t e d o n t h e c e n t r a l l i n e b e t w e e n t w o sources, t h e s y m m e t r y c a n n o t be a c h i e v e d a b o u t t h e t r a j e c t o r y o f source a a n d source b. T h e r e f o r e , t h e r e s u l t s o n u p p e r a n d l o w e r h a l f c i r c l e are d i f f e r e n t . The r e s u l t s o f source a a n d source b are also n o t i d e n t i c a l t o each o t h e r . Fig. 7 is t h e c a l c u l a t e d l o c a l w a v e n u m b e r a n d r o t a t e d angle r e s p e c t i v e l y at T = 0.6. I n n u m e r i c a l c a l c u l a t i o n , i f t h e r e is n o s o l u -t i o n f o r e q u a -t i o n s y s -t e m ( 1 0 ) - ( 1 3 ) , -t h e ks a n d 0 are l a b e l e d as O. W i t h r e g a r d t o s o u r c e a, t h e s c a t t e r e d w a v e s can o n l y p r o p a g a t e to N o d e 7 o n the u p p e r h a l f circle, w h i l e Node 6 is t h e f u r t h e s t p o i n t on t h e l o w e r h a l f c i r c l e . A h e a d o f these t w o nodes, t h e r e is n o scatter

1 0 11

1 0 11

(6)

Z.-M. Yuan etal./Applied Ocean Research 48 (2014) 186-201 191

Node serier Node serier

Fig. 6. Results at r=0.2. (a) Local wave number and (b) rotated angle.

6 8 10 12

Node serier

" 0.7 ? 0-6 •S 0-5 0.3 « 0.2

I

0.1 o ^ 0 1 ( -— 1 1 1 1 1

i ^JUpper half circle) •j • ^ (Lower half circle)

* (Upper half circle) ^(Lower half civ cle) _

- - - y-- rjA- (

-— 1 1 1 1 1

i ^JUpper half circle) •j • ^ (Lower half circle)

* (Upper half circle) ^(Lower half civ cle) _

L-1\-

j j

L-1\-1 L-1\-1 1 1 1 1 1 1 1 1 \ i 1 1

j 1

\

1 1 1 1 0 6 8 10 12

Node serier

16 18 20

Fig. 7. Results at T = 0.6. (a) Local wave number and (b) rotated angle.

w a v e a n d ;<s a n d 9 are l a b e l e d as 0. Since source b is l o c a t e d at s o m e distance a f t e r w a r d , its s c a t t e r e d w a v e s can o n l y r e a c h N o d e 5 o n t h e u p p e r h a l f circle w h i l e N o d e 6 is t h e f u r t h e s t p o i n t o n t h e l o w e r h a l f c i r c l e . W e also c a l c u l a t e ks a n d 9 at r = 0.4. The c r i t i c a l nodes are s h o w n i n Fig. 5. I t can be c o n c l u d e d t h a t t h e q u i e s c e n t r e g i o n e x p a n d s as t h e increase o f T , since t h e s c a t t e r e d w a v e s are c o n -v e c t e d b e h i n d the sources. It can also b e easily d e m o n s t r a t e d t h a t t h e t r u n c a t i o n o f f r e e surface c o u l d be a r b i t r a r y ( c i r c u l a r , r e c t a n g u -lar o r e l l i p s e ) and ks a n d 9 are o n l y d e t e r m i n e d b y t h e c o o r d i n a t e s o f t h e p o i n t s o n t h e c o n t r o l s u r f a c e .

3. E q u a t i o n of m o t i o n

Once t h e u n k n o w n d i f f r a c t i o n p o t e n t i a l <p^ a n d r a d i a t i o n p o t e n -t i a l cpj are s o l v e d , t h e t i m e - h a r m o n i c pressure can be o b t a i n e d f r o m B e r n o u l l i ' s e q u a t i o n :

P j = prij UOe(pj + 1(0

ax j = 0 , l 7

( 2 8 )

w h e r e p is t h e fluid d e n s i t y . The h y d r o d y n a m i c f o r c e p r o d u c e d b y t h e o s c i l l a t o r y m o t i o n s o f t h e vessel i n t h e six degrees o f f r e e d o m

can be d e r i v e d f r o m t h e r a d i a t i o n p o t e n t i a l s as [ 2 5 ] 6 Sa

=

J2[colAf

+ icoBf]r^^ 6

+ Y^[o:ilAf + icoBfjijP, i = 1, 2 6

7=1 ( 2 9 ) 6

= J2[wlA>^l- + io,eB>^l']lj^

6 + Y^[colAf + ioJeBf]ril / = 1,2, ( 3 0 ) j=i

(7)

Z.-M. Yuan et all Applied Ocean Research 48(2014)186-201 192

T h e a d d e d mass a n d d a m p i n g can be expressed r e s p e c t i v e l y as:

, . . ^ J L f f

(.l-^±'-?)n,s

w h e r e A?." is t h e a d d e d m a s s o f Ship_a i n i - t h m o d e w h i c h is i n d u c e d b y t h e m o t i o n o f S h i p . a i n j - t h m o d e ; is t h e a d d e d mass o f Ship.a i n i - t h m o d e w h i c h is i n d u c e d b y t h e m o t i o n o f S h i p . b i n j - t h m o d e ; A^." is t h e a d d e d mass o f S h i p . b i n i - t h m o d e w h i c h is i n d u c e d b y t h e m o t i o n o f S h i p . a i n j - t h m o d e ; A'?!' is t h e a d d e d mass o f S h i p . b i n ! - t h m o d e w h i c h is i n d u c e d b y t h e m o t i o n o f S h i p . b i n j - t h m o d e ; B is t h e a d d e d d a m p i n g a n d the d e f i n i t i o n t h e s u b s c r i p t is t h e s a m e as t h a t o f a d d e d m a s s ; (p^j is t h e real p a r t o f j - t h p o t e n t i a l , a n d (pij is t h e i m a g i n a r y p a r t . Tlie w a v e e x c i t a t i o n f o r c e can be o b t a i n e d b y t h e i n t e g r a t i o n o f i n c i d e n t a n d d i f f r a c t i o n pressure as = j j ^{Po+PiWS ( 3 3 ) F^'^ j j ^{Po + P7)nidS ( 3 4 ) A p p l y i n g N e w t o n ' s second l a w , t h e 12 c o m p o n e n t s o f s h i p m o t i o n s i n t h e f r e q u e n c y d o m a i n can be o b t a i n e d b y s o l v i n g t h e f o l l o w i n g e q u a t i o n s y s t e m : 6

^ { [ - a ) 2 ( i W g +Ap + ico.B^f +

cm

+ [-o^Af +

meBf]jp

j = i

= F,)^°, 1 = 1 , 2 , 6 ( 3 5 )

6

Y^{[-wjA^ + kOeB^'l'^ + [-«2(M,5 + A f ) + itóeBg-" + Cfj]r]^]

= F j ^ ^ i = l , 2 , 6 ( 3 6 ) w h e r e M f j a n d M y r e p r e s e n t t h e g e n e r a l i z e d mass m a t r i x f o r S h i p . a and S h i p . b ; C9. a n d CPj r e p r e s e n t t h e r e s t o r i n g m a t r i x o f S h i p . a a n d Ship-b. The s t a n d a r d m a t r i x s o l u t i o n r o u t i n e p r o v i d e s t h e c o m p l e x a m p l i t u d e o f t h e o s c i l l a t o r y m o t i o n s f r o m Eqs. ( 3 5 ) to ( 3 6 ) . T h e

w a v e e l e v a t i o n o n t h e f r e e surface t h e n can be o b t a i n e d f r o m the d y n a m i c f r e e surface b o u n d a r y c o n d i t i o n i n t h e f o r m & = + + l ^ ^ f s - uox) • V()??^? -f

n1<pf)

= ?/!j + i f ö , j = 0 , l , . . . , 7 ( 3 7 ) w h e r e is t h e r e a l p a r t o f j - t h m o d e l , a n d is t h e i m a g i n a r y p a r t . 4. N u m e r i c a l i m p l e m e n t a t i o n I n t h e n u m e r i c a l s t u d y , t h e b o u n d a r y is d i v i d e d i n t o a n u m b e r o f q u a d r i l a t e r a l panels w i t h c o n s t a n t source d e n s i t y a{i) ( i = l , 2, . . . , N ) , w h e r e N i s t h e p a n e l n u m b e r . The p o t e n t i a l at t h e i t h p a n e l ( t h e c e n t r o i d c o o r d i n a t e can be d e n o t e d as (x,-, y,-, Z j ) ) i n d u c e d b y t h e j t h p a n e l ( t h e c e n t r o i d c o o r d i n a t e can be d e n o t e d as {xj,yj, Zj)) c a n be e x p r e s s e d b y

<Pi.i = Gi,jaj, i,j = 1,2, ...,N ( 3 8 ) w h e r e (p d e n o t e s t h e s t e a d y p o t e n t i a l cps o r t h e u n s t e a d y p o t e n t i a l

(Pj, G j j is t h e R a n k i n e - t y p e Green f u n c t i o n t h a t satisfies t h e sea bed b o u n d a r y c o n d i t i o n t h r o u g h t h e m e t h o d o f m i r r o r i m a g e

^ J i X i - X j f + { y i - y j f + { Z i - Z j f

+ ^ ( 3 9 ) \ / ( X i - xj f + (y,- - yj f + (Zf + 2 d + Zj f

W h e n t h e i t h p a n e l a n d t h e j t h p a n e l are close t o each other, G j j can be c a l c u l a t e d w i t h a n a l y t i c a l f o r m u l a s l i s t e d b y Prins [ 2 6 ] , W h e n t h e distance b e t w e e n t h e i t h p a n e l a n d t h e j t h p a n e l is large, these c o e f f i c i e n t s are c a l c u l a t e d n u m e r i c a l l y .

The f i r s t d e r i v a t i v e s o f t h e p o t e n t i a l are e v a l u a t e d w i t h a n a l y t -ical f o r m u l a s f o r t h e first d e r i v a t i v e s o f t h e R a n k i n e source s h o w n i n Hess a n d S m i t h [ 1 3 ] .

Special a t t e n t i o n s s h o u l d be p a i d o n t h e second d e r i v a t i v e s of t h e p o t e n t i a l o n t h e f r e e surface. G e n e r a l l y , t h e d i f f e r e n c e schemes can be d i v i d e d i n t w o classes: u p w i n d d i f f e r e n c e schemes a n d cen-t r a l d i f f e r e n c e schemes. A l cen-t h o u g h c e n cen-t r a l d i f f e r e n c e s c h e m e s are s u p p o s e d to be m o r e accurate, t h e s t a b i l i z i n g p r o p e r t i e s o f the u p w i n d d i f f e r e n c e schemes are m o r e d e s i r e d i n t h e f o r w a r d speed p r o b l e m [ 2 7 ] . P h y s i c a l l y this can be e x p l a i n e d b y t h e face t h a t n e w i n f o r m a t i o n o n t h e w a v e p a t t e r n m a i n l y c o m e s f r o m t h e u p s t r e a m side, e s p e c i a l l y at h i g h speeds, w h e r e a s t h e d o w n s t r e a m side o n l y c o n t a i n s o l d i n f o r m a t i o n . T h e first-order u p w i n d d i f f e r e n c e scheme f o r t h e second d e r i v a t i v e o f t h e p o t e n t i a l t o x c a n be w r i t t e n as f o l l o w s < = ^ [ ^ ( . j + 2 - 2 ^ , j + i + ^ i . j ] (40) By s u b s t i t u t i n g t h e first a n d second d e r i v a t i v e s o f t h e p o t e n t i a l i n t o t h e b o d y - , f r e e - a n d c o n t r o l - s u r f a c e b o u n d a r y c o n d i t i o n s , the f o l l o w i n g set o f l i n e a r e q u a t i o n s f o r t h e values o f t h e source density c a n be o b t a i n e d

N

X

^fijo;/= Q l . 1 = 1 , 2 jv (41)

For t l i e c o n s t a n t p a n e l m e t h o d , t h e s e c o n d d e r i v a t i v e s o f the p o t e n t i a l can be expressed a n a l y t i c a l l y [ 2 8 ] . H o w e v e r , w e find that w h e n t h e a n a l y t i c a l e x p r e s s i o n is used, t h e c o n d i t i o n n u m b e r o f the c o e f f i c i e n t m a t r i x Py is e x t r e m e l y l a r g e a n d t h e c o e f f i c i e n t m a t r i x t e n d s to be a n i l l - c o n d i t i o n e d m a t r i x . The d i a g o n a l e l e m e n t s (/ = j ) is v e r y l a r g e d u e t o t h e f a c t o r t h a t t h e field p o i n t is w i t h i n the source

(8)

Z.-M. Yuan et al./Applied Ocean Research 48 (2014) 186-201 193 p a n e l . A s a result, e x c e p t t h e c i i f f r a c t e d a n d r a d i a t e d w a v e m o d e s , s o m e s p u r i o u s w a v e m o d e s can also be o b s e r v e d o n t h e f r e e s u r -face, w h i c h c o u l d i n t e r f e r e w i t h t h e p h y s i c a l w a v e s a n d e v e n t u a l l y d e s t r o y t h e c r e d i b i l i t y o f t h e s o l u t i o n c o m p l e t e l y . T h i s is a p u r e l y n u m e r i c a l p h e n o m e n o n t h a t f i r s t l y discussed b y L o n g u e t - H i g g i n s a n d Col<elet [ 2 9 ] . T h e y f o u n d t h a t t h e s a w - t o o t h l i k e w a v e s w e r e s u p e r i m p o s e d o n t h e p h y s i c a l w a v e s s u c h t h a t t h e w a v e s w e r e z i g z a g a l i k e i f n o p r e v e n t i v e m e a s u r e is t a k e n . The g e n e r a l c o n s e n -sus o n t h e cause o f t h e p r o b l e m is t h a t t h e r e is h i g h c o n c e n t r a t i o n o f f l u i d p a r t i c l e s w i t h h i g h speed i n c e r t a i n r e g i o n s e s p e c i a l l y near t h e w a v e crests. T h e same p h e n o m e n o n w a s also e n c o u n t e r e d b y X u a n d Y u e [ 3 0 ] i n t h e i r 3 - D s o l u t i o n . A t y p i c a l t r e a t m e n t t o r e m o v e t h e s a w - t o o t h i n s t a b i l i t y is b y i n t r o d u c i n g a l o w - p a s s n u m e r i c a l f i l t e r [ 2 9 - 3 1 ] . A l t h o u g h i t c a n p r o v i d e a s m o o t h w a v e p a t t e r n , i t is b e l i e v e d t h a t t h i s n u m e r i c a l f i l t e r c a n b r i n g s o m e i n f l u e n c e t o t h e r e a l w a v e e l e v a t i o n . W e f i n d t h e d i f f e r e n c e s c h e m e o n t h e f r e e s u r -face b o u n d a r y c o n d i t i o n is t h e m a i n r e a s o n f o r t h e s p u r i o u s w a v e m o d e s . Even w i t h o u t n u m e r i c a l f i l t e r i n g , t h e u p s t r e a m d i f f e r e n c e s c h e m e c a n o b t a i n a s m o o t h w a v e p a t t e r n . W h e n t h e u p w i n d d i f f e r -ence s c h e m e is used, t h e d i a g o n a l e l e m e n t s o f t h e c o e f f i c i e n t m a t r i x c a n be r e s t r a i n e d a n d as a result, t h e c o n d i t i o n n u m b e r decreases a n d t h e s o l u t i o n t e n d s to be stable. I t s h o u l d also be n o t i c e d t h a t t h e s i n g u l a r i t y d i s t r i b u t i o n does n o t h a v e t o be l o c a t e d o n t h e f r e e s u r f a c e itself, i t c a n also be l o c a t e d at a s h o r t distance above the f r e e surface, as l o n g as t h e c o l l o c a t i o n p o i n t s , w h e r e the b o u n d a r y c o n d i t i o n has t o be s a t i s f i e d , stay o n t h e f r e e s u r f a c e . In practice, a distance o f m a x i m a l t h r e e t i m e s t h e l o n g i t u d i n a l size o f a p a n e l is possible [ 2 7 ] . I n t h e p r e s e n t s t u d y , t h e r a i s e d distance A z j = -y/sj^, w h e r e Sj is t h e area o f the i t h p a n e l .

5. V a l i d a t i o n s a n d d i s c u s s i o n I n r e a l i s t i c c o n d i t i o n s , a s h i p c a n n o t be c o n s i d e r e d as a p o i n t s o u r c e a n d d i f f e r e n t p a r t s o f its h u l l u s u a l l y p r o d u c e several w a v e s y s t e m s . G e n e r a l l y , o n l y s t e r n w a v e s have m a g n i t u d e c o m p a r a b l e w i t h t h a t o f b o w w a v e s . The d i v e r g i n g b o w a n d s t e r n w a v e s m a y t r a v e l i n d e p e n d e n t l y i f t h e s h i p is l o n g e n o u g h [ 3 2 ] . T h e l o n g e r w a v e s a n d t h e s h i f t o f t h e o r i g i n d o w n s t r e a m o f t h e vessel r e q u i r e t h e r e p l a c e m e n t o f t h e c o n t r o l s u r f a c e f u r t h e r a w a y t o s a t i s f y t h e p o i n t s o u r c e a s s u m p t i o n . H o w e v e r , Das a n d C h e u n g [21 ] c a r r i e d o u t t h e c o n v e r g e n c e s t u d y a n d f o u n d t h a t t h e p r e s e n t m o d e l a p p a r -e n t l y h a n d l -e d thos-e p h -e n o m -e n a w -e l l w i t h c o n s t a n t p a n -e l s a n d p r o v i d e d a c c u r a t e results w i t h a d o m a i n o f r e a s o n a b l e d i m e n s i o n s a n d s o l u t i o n c o m m o n l y used i n s h i p a n d o f f s h o r e p l a t f o r m design. I n t h i s p a p e r , w e w i l l v e r i f y t h e p r e s e n t n u m e r i c a l p r o g r a m t h r o u g h t w o p a i r s o f m o d e l s . M o d e l 1 is a b o u t a f u l l scale s u p p l y s h i p a n d f r i g a t e m o d e l , a n d Li's m o d e l test r e s u l t s [ 7 ] w i l l be u s e d t o v e r -i f y t h e p r e s e n t n u m e r -i c a l c a l c u l a t -i o n . M o d e l 2 -is a t a n k e r - L N G s h -i p m o d e l i n m o d e l scale, a n d R o n s s s ' e x p e r i m e n t s [ 8 ] w i l l p r o v i d e t h e m o t i o n responses f o r v a l i d a t i o n . 5.1. Results of ModeU The m a i n p a r t i c u l a r s o f s u p p l y s h i p ( S h i p . a ) a n d f r i g a t e ( S h i p . b ) are s h o w n i n Table 1 . The t r a n s v e r s e a n d l o n g i t u d i n a l d i s t a n c e s b e t w e e n t w o ships are 5 2 . 7 0 2 m a n d O m , r e s p e c t i v e l y . A t y p i c a l case is s i m u l a t e d h e r e : h e a d sea w i t h f o r w a r d s p e e d o f 6.18 m / s ( f n = 0 . 1 5 ) . T o be c o n s i s t e n t w i t h t h e m o d e l tests c o n d i t i o n , b o t h s h i p s are r e s t r a i n e d i n surge, s w a y a n d y a w w h i l e t h e m o t i o n s i n heave, r o l l a n d p i t c h are f r e e . I n o r d e r t o m a k e c o m p a r i s o n , w e also p r e s e n t t h e n u m e r i c a l r e s u l t s o f t w o ships at z e r o f o r w a r d speed. T h e c o m p u t a t i o n a l d o m a i n is s h o w n i n Fig. 8. T h e f r e e s u r f a c e is t r u n c a t e d at La u p s t r e a m , 2La d o w n s t r e a m . La i n t h e s u p p l y s h i p s i d e w a r d a n d L/, i n t h e f r i g a t e s i d e w a r d . T h e r e are 3 7 8 p a n e l s o n

Table 1

Main particulars of supply ship and frigate [51.

Supply ship Frigate Length between perpendicular L . - = 180m ii, = 122m

Breadth By = 30.633 m Bb = 14.78 m

Draught T,-= 8.5m rb = 4.5m

Displacement = 28,223.31 l/b= 4023.71

Blocl< coefficient = 0.588 C ' = 0.484 Longitudinal CoG (ret. midship) = - 1 . 6 8 8 m X ° = 3.284 m Vertical CoG (rel. calm waterline) ya

G = 3.925 m Z° = 2 . 0 4 9 m Radius of inertia for roll

.14

= 8.047 m r544.921 m Radius of inertia for pitch ' 5 5 = 4 5 m r | 5 = 30.5 m

Radius of inertia for yaw ..a ' 6 6 = 4 5 m r*. = 3 0 . 5 m

66

Fig. 8. Computational domain of Model 1.

t h e b o d y s u r f a c e o f s u p p l y s h i p , 5 4 0 0 o n f r e e surface, 2 4 3 2 o n t h e c o n t r o l s u r f a c e a n d 4 1 4 o n t h e b o d y s u r f a c e o f f r i g a t e .

Fig. 9 s h o w s t h e response a m p l i t u d e s o f t w o ships i n heave, r o l l a n d p i t c h m o t i o n s . The c o m p a r i s o n s w i t h e x p e r i m e n t a l d a t a a n d G r e e n f u n c t i o n m e t h o d [ 7 ] are also i n c l u d e d . The n u m e r i c a l results c a l c u l a t e d b y the p r e s e n t 3 D R a n k i n e source m e t h o d g e n -e r a l l y agr-e-e w i t h th-e -e x p -e r i m -e n t a l data. I n o r d -e r t o i n v -e s t i g a t -e the s p e e d e f f e c t , w e also p r e s e n t t h e r e s u l t s o f t w o ships w i t h -o u t f -o r w a r d speed, I t can be -o b s e r v e d t h a t t h e increase -o f t h e r e s p o n s e a m p l i t u d e o p e r a t o r s w i t h f o r w a r d s p e e d is c o n s i d e r a b l e , e s p e c i a l l y f o r t h e s m a l l e r s h i p ( S h i p . b ) . Roll m o t i o n o f S h i p . a is o b v i o u s l y r e d u c e d , d u e to t h e f o r w a r d speed. B u t f o r S h i p . b , t h e r o l l m o t i o n increases d r a m a t i c a l l y at A / L > 1 d u e t o t h e f o r w a r d s p e e d . In h e a v e a n d p i t c h m o t i o n s , t h e r e are also s o m e d i s c r e p -ancies b e t w e e n t h e p r e d i c t i o n s a n d m e a s u r e m e n t s , especially i n t h e l o n g w a v e case. T h e r e are t w o aspects t o e x p l a i n these d i s -crepancies. T h e f i r s t r e a s o n s h o u l d be the m o d e l t e s t s e t - u p . F r o m the p u b l i s h e d w o r k , o n l y t h r e e m o d e l tests can be f o u n d o n s h i p -t o - s h i p w i -t h f o r w a r d speed p r o b l e m [ 5 , 8 , 3 3 ] . I-t w a s f o u n d -t h a -t -t h e m o d e l test s e t u p w a s v e r y c h a l l e n g i n g , e s p e c i a l l y f o r the m e a s u r e -m e n t o f r o l l -m o t i o n . T h e s e c o n d r e a s o n is t h e n u -m e r i c a l p r o g r a -m . The p r e s e n t p o t e n t i a l f l o w p r o g r a m is b a s e d o n t h e l i n e a r a s s u m p -t i o n . I-t c a n be f o u n d i n Fig. 9 -t h a -t -t h e g r e a -t e s -t discrepancies b e -t w e e n m e a s u r e d a n d p r e d i c t e d m o t i o n s g e n e r a l l y o c c u r at l o n g w a v e l e n g t h . I n t h e s e c o n d i t i o n s , t h e m o t i o n s o f S h i p . b are v e r y large, e s p e c i a l l y i n r o l l m o t i o n . I t v i o l a t e s t h e l i n e a r a s s u m p t i o n . Even f o r t h e m o d e l test, as d e m o n s t r a t e d b y Li [ 6 ] , t l i e e x p e r i m e n t s c o u l d n o t be c o m p l e t e d f o r t h e h i g h e s t t w o w a v e l e n g t h s d u e t o excessive m o t i o n s o f t h e S h i p . b ( r o l l a m p l i t u d e exceeds 3 0 ° ) . F u r t h e r m o r e , t h e h y d r o d y n a m i c i n t e r a c t i o n s b e t w e e n t h e s e t w o ships are also v e r y i m p o r t a n t . The m o t i o n s o f t h e J a r g e r s h i p ( S h i p . a ) c o u l d i n f l u -ence t h e m o t i o n s o f s m a l l e r s h i p ( S h i p . b ) s i g n i f i c a n t l y . The large a m p l i t u d e r o l l m o t i o n is c o u p l e d w i t h t h e h e a v e a n d p i t c h m o t i o n s , w h i c h is d i f f e r e n t f r o m t h e s i n g l e s h i p p r o b l e m . T h e u n p r e d i c t a b l e

(9)

194 Z.-M. Yuan et al./Applied Ocean Research 48 (2014) 186-201 a 1 0.8 ^ 0.6 # 0.4 0.2 0 0

c

0.5 0.4 O 0.3 CO T £ • 0.2 0.1 0

c

e

1 0.8 o 0.6 0.4 0.2 « Experiments (Li, 2007) — Present (Rankine source)

Li (2007) (Green function) -a— Zero speed (Tm sliips)

1 1 1 1 1 1 ..M 1

'-y-r-1

'-y-r-0.4 0.8 X/la 1.2 1.6 1.5 1.2 0.9 0.6 0.3 0 1 I • • [ ' " 1 1 1 1 1 1 1 1 I 0 0.4 0.8 1.2 X/Lb 1.6 1 1

: /

'b-°>a ' /---. i ^ 1 : 2 0.4 0.8 X/La 1.2 1.6 0.4 0.8 1.2 X/Lb 1.6 1 1 1 1 1

/

1

r

; i 7

-a—o—

Fig. 9. Response amplitude operators of two ships at Fn = 0.15. (a) Heave of Ship-a; (b) heave of Ship.b; (c) roll of Ship.a; (d) roll of Ship.b; (e) pitch of Ship-a; (f) pitch of Ship.b.

r o l l m o t i o n i n l o n g w a v e l e n g t h c o u l d also i n f l u e n c e t h e p r e d i c t i o n s o f heave a n d p i t c h m o t i o n s .

W e also find t h e r o l l m o t i o n s o f b o t h ships are s i g n i f i c a n t l y i n f l u e n c e d b y the r o l l d a m p i n g c o e f f i c i e n t . It is f o u n d t h a t the d a m p i n g i n r o l l c a n n o t be p r e d i c t e d w e l l b y t h e r a d i a t i o n c o m p o -n e -n t o -n l y [ 3 4 ] . The d i f f i c u l t y i -n p r e d i c t i -n g t h e r o l l m o t i o -n arises f r o m t h e n o n l i n e a r c h a r a c t e r i s t i c s o f r o l l -due t o t h e e f f e c t o f fluid v i s c o s i t y . I n s h i p - t o - s h i p problemt, t h e r o l l m o t i o n is a l w a y s r e m a r k a b l e d u e t o t h e h y d r o d y n a m i c i n t e r a c t i o n b e t w e e n t w o ships. The p r e s e n t p o t e n t i a l flow t h e o r y is based o n t h e a s s u m p t i o n t h a t t h e s u r r o u n d i n g fluid is i n v i s c i d a n d i t c a n n o t p r e d i c t t h e r o l l d a m p i n g p r e c i s e l y . To c o m p l e m e n t t h e v i s c i d c o m p o n e n t , an

(10)

Z.-M. Yuan etal./Applied Ocean Researcli 48 (2014) 186-201 195

Table 2

Main particulars of tanl<er and LNG ship [8].

Tanker LNG ship

Length between perpendicular L„= 3.76 m i t = 2.28 m

Breadth B„ =0.625 m B|, =0.387 m

Draught r„ = 0.232 m r6=0.124m

Displacement 1^0=0.4355 1 l/t =0.074 t

Block coefficient CJ0.83 Ö = 0.68

Water plane area coefficient C° = 0.90 C° =0,7D Longitudinal CoG (rel. midship) X ° = 0.086 m X'i = -0.01 m Vertical CoG (ret. calm waterline) 2° = - 0 . 0 5 2 m = 0.012 m Radius of inertia for roll r j , = 0 . 1 7 5 m rj^ = 0 . 1 0 3 m Radius of inertia for pitch r ^ 5 = 1.008 m r ° 5 = 0 , 6 0 4 m Radius of inertia for yaw rje = 1.008 m

4 = 0-604 m

Table 3

Corrections for model set-up of Ship-b, non-dimensionalized using p, Vb, h, i tand

An*

Component, l j 33 55 35, 53

Additional inertia,/|j 1.6E--01 5.5E--02 - 7 . 2 E - 04 Additional damping, Bij 5.2E--03 1.6E-•03 - 2 . 6 E - 03 Additional restoring, Qj 4.8E--04 1.5E--04 - 2 , 1 E - •06

e q u i v a l e n t l i n e a r d a m p i n g c o e f f i c i e n t is a p p l i e d i n t h e p r e s e n t s t u d y . The n o n - d i m e n s i o n a l r o l l d a m p i n g c o e f f i c i e n t , A:, is g i v e n b y _ ^44 + ^ 4 4 » ( 4 2 ) 2 v ' ( / 4 4 + A 4 4 ) C 4 4 w h e r e 044^ is t h e viscous d a m p i n g . This d a m p i n g c o e f f i c i e n t is w r i t t e n as a f r a c t i o n b e t w e e n the a c t u a l d a m p i n g c o e f f i c i e n t , 844 + 844^, a n d t h e c r i t i c a l d a m p i n g c o e f f i c i e n t , 2y'{l44+A44)C44-Fig. 10 is t h e n u m e r i c a l results o f r o l l m o t i o n a m p l i t u d e s o f t w o ships at d i f f e r e n t d a m p i n g c o e f f i c i e n t s . W e find t h a t Ka =0.2 a n d /Ci, = 0.6 agree w i t h t h e e x p e r i m e n t a l results b e t t e r t h a n o t h e r values. This is because t h e r o l l m o t i o n o f Ship.a is r e l a t i v e l y s m a l l , w h i l e the r o l l m o t i o n o f S h i p . b is e x t r e m e l y large. C o r r e s p o n d i n g l y , t h e n o n l i n e a r viscous c h a r a c t e r i s t i c s o f r o l l m o t i o n o f S h i p . b are m o r e o b v i o u s . A larger e q u i v a l e n t l i n e a r d a m p i n g c o e f f i c i e n t s h o u l d be used i n t h e n u m e r i c a l s i m u l a t i o n s . 5.2. Results of Model 2 The m a i n p a r t i c u l a r s o f t a n k e r ( S h i p . a ) a n d LNG ( S h i p . b ) are s h o w n i n Table 2. The details o f m o d e l test s e t - u p is e l a b o r a t e d b y R o n s s s [8], She a n a l y z e d the bias sources a n d c a r r i e d o u t c o m -p a r a t i v e s t u d y . She f o u n d t h a t t h e e x -p e r i m e n t a l set u -p c o r r e c t i o n s w e r e necessary a n d i n t h e p r e s e n t c a l c u l a t i o n , such c o r r e c t i o n s w i l l be used, as s h o w n i n Table 3. The f o r c e d r o l l c e n t e r is talcen t o be 0.032 m b e l o w t h e m e a n w a t e r l e v e l f o r Ship.a a n d 0.104 m above t h e m e a n w a t e r l e v e l f o r S h i p . b . To be c o n s i s t e n t w i t h t h e m o d e l tests c o n d i t i o n , S h i p . a is r e s t r a i n e d i n surge a n d s w a y w h i l e t h e m o t i o n s i n heave, r o l l , p i t c h a n d y a w are f r e e ; Ship.b is r e s t r a i n e d i n surge, s w a y a n d y a w w h i l e t h e o t h e r degrees o f f r e e d o m are set f r e e . A t y p i c a l case is s i m u l a t e d h e r e : h e a d sea w i t h f o r w a r d speed o f 0 . 9 1 2 m / s (Froude n u m b e r Fn = i i o / ^ ^ ï ^ = 0.15). The t r a n s -verse a n d l o n g i t u d i n a l distances b e t w e e n t w o ships are 1.25 m a n d 0.09 m , r e s p e c t i v e l y , w h i c h i n d i c a t e s t h a t t h e l o n g i t u d i n a l c e n t e r o f these t w o ships are a p p r o x i m a t e l y t h e same. I n o r d e r t o m a k e c o m p a r i s o n , w e also p r e s e n t t h e results o f single s h i p w i t h t h e s a m e f o r w a r d speed a n d t w o ships at zero f o r w a r d speed. The c o m p u -t a -t i o n a l d o m a i n is s h o w n i n Fig. 1 1 . The f r e e s u r f a c e is -t r u n c a -t e d at l.OSLa u p s t r e a m , 1.84La d o w n s t r e a m , 1.051a i n t h e t a n k e r s i d e -w a r d a n d 1.3Lfa i n t h e LNG s h i p s i d e -w a r d . There are 4 2 0 panels o n t h e b o d y surface o f t a n k e r , 9 0 2 0 o n f r e e surface, 2 4 6 4 o n t h e c o n t r o l s u r f a c e a n d 4 2 0 o n t h e b o d y s u r f a c e o f LNG s h i p .

Fig. 11. Computational domain of Model 2.

5.2, J. Motion responses

Fig. 12 is t h e response a m p l i t u d e s o f t w o ships. The c o m p a r -isons w i t h e x p e r i m e n t a l data a n d u n i f i e d t h e o r y are also i n c l u d e d . The p r e s e n t results i n heave a n d p i t c h m o t i o n o f b o t h ships g e n e r -a l l y h-ave -a s -a t i s f i e d -a g r e e m e n t w i t h t h o s e o f e x p e r i m e n t -a l d-at-a. A n o t i c e a b l e d i s c r e p a n c y c a n be o b s e r v e d i n Fig. 12a a n d e at A/La = 1.2 a n d X/Lo = 1.3, w h i c h c o r r e s p o n d s t o t h e r e s o n a n t f r e q u e n c y o f heave a n d p i t c h o f Ship.a, r e s p e c t i v e l y . But t h e r e s o n a n t f r e q u e n c y i n t h e n u m e r i c a l c a l c u l a t i o n is a r o u n d XjLa = 1 f o r b o t h heave a n d p i t c h o f Ship.a. This d i f f e r e n c e is a t t r i b u t e d t o t h e t r i m s u s p e n s i o n s i n the m o d e l test setup [8]. W h e n i t c o m e s t o r o l l , t h e p r e s e n t p r e -d i c t i o n , as w e l l as Ronasss' [8] c a l c u l a t i o n , is n o t s a t i s f a c t o r y . The m a i n r e a s o n f o r the discrepancies is a b o u t t h e d a m p i n g c o e f f i c i e n t , w h i c h has b e e n discussed p r e v i o u s l y i n t h e v a l i d a t i o n o f M o d e l 1. A c c o r d i n g to R o n s s s [8], t h e r o l l viscous d a m p i n g o f Ship.a is tal<en as 844^ = 2844 f o r the f o r w a r d speed case a n d 844^ = 844 f o r t h e zero speed case. For Ship.b, i t is t a k e n as 844^ = 844 f o r t h e f o r -w a r d s p e e d case a n d B44„ = 4B44 f o r t h e zero speed case. The l i f t d a m p i n g is a n o t h e r f a c t o r , w h i c h w i l l increase w h e n t h e r o l l c e n -t e r is above -t h e m e a n w a -t e r l e v e l [ 3 5 ] . Besides, -t h e m e a s u r e m e n -t o f r o l l m o t i o n i n t h e m o d e l t e s t is f u l l o f challenges. T h e devices used t o m e a s u r e t h e r o l l m o t i o n c o u l d b r i n g a d d i t i o n a l f r i c t i o n a n d u p w a r d forces, as d e m o n s t r a t e d b y R o n s s s [8]. W e also i n c l u d e t h e results o f a s i n g l e s h i p w i t h f o r w a r d speed. F r o m t h e c o m p a r -ison, w e find t h a t t h e h y d r o d y n a m i c i n t e r a c t i o n has m u c h g r e a t e r i n f l u e n c e o n t h e m o t i o n s o f t h e s m a l l e r s h i p . For h e a v e a n d p i t c h m o t i o n s o f t h e larger s h i p (Ship.a), t h e i n f l u e n c e f r o m t h e s m a l l e r s h i p ( S h i p . b ) is n o t n o t i c e a b l e . B u t t h e h y d r o d y n a m i c i n t e r a c t i o n is the essential r e a s o n t h a t induces t h e r o l l m o t i o n f o r b o t h ships. T h e r e is n o r o l l m o t i o n i n h e a d sea c o n d i t i o n f o r a s i n g l e s h i p due t o t h e s y m m e t r i c a l c h a r a c t e r i s t i c .

5.2.2. Effect of radiation condition

Fig. 13 s h o w s t h e r e a l p a r t o f d i f f r a c t e d a n d r a d i a t e d w a v e s o f t w o ships w i t h h i g h f o r w a r d speed. Fig. 1 4 s h o w s t h e t o t a l w a v e e l e v a t i o n , w h i c h is n o n - d i m e n s i o n a l i z e d b y t h e i n c i d e n t w a v e a m p l i t u d e ÏJQ. I t is o b s e r v e d t h a t t h e s y m m e t r i c a l c h a r a c t e r i s t i c o f w a v e p a t t e r n p r o d u c e d b y single s h i p has b e e n m o d i f i e d i n t h e p r e s e n c e o f t h e o t h e r one. A V - s h a p e r e g i o n is c l e a r l y c o n v e c t e d d o w n s t r e a m . The d i f f r a c t e d w a v e s f r o m t h e t w o sides i n t e r a c t w i t h t h o s e f r o m t h e gap t h r o u g h a s y s t e m o f t r a n s v e r s e w a v e s a n d a p p r o a c h t h e d o w n s t r e a m b o u n d a r y at an o b l i q u e angle. The r a d i -a t e d w -a v e s p r o p -a g -a t e s i d e w -a r d i n d e p e n d e n t l y -a n d -a p p r o -a c h t h e d o w n s t r e a m b o u n d a r y p a r a l l e l . N o r e f l e c t i o n s c a n be f o u n d o n t h e

(11)
(12)

Z.-M. Yuan et al./Applied Ocean Research 48(2014) 186-201

Fig. 14. Total wave elevation on the free surface of two ships in head seas: A/lb = 1-08. F,. = 0.25, T = 1.35. (a) Real part and (b) imaginary part.

Fig. 15. Real part of diffracted waves of two ships in head seas by using Sommerfeld and present radiation condition: A/lb = 1.08, F„ = 0.05, T = 0.2. (a) Wave pattern in the portside of Ship.a and (b) wave pattern in the starboard of Ship.a.

Fig. 16. Real part of radiated waves of two ships in head seas by using Sommerfeld and present radiation condition: A/ib = 1.08, F„ = 0.05, T = 0.2. (a) Wave pattern in the portside of Shlp.a and (b) wave pattern in the starboard of Ship.a.

(13)

198 Z.-M. Yuan et al./Applied Ocean Research 48 (2014) 186-201

a

T]

V/ ////•Zr^

-0.4 -0.3 -0.1 -0.0 0.1 0.3 0.4 0.5 0.7 0.8 0.9 -0.4 -0.3 -0.1 -0.0 0.1 0.3 0.4 0.5 0.7 0.8 0.9

J~l r I Present radiation condlBonl

' • ) • ) ) . /

'•W-m{ 1 H . " \ \ [Upstream radiation conditioril

I ^-^Presentradiatibnconditron

wmym:=x

rupsfream radiation condrtionj

rv,\VTnrT77f[i,( •) \

-6 -4

Fig. 17. Real part of diffracted waves of two sliips in head seas by using upstream boundary condition of Nakos [18] and present radiation condition: A/Lb = 2.15, F„ =0.1,

T = 0,27. (a) Wave pattern in the portside of Ship.a and (b) wave pattern in the starboard of Ship.a.

a

-1.3 -1.1 -0.9 -0.7 -0.4 -0.2 -0.0 0.2 0.4 0.6 -1.7 -1.4 -1.2 -0.9 -0.6 -0.3 -0.1 0.2 0.5 O.i

-4

: U P r e s e n t radiation conditioni

( )

MS- I I I ƒl ü ' ^ - \ \ i', ' ^ ^ ' ^ l U p s t r e a m radiation conditiörï]

-4

I Present radiation conditioni

- / . • ~^^-a^-*X\\\\ Z / ? ^ ^ ? ' : ^ [Upstreamradlaflonconditioiil

Fig. 18. Real part of radiated waves of two ships in head seas by using upstream boundary condition of Nakos [ I S ] and present radiation condidon: A/Lb = 2.15, Fn =0.1i r = 0.27. (a) Wave pattern in the portside of Ship.a and (b) wave pattern in the starboard of Ship.a.

a

-0.6 -0.6 -0.4 -0.3 -0.1 0.1 0.3 0.5 0.6 0.8 1.0 P r e s e n t radiation condition

S ~ r > ^ _ ; r : = ~ ^ a^^^^sife—'"^ I U p s t r e a m radiation condition

-0.8 -0.6 -0,4 -0.3 -0.1 0.1 0.3 0.5 0.6 0.8 1.0

7 '^Present radiation conditioni

Upstream radiation condilion -4 -2 0

Fig. 19. Real part of diffracted waves of two ships in head seas by using upstream boundary condition of Nakos [18] and present radiation condition: A/JLb =0.75, F„ =0.1, r = 0,51, (a) Wave pattern in the portside of Ship.a and (b) wave pattern in the starboard of Ship.a.

Cytaty

Powiązane dokumenty

W edłu g autora Diener i Lieger praktycznie stanow ili niem al jedną grupę faktorów i kom isantów K rzy ­ żaków, przy czym termin Lieger teoretycznie oznaczał

Aleksander Dańda — Inna Rosja — alternatywne rozwiązania poli- tyczne i przyszłość Rosji według Eduarda Limonowa?. Paweł Musiałek —

Mia- nowicie faktorom równociągłym odpowiadają faktory Kroneckera, które są obro- tami, więc w teorii miarowej jeśli maksymalny faktor Kroneckera (patrz Rozdział 3. w [5])

Stero- wanie i kontrolowanie procesem obróbki zostało wykonane przy pomocy stanowiska składającego się z: lasera, ekspandera, tłumika optycznego, aktywnego polaryzatora,

Według raportu Boom and Bust (Boom… 2017) w ostatnim czasie, zwłaszcza w 2016 roku, podjęto wiele działań mających na celu likwidację elektrowni węglowych, a nawet

Wszystkie wypowie- dzi, wychodzące spod pióra tegoż Autora, cechują się kunsztownym, wspaniałym stylem, osiągniętym poprzez prostotę wypowiedzi przy jednoczesnym wnikliwym,

Jeżeli zdarza się, że nazwisko autora zostało zanotowane jak w wypadku wiersza o zachowaniu się przy stole (autor podpisał się przy końcu jako Słota czy Złota), nic

[r]